首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of NHC silver(I), mercury(II) and palladium(II) complexes, [(1,3-diethylbimy)6Ag4I3]I (2), [(1-benzyl-3-picolylbimy)Ag2Br2]n (3), [(1-benzyl-3-picolylbimy)HgI(CH2CN)]2 (4), {[(1-picolyl-3-npropylbimy)2Hg][Hg2I6]}n (5) and [(1,3-dipicolylbimy)PdCl]Cl (6), as well as one anionic complex [1,3-diethylbimidazolium]2[HgI4] (1) (bimy = benzimidazol-2-ylidene), have been prepared and characterized. Interestingly, a wind wheel-like Ag4I3 arrangement in 2 is formed, 1D polymeric chain containing 12-membered macrometallocycles and quadrangle Ag2Br2 units in 3 is generated, and the α-carbon atom of deprotonated acetonitrile ([CH2CN]) in 4 participates in coordination with mercury(II) atom. In the crystal packings of complexes 1-6, 2D supramolecular layers or 3D supramolecular architectures are formed via intermolecular weak interactions, including π-π interactions, hydrogen bonds, C-H···π contacts, weak Hg···I bonds and I···I bonds. Additionally, the catalytic activity of the NHC palladium(II) complex 6 in Suzuki-Miyaura cross-coupling reaction was studied.  相似文献   

2.
Two tellurium ligands 1-(4-methoxyphenyltelluro)-2-[3-(6-methyl-2-pyridyl)propoxy]ethane (L1) and 1-ethylthio-2-[2-thienyltelluro]ethane (L2) have been synthesized by reacting nucleophiles [4-MeO-C6H4Te] and [C4H3S-2-Te] with 2-[3-(6-methyl-2-pyridyl)propoxy]ethylchloride and chloroethyl ethyl sulfide, respectively. Both the ligands react with HgBr2 resulting in complexes of stoichiometry [HgBr2 · L1/L2] (1/4), which show characteristic NMR (1H and 13C{1H}). On crystallization of 1 from acetone-hexane (2:1) mixture, the cleavage of L1 occurs resulting in 4-MeOC6H4HgBr (2) and [RTe+→HgBr2]Br (3) (where R = -CH2CH2OCH2CH2CH2-(2-(6-CH3-C5H3N))). The 2 is characterized by X-ray diffraction on its single crystal. It is a linear molecule and is the first such system which is fully characterized structurally. The Hg-C and Hg-Br bond lengths are 2.085(6) and2.4700(7) Å. The distance of four bromine atoms (3.4041(7)-3.546(7) Å) around Hg (cis to C) is greater than the sum of van der Waal’s radii 3.30 Å. This mercury promoted cleavage is observed for an acyclic ligand of RArTe type for the first time and is unique, as there appears to be no strong intramolecular interaction to stabilize the cleavage products. The 4 on crystallization shows the cleavage of organotellurium ligand L2 and formation of a unique complex [(EtS(CH2)2SEt)HgBr(μ-Br)Hg(Br)(μ-Br)2Hg(Br)(μ-Br)BrHg(EtS(CH2)2SEt)] · 2HgBr2 (5), which has been characterized by single crystal structure determination and 1H and 13C{1H} NMR spectra. The elemental tellurium and [C4H3SCH2]2 are the other products of dissociation as identified by NMR (proton and carbon-13). The cleavage appears to be without any transmetalation and probably first of its kind. The centrosymmetric structure of 5 is unique as it has [HgBr3] unit, one Hg in distorted tetrahedral geometry and one in pseudo-trigonal bipyramidal one. The molecule of 5 may also be described as having [(EtSCH2CH2SEt)HgBr]+ [HgBr3] units, which dimerize and co-crystallize with two HgBr2 moieties. There are very weak Hg?Br interactions between co-crystallized HgBr2 units and rest of the molecule. [Hg(3)-Br(1)/Hg(3)-Br(4) = 3.148(1)/3.216(1) Å]. The bridging Hg?Br distances, Hg(2)-Br(4)′, Hg(2)′-Br(4) and Hg(1)-Br(2), are from 2.914(1) to 3.008(1) Å.  相似文献   

3.
Two tetra-nuclear Ag(I) complexes with styrene-functionalized N-heterocyclic carbene [AgL2]2[Ag2X4] (L = 1-methyl-3-(4-vinylbenzyl)imidazol-2-ylidene, X = Cl, 2a; X = I, 2b) were prepared by the reactions between the corresponding imidazolium salts with Ag2O. The reaction mixture was further treated with AgBF4 to give a mononuclear ion-pair complex [AgL2][BF4] (3). The molecular structures of these new Ag(I) complexes have been determined by X-ray diffraction analyses. 2a and 2b consist of two [Ag(L)2]+ fragments with the central [Ag2X4]2− anion held together by the close Ag(I)-Ag(I) interactions. Complex 3 is a mononuclear ion-pair complex with a linear bi-coordinate Ag fragment.  相似文献   

4.
A series of flexible dithioethyl ligands that contain ethyleneoxy segments were designed and synthesized, including bis(2-(pyridin-2-ylthio)ethyl)ether (L1), 1,2-bis(2-(pyridin-2-ylthio)ethoxy)ethane (L2), bis(2-(benzothiazol-2-ylthio)ethyl)ether (L3) and 1,2-bis(2-(benzothiazol-2-ylthio)ethoxy)ethane (L4). Reactions of these ligands with AgNO3 led to the formation of four new supramolecular coordination complexes, [Ag2L1(NO3)2]2 (1), [Ag2L2(NO3)2] (2), [AgL3(NO3)] (3) and [AgL4(NO3)] (4) in which the length of the (CH2CH2O)n spacers and the terminal groups of ligands cause subtle geometrical differences. Studies of the inhibitory effect to the growth of Phaeodactylum tricornutum show that all four complexes are active and the compound 4 has the highest inhibitory activity.  相似文献   

5.
The reaction of pyridine-2-thiol with AgBF4 and AgClO4 in MeCN gave rise to polymeric compounds [{Ag(HPyS)2}2(BF4)2]n (1) and [{Ag(HPyS)2}2(ClO4)2]n (2) (HPyS=pyridine-2-thione), respectively, while the similar reaction of pyridine-2-thiol with AgNO3 resulted in a polymeric compound [{Ag4(HPyS)6}(NO3)4]n (3). X-ray single-crystal diffraction analyses showed that the cations of both 1 and 2 possess a single-metal-atom chain structure but that of 3 is a double-metal-atom chain structure. The difference between 1 (or 2) and 3 showed counterion effect in polymerization of silver-thione compounds. In the presence of water, the treatment of pyridine-2-thiol with AgBF4 in DMF at 0 °C generated a polymeric compound [Ag(SPy)]n (4) (Spy=pyridine-2-thiolate) with graphite-like layered array of silver ions. Compound 4 can convert into its isomer [Ag6(SPy)6]n (5) through soaking in DMF for 1 month. However, the similar reaction of pyridine-2-thiol with AgBF4 in MeCN-H2O (v:v=40:1) at room temperature gave another layered polymeric compound [{Ag5(Spy)4(HPyS)}BF4]n (6). The preparation of 4, 5, and 6 showed that temperature and solvent exert influence on formation of silver-thiolate polymers. The reaction of AgNO3 with K2i-mnt (i-mnt=2,2-dicyanoethene-1,1,-dithiolate) and pyridine-2-thiol gave a polymer [Ag44-i-mnt)2(μ-HPyS)2(μ-HPyS)4/2]n (7) with one-dimensional (1-D) chain structure consisting of Ag4 square planar cluster units linked by 1H-pyridine-2-thione ligand. The treatment of AgNO3 with NaS2CNEt2 and pyridine-2-thiol in DMF resulted in another polymeric compound [Ag43-S2CNEt2)22-SPy)4/2]n (8). The preparation and characterization of these polymeric compounds demonstrated that polymerization of silver(I)-thione and silver(I)-thiolate complexes is tunable through controlling reaction conditions. Semiconducting property studies of 1-8 demonstrated that the electrical conductivity of 4 is 2.04×10−5 S cm−1 at 25 °C and increases as temperature rises, and those of 1-3 and 5-8 are in the range of 1×10−12-1×10−15 S cm−1 at room temperature and independent on the temperature, indicating that 1 is a semiconductor and the others are insulators.  相似文献   

6.
The arsonium-substituted isocyanides, o-(I+R3AsCH2)C6H4NC (AsR3=AsPh3, L1; AsMePh2, L2; AsMe2Ph, L3), were prepared by reaction of o-(chloromethyl)phenyl isocyanide, o-(CH2Cl)C6H4NC, with a slight molar stoichiometric amount of the arsine in the presence of a 3-fold excess of NaI in acetone at room temperature. The isocyanides L1-L3 coordinate to some Pt(II) complexes such as trans-[PtX{o-(I+R3AsCH2)C6H4NC}(PPh3)2] [BF4] (AsR3=AsPh3, 1; AsMePh2, 2; AsMe2Ph, 3; X=Cl, I) and [PtX{o-(I+R3AsCH2)C6H4NC}(Ph2PCHCHPPh2)] [BF4] (AsR3=AsMePh2, 4; X=Cl, I). Complexes 2-4 are converted in CH2Cl2 at room temperature in the presence of NEt3 to the corresponding indolidin-2-ylidene derivatives trans-[PtX{(AsR3)}(PPh3)2]BF4] (AsR3=AsPh3, 5; AsMePh2, 6; AsMe2Ph, 7) and [PtX{(AsMePh2)}(Ph2PCHCHPPh2)][BF4] (8).  相似文献   

7.
The new diiron alkynyl methoxy carbene complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(OMe)CCR′}(Cp)2]+ (R = 2,6-Me2C6H3 (Xyl), R′ = Tol, 3a; R = Xyl, R′ = Ph, 3b; R = Xyl, R′=Bun, 3c; R = Xyl, R′=SiMe3, 3d; R = Me, R′ = Tol, 3e; R = Me, R′ = Ph, 3f) are obtained in two steps by addition of R′CCLi (R′ = Tol, Ph, Bun, SiMe3) to the carbonyl aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2]+ (R = Xyl, 1a; Me, 1b), followed by methylation of the resulting alkynyl acyl compounds [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(O)CCR′}(Cp)2] (R = Xyl, R′ = Tol, 2a; R = Xyl, R′ = Ph, 2b; R = Xyl, R′ = Bun, 2c; R = Xyl, R′ = SiMe3, 2d; R = Me, R′ = Tol, 2e; R = Me, R′ = Ph, 2f). Complexes 3 react with secondary amines (i.e., Me2NH, C5H10NH) to give the 4-amino-1-metalla-1,3-dienes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(OMe)CHC(R′)(NMe2)}(Cp)2]+ (R = Xyl, R′ = Tol, 4a; R = Xyl, R′ = Ph, 4b; R = Me, R′ = Ph, 4c) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(Tol)(NC5H10)}(Cp)2]+, 5. The addition occurs stereo-selectively affording only the E-configured products. Analogously, addition of primary amines R′NH2 (R′ = Ph, Et, Pri) affords the 4-(NH-amino)-1-metalla-1,3-diene complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(R)(NHR′)}(Cp)2]+ (R = Ph, 6a; Et, 6b; Pri, 6c). In the case of 6a, only the E isomer is formed, whereas a mixture of the E and Z isomers is present in the case of 6b,c, with prevalence of the latter. Moreover, the two isomeric forms exist under dynamic equilibrium conditions, as shown by VT NMR studies. Complexes 6 are deprotonated by strong bases (e.g., NaH) resulting in the formation of the neutral vinyl imine complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(NR)(Tol)}(Cp)2] (R = Ph, 7a; Et, 7b; Pri, 7c); the reaction can be reverted by addition of strong acids. X-ray crystal structures have been determined for 3a[CF3SO3] · Et2O, 4c[CF3SO3], 6a[BF4] · CH2Cl2, 6c[CF3SO3] · 0.5Et2O and 7a · CH2Cl2.  相似文献   

8.
The crystal structures of four Ag(I) and Hg(II) complexes of the ligand 1,4-bis(1-benzyl-benzimidazol-2-yl)cyclohexane (N-BBzBimCH) have been described, that is, [Hg2(N-BBzBimCH)Cl4] (1), [Hg(N-BBzBimCH)Br2] (2), [Ag(N-BBzBimCH)](NO3)(H2O) (3) and [Ag2(N-BBzBimCH)(CF3OCO)2] (4). All these compounds show 1D polymeric structures in the solid state. In complexes 1 and 4, the chloride ions and the trifluoroacetate groups bridge the [Hg2(N-BBzBimCH)Cl2] and [Ag2(N-BBzBimCH)] fragments, respectively, to generate 1D polymers. While the bromide ions in complex 2 and nitrate groups in complex 3 are only serving as terminal ligands to suffice the coordination geometry of the metal centers. In all cases, weak intermolecular interactions such as C-H?X (X = Cl, Br) contacts, hydrogen bonds, π-π interactions and C-H?π stacking play important roles to extend the 1D chain structures to 2D network. Solid state fluorescence of these compounds was also studied.  相似文献   

9.
Four novel imidazolium salts, precursors to N-heterocyclic carbene (NHC) ligands, with 2,5-dimethoxybenzyl or 2,5-dihydroxybenzyl (i.e., p-hydroquinone) substituents have been prepared. The crystal structure of the hydroquinone-substituted imidazolium salt H3L3Br reveals Br?H-O bridged chiral chains of alternating [H3L3]+ cations and Br counter-ions parallel to the x-axis. Palladium(II) complexes were accessible from reactions of the dimethoxyphenyl-substituted imidazolium precursors with palladium(II) acetate, but not from reactions of imidazolium cations with hydroquinonyl substituents. The crystal structure of the bis(dimethoxybenzyl)-substituted bis(NHC)Pd complex, cis-[PdBr2(L2)] (2), is described. Puckering of the bis(NHC) ligand leads to a cleft in which an included molecule of dimethylformamide is situated. The cleft is closed by one of the dimethoxybenzyl groups which π-stacks with the dimethylformamide; the other dimethoxybenzyl group points away from the cleft and Pd(II) centre. Reaction of complex 2 with BBr3 afforded the targeted bis(hydroquinone)-substituted bis(NHC)Pd(II) complex 3 (97% yield) which, in turn, was oxidised by 2,3-dichloro-5,6-dicyano-benzoquinone to the corresponding p-benzoquinone-substituted bis(NHC)Pd(II) complex 4 (98% yield). The cyclic voltammograms of the Pd(II) complexes 2-4 reveal waves that are attributed to an admix of the anticipated ligand-centred and [Pd(C-NHC)2Br2]-centred processes.  相似文献   

10.
Treatment of a suspension of AgNO3 and AgCl in MeOH with a solution of N,N,N′,N′-tetra(diphenylphosphanylmethyl)ethylene diamine (dppeda) in CHCl3 afforded a binuclear complex [Ag2(dppeda)Cl](NO3)·2MeOH (1). The analogous reactions using AgSCN and dppeda in EtOH/CH2Cl2 gave rise to a polymeric complex [Ag2(dppeda)(SCN)2]n (2). Both compounds were fully characterized by elemental analyses, IR spectra, 1H(31P) NMR, and single-crystal X-ray crystallography. The cation of 1 shows an interesting molecular basket framework in which dppeda adopts a side-by-side coordination mode. Compound 2 possesses an unique 2D (6,3) layer network with 34-membered metallomacrocycles in which dppeda takes a end-to-end coordination mode. The 2D topological framework of 2 is rare in the chemistry of tetraphosphines. The photoluminescent properties of 1 and 2 in solid state at ambient temperature were investigated.  相似文献   

11.
At ambient temperature, two silver(I) complexes [Ag4(SO4)2(dppm)4]·5CH3CH2OH·1/2H2O (1) and [Ag2(SO4)(dppm)2(2-ampz)]·CH3OH·H2O (2) (dppm = bis(diphenylphosphino)methane, 2-ampz = 2-aminopyrazine) were obtained by the reaction of Ag2SO4 with dppm in the presence of pyrazine or 2-aminopyrazine. They are characterized by IR, X-ray crystallography, luminescence and 1H, 31P NMR spectroscopy. Complex 1 is a tetranuclear cluster. In complex 2, the units [Ag2(SO4)(dppm)2] are connected by 2-aminopyrazine to form a 1D linear polymer. Due to the subtle interactions of different nitrogen heterocyclic ligands with silver ions, two SO42− anions in 1 adopt μ3-O, O′, O′ and unique μ4-O, O, O′, O′ bonding modes respectively, while SO42− anion in 2 adopts μ-O, O′ bonding mode.  相似文献   

12.
The acid-base properties and Cu(II), Ni(II), Ag(I) and Hg(II) binding abilities of PAMAM dendrimer, L, and of the simple model compounds, the tetraamides of EDTA and PDTA, L1, were studied in solution by pH-metric methods and by 1H NMR and UV-Vis spectroscopy. PAMAM is hexabasic and six pKa values have been determined and assigned. PAMAM forms five identifiable complexes with copper(II), [CuLH4]6+, [CuLH2]4+, [CuLH]3+, [CuL]2+ and [CuLH-1]+ in the pH range 2-11 and three with nickel(II), [NiLH]3+, [NiL]2+ and [NiLH-1]+ in the pH range 7-11. The complex [CuLH4]6+, which contains two tertiary nitrogen and three amide oxygen atoms coordinated to the metal ion, is less stable than the analogous EDTA and PDTA tetraamide complexes [CuL1]2+, which contain two tertiary nitrogen and four amide oxygen atoms, due to ring size and charge effects. With increasing pH, [CuLH4]6+ undergoes deprotonation of two coordinated amide groups to give [CuLH2]4+ with a concomitant change from O-amide to N-amidate coordination. Surprisingly and in contrast to the tetraamide complexes [CuL1]2+, these two deprotonation steps could not be separated. As expected the nickel(II) complexes are less stable than their copper(II) analogues. The tetra-N-methylamides of EDTA, L1(b), and PDTA form mononuclear and binuclear complexes with Hg(II). In the case of L1(b) these have stoichiometries HgL1(b)Cl2, [HgL1(b)H−2Cl2]2−, [Hg2L1(b)Cl2]2+, Hg2L1(b)H−2Cl2 and [Hg2L1(b)H−5Cl2]3−. Based on 1H NMR and pH-metric data the proposed structure for HgL1(b)Cl2, the main tetraamide ligand containing species in the pH range <3-6.5, contains L1(b) coordinated to the metal ion through the two tertiary nitrogens and two amide oxygens while the structure of [HgL1(b)H−2Cl2]2−, the main tetraamide ligand species at pH 7.5-9.0, contains the ligand similarly coordinated but through two amidate nitrogen atoms instead of amide oxygens. The proposed structure of [Hg2L1(b)Cl2]2+, a minor species at pH 3-6.5, also based on 1H NMR and pH-metric data, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amide oxygens and a chloride ligand while that of [Hg2L1(b)H−5Cl2]3−, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amidate nitrogens, a chloride and a hydroxo ligand in the case of one of the Hg(II) ions. The parent EDTA and PDTA amides only form mononuclear complexes. PAMAM also forms dinuclear as well as mononuclear complexes with mercury(II) and silver(I). In the pH range 3-11 six complexes with Hg(II) i.e. [HgLH4Cl2]4+, [HgLH3Cl2]3+, [Hg2LCl2]2+, [Hg2LH−1Cl2]+, [HgLH−1Cl2] and [HgLH−2Cl2]2− were identified and only two with Ag(I), [AgLH3]4+ and [Ag2L]2+. Based on stoichiometries, stability constant comparisons and 1H NMR data, structures are proposed for these species. Hence [HgLH4Cl2]4+ is proposed to have a similar structure to [CuLH4]6+ while [Hg2LCl2]2+has a similar structure to [Hg2L1(b)H−5Cl2]3−.  相似文献   

13.
The dinuclear bis(6-X-pyridin-2-olato) ruthenium complexes [Ru2(μ-XpyO)2(CO)4(PPh3)2] (X = Cl (4B) and Br (5B)), [Ru2(μ-XpyO)2(CO)4(CH3CN)2] (X = Cl (6B), Br (7B) and F (8B)) and [Ru2(μ-ClpyO)2(CO)4(PhCN)2] (9B) were prepared from the corresponding tetranuclear coordination dimers [Ru2(μ-XpyO)2(CO)4]2 (1: X = Cl; 2: X = Br) and [Ru2(μ-FpyO)2(CO)6]2 (3) by treatment with an excess of triphenylphosphane, acetonitrile and benzonitrile, respectively. In the solid state, complexes 4B-9B all have a head-to-tail arrangement of the two pyridonate ligands, as evidenced by X-ray crystal structure analyses of 4B, 6B and 9B, in contrast to the head-to-head arrangement in the precursors 1-3. A temperature- and solvent-dependent equilibrium between the yellow head-to-tail complexes and the red head-to-head complexes 4A-7A and 9A, bearing an axial ligand only at the O,O-substituted ruthenium atom, exists in solution and was studied by NMR spectroscopy. Full 1H and 13C NMR assignments were made in each case. Treatment of 1 and 2 with the N-heterocyclic carbene (NHC) 1-butyl-3-methylimidazolin-2-ylidene provided the complexes [Ru2(μ-XpyO)2(CO)4(NHC)], X = Cl (11A) or Br (12A). An XRD analysis revealed the head-to-head arrangement of the pyridonate ligands and axial coordination of the carbene ligand at the O,O-substituted ruthenium atom. The conversion of 11A and 12A into the corresponding head-to-tail complexes was not possible.  相似文献   

14.
Tetrachloroauric acid HAuCl4 reacts with the ionic liquid 1-(2-aminoethyl)-3-methylimidazolium nitrate [NH2(CH2)2ImMe]NO3, (2b) or its dicationic ammonium salt [NH3(CH2)2ImMe][NO3]2, (3) in methanolic solutions to give the novel gold(III)-aminoethyl imidazolium aurate salt [Cl3AuNH2(CH2)2ImMe][AuCl4] (4). The reaction of 4 with [nBu4]Cl gives [NH2(CH2)2ImMe][AuCl4] (2c) whereas with acetone the dicationic, iminium-functionalized, imidazolium aurate salt [Me2C=N(H)(CH2)2ImMe][AuCl4]2 (5) has been isolated. The structures in the solid state of 2c, 3, 4, and 5 have been determined by X-ray diffraction. The electrochemical behaviour of 4 has been examined by Cyclic voltammetry in acetonitrile and compared with 2c and KAuCl4.  相似文献   

15.
Three ZnII complexes containing bispicam ligands (bispicam = bis(2-pyridylmethyl)amine), [Zn(bispicam)2](NO3)2·2CH3OH 4A, [Zn(bispicam)(NO3)2] 4B, and [Zn(bispicam)2](OTf)26, were obtained, and their structures were determined by X-ray crystallography. Complexes of the general formulation [Zn(bispicam)2]X2 (X = Cl (1), Br (2), I (3), NO3 (4A), ClO4 (5), and OTf (6)) show fac geometric isomers (a) or enantiomers (c) and (d) according to anions. Moreover, complexes 4-6 could carry out the catalytic transesterification of a range of esters with methanol under the mild conditions. Importantly, the catalyst 4B with an unsaturated structure has shown better efficiency than the catalysts, 4A, 5, and 6, having saturated structures. To explain this reactivity difference, two different reaction mechanisms have been proposed (metal-based vs. amide N-H-based).  相似文献   

16.
The reaction of Ph2PCH2CH2PPh2 (dppe) with BrCH2C(O)C6H4NO2 (1:1.05 molar ratio) in acetone produces a mixture of the new monophosphonium salt [Ph2PCH2CH2PPh2CH2C(O)C6H4NO2]Br (1) and the diphosphonium salt [NO2C6H4C(O)CH2PPh2CH2CH2PPh2CH2C(O)C6H4NO2]Br2 (2). Compound 2 was insoluble in acetone and thus easily separated from the solution of 1. Further, by reacting both the mono- and diphosphonium salts with the appropriate bases the bidentate phosphorus ylides, [Ph2PCH2CH2PPh2CHC(O)C6H4NO2] (3) and [NO2C6H4C(O)CHPPh2CH2CH2PPh2CHC(O)C6H4NO2] (4) were obtained. The reaction of ligand 3 with mercury(II) halides in dry methanol leads to the formation of the P,P-coordinated monomeric complexes {HgX2(Ph2PCH2CH2PPh2CHC(O)C6H4NO2)2} [X = Cl (5), Br (6), I (7)]. The structure of complex 7 being unequivocally determined by single crystal X-ray diffraction techniques. Characterization of these species was also performed by elemental analysis, IR spectroscopy and 1H, 31P, and 13C NMR techniques. These analyses being consistent with a 2:1 stoichiometry ylide/Hg(II) for compounds 5 through 7. Results obtained from theoretical studies are also consistent with a product in which two ylides are coordinated to the Hg(II) center through their phosphine groups, being this product the most stable among all the possible products.  相似文献   

17.
Six new complexes, [Cu4I4(PPh2Cy)4]·2H2O (1), [CuI(PPhCy2)2] (2), [CuCl(PPhCy2)2] (3), and [CuBr(PPh3)3]·CH3CN (4), [Ag(PPhCy2)2(NO3)] (5), [Ag(PCy3)(NO3)]2 (6) [where Ph = phenyl, Cy = cyclohexyl], have been synthesized and structurally characterized by X-ray diffraction, IR absorption spectra and NMR spectroscopic studies (except complex 4). The X-ray diffraction analysis of complex (1), pseudo polymorph of complex [Cu4I4(PPh2Cy)4], reveals a stella quadrangula structure. The four corners of the cube are occupied by copper(I) atoms and four I atoms are present at the alternative corners of the cube, further more the copper(I) atoms are coordinated to a monodentate tertiary phosphine. Complexes (2) and (3) are isostructural with trigonal planar geometry around the copper(I) atom. The crystal structure of complex (4) is a pseudo polymorph of complex [CuBr(PPh3)3] and the geometrical environment around the copper(I) centre is distorted tetrahedral. In the AgI complexes (5) and (6), the central metal atoms have pseudo tetrahedral and trigonal planar geometry, respectively. Spectroscopic and microanalysis results are consistent with the single crystal X-ray diffraction studies.  相似文献   

18.
New hetero-functionalized macrocyclic complexes [CuL2](ClO4)2 (I) and [CuL3](ClO4)2 (II) bearing one N-CH2CONH2 or one N-CH2C(NH)NH(CH2)2CH3 pendant arm as well as one N-CH2CN group have been prepared by the selective reaction of water or n-propylamine with one of the two N-CH2CN groups in [CuL1](ClO4)2 (L1 = 2,13-bis(cyanomethyl)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.1.1807.12]docosane). The complex [CuL4](ClO4)2 (III) bearing both N-CH2CONH2 and N-CH2C(NH)NH(CH2)2CH3 pendant arms can be prepared by either the reaction of I with n-propylamine or the hydrolysis of II. The N-CH2CONH2 and/or N-CH2C(NH)NH(CH2)2CH3 groups of I, II, and III are coordinated to the metal ion. The crystal structure of II shows that the complex has distorted square-pyramidal coordination polyhedron with a considerably strong apical Cu-N (N-CH2C(NH)NH(CH2)2CH3) bond (2.101(6) Å). The addition of HClO4 (?0.01 M) to an acetonitrile (or DMSO) solution of II or III produces [Cu(HL3)](ClO4)3 (IIa) or [Cu(HL4)](ClO4)3 (IIIa), showing that the N-CH2C(NH)NH(CH2)2CH3 pendant arm of each complex is readily protonated in the non-aqueous solvent; the resulting N-CH2C()NH(CH2)2CH3 group of IIa or IIIa is not involved in coordination. However, the N-CH2C(NH)NH(CH2)2CH3 group of II is not protonated even in ?1.0 M HClO4 aqueous solution. In the case of III, most of the complex exists as the protonated form [Cu(HL4)]3+ in ?0.1 M HClO4 aqueous solutions.  相似文献   

19.
Reaction of the potassium salts of (EtO)2P(O)CH2C6H4-4-(NHC(S)NHP(S)(OiPr)2) (HLI), (CH2NHC(S)NHP(S)(OiPr)2)2 (H2LII) or cyclam(C(S)NHP(S)(OiPr)2)4 (H4LIII) with [Cu(PPh3)3I] or a mixture of CuI and Ph2P(CH2)1-3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Cu(PPh3)LI] (1), [Cu2(Ph2PCH2PPh2)2LII] (2), [Cu{Ph2P(CH2)2PPh2}LI] (3), [Cu{Ph2P(CH2)3PPh2}LI] (4), [Cu{Ph2P(C5H4FeC5H4)PPh2}LI] (5), [Cu2(PPh3)2LII] (6), [Cu2(Ph2PCH2PPh2)LII] (7), [Cu2{Ph2P(CH2)2PPh2}2LII] (8), [Cu2{Ph2P(CH2)3PPh2}2LII] (9), [Cu2{Ph2P(C5H4FeC5H4)PPh2}2LII] (10), [Cu8(Ph2PCH2PPh2)8LIIII4] (11), [Cu4{Ph2P(CH2)2PPh2}4LIII] (12), [Cu4{Ph2P(CH2)3PPh2}4LIII] (13) or [Cu4{Ph2P(C5H4FeC5H4)PPh2}4LIII] (14) complexes. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy; their compositions were examined by microanalysis. The luminescent properties of the complexes 1-14 in the solid state are reported.  相似文献   

20.
The reactions of Ag+ with five mixed donor phenanthroline-containing macrocycles (L1-L5) having N2S3-, N2S2O-, N2S2-, N3S2-, and N4S2-donor sets, respectively, have been studied in MeCN by spectrofluorimetric, spectrophotometric, conductometric and potentiometric methods. All ligands form 1:1 [Ag(L)]+ complexes, and in the case of L4 and L5, formation of 1:2 [Ag(L)2]+ species is also observed. The corresponding formation constants have been evaluated and their values allow a deeper insight into the role played by complexation process in the potentiometric selectivity for Ag+ of membrane electrodes (ISE), and in the selective transport of Ag+ through supported liquid membrane (SLM) systems based on these ligands. The X-ray crystal structure of the complex [Ag(L4)]BF4 is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号