首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new iron(III) citrate complexes [Fe2(cit)2(H2O)2](H2bpa) (1), [Fe2(cit)2(H2O)2](H2bpe) (2) and [Fe4(cit)4(H2O)4](H2bpp)2(H2O) (3) (cit = C(O)(COO)(CH2COO)2, bpa = 1,3-bis(4-pyridyl)ethane, bpe = 1,3-bis(4-pyridyl)ethene, bpp = 1,3-bis(4-pyridyl)propane) were synthesized and characterized by elemental analysis, spectroscopic techniques and magnetic properties. Single X-ray diffraction analyses in the 1-3 complexes reveal that the iron ion is six-coordinated and is bound by two deprotonated citrates and a pair of aqua ligands in a distorted octahedral fashion. The anionic complex contains a centro-symmetrical planar of four-membered Fe2O2 ring. There are significant contributions to the stabilities of the assembled lattices in 1-3 arising from the protonated pyridine analogue counterions neutralizing the anionic charges of the complexes. The units in the complexes are connected together via hydrogen bonding to form 3D supramolecular networks. The supramolecular structures of 1-2 show alternating and motif linking the anionic moieties which are in turn interwoven with cationic moieties, while 3 shows alternating and motif. The magnetic properties of 1-3 are investigated and discussed in detail.  相似文献   

2.
New molybdenum complexes were prepared by the reaction of [MoVIO2(acac)2] or (NH4)2[MoVOCl5] with different N-substituted pyridoxal thiosemicarbazone ligands (H2L1 = pyridoxal 4-phenylthiosemicarbazone; H2L2 = pyridoxal 4-methylthiosemicarbazone, H2L3 = pyridoxal thiosemicarbazone). The investigation of monomeric [MoO2L1(CH3OH)] or polymeric [MoO2L1-3] molybdenum(VI) complexes revealed that molybdenum is coordinated with a tridentate doubly-deprotonated ligand. In the oxomolybdenum(V) complexes [MoOCl2(HL1-3)] the pyridoxal thiosemicarbazonato ligands are tridentate mono-deprotonated. Crystal and molecular structures of molybdenum(VI) [MoO2L1(CH3OH)]·CH3OH, and molybdenum(V) complexes [MoOCl2(HL1)]·C2H5OH, as well as of the pyridoxal thiosemicarbazone ligand methanol solvate H2L3·MeOH, were determined by the single crystal X-ray diffraction method.  相似文献   

3.
The preparation and variable temperature-magnetic investigation of three squarate-containing complexes of formula [Fe2(OH)2(C4O4)2(H2O)4]·2H2O (1) [Cr2(OH)2(C4O4)2(H2O)4]·2H2O (2) and [Co(C4O4)(H2O)4]n (3) [H2C4O4 = 3.4-dihydroxycyclobutene-1,2-dione (squaric acid)] together with the crystal structures of 1 and 3 are reported. Complex 1 contains discrete centrosymmetric [Fe2(OH)2(C4O4)2(H2O)4] diiron(II) units where the iron pairs are joined by a di-μ-hydroxo bridge and two squarate ligands acting as bridging groups through adjacent oxygen atoms. Two coordinated water molecules in cis position complete the octahedral environment at each iron atom in 1. The iron-iron distance with the dinuclear unit is 3.0722(6) Å and the angle at the hydroxo bridge is 99.99(7)°, values which compare well with the corresponding ones in the isostructural compound 2 (2.998 Å and 99.47°) whose structure was reported previously. The crystal structure of 3 contains neutral chains of squarato-O1,O3-bridged cobalt(II) ions where four coordinated water molecules complete the six-coordination at each cobalt atom. The cobalt-cobalt separation across the squarate bridge is 8.0595(4) Å. A relatively important intramolecular antiferromagnetic coupling occurs in 1 whereas it is very weak in 2, the exchange pathway being the same [J = −14.4 (1) and −0.07 cm−1 (2), the spin Hamiltonian being defined as ]. A weak intrachain antiferromagnetic interaction between the high-spin cobalt(II) ions occurs in 3 (J = −0.30 cm−1). The magnitude and nature of these magnetic interactions are discussed in the light of their respective structures and they are compared with those reported for related systems.  相似文献   

4.
Two binuclear iron(III) complexes, [L1FeIII(bpy)FeIIIL1](BPh4)2 (1) and [L2FeIII(bpy)FeIIIL2](BPh4)2 (2), were synthesized and characterized, where H2L1 and H2L2 denote bis(salicylicdeneaminopropyl)methylamine and bis(3-methoxysalicylideneaminopropyl)methylamine, respectively, and bpy denotes 4,4′-bipyridine and BPh4 denotes tetraphenylborate. Complexes 1 and 2 consist of one and two crystallographically unique Fe sites, respectively, while they have a similar binuclear complex-cation [LnFeIII(bpy)FeIIILn]2+ (n = 1, 2) bridged by 4,4′-bipyridine and two tetraphenylborate ions as the counter anions. The magnetic susceptibility measurements of 1 and 2 showed one-step and two-step spin crossover (SCO), respectively. The four saturated six-membered chelate rings at the aminopropyl moieties of 1 exhibit disorder throughout one-step SCO. The two chelate rings of one Fe site of 2 exhibit disorder but the other two of another Fe site do not. The different SCO behaviors of 1 and 2 were ascribed to one and two crystallographically unique Fe sites and the order/disorder at the saturated six-membered chelate rings of aminopropyl moieties.  相似文献   

5.
One-dimensional lanthanide-ferrocenesuccinate polymeric complexes [M(η2-FcCOC2H4COO)(μ22-FcCOC2H4COO)2(H2O)2]n (Fc = (η5-C5H4)Fe(η5-C5H4), M = Pr, 1; Ce, 2; La, 3) have been synthesized and structurally characterized by single-crystal X-ray crystallography. The three polymers are isomorphous, in which each Ln(III) ion is 10-coordinated and connects with two water molecules and eight oxygen atoms from ferrocenesuccinate units in two kinds of coordination modes: bidentate-chelating mode and tridentate-bridging mode. The variable-temperature magnetic susceptibility in the temperature range 5-300 K for 1 and 2 shows that both of them display weak antiferromagnetic interaction. In addition, the redox and fluorescent properties have been investigated. The redox properties are different from the previous results of transition metal compounds containing ferrocenyl systems. Compared with sodium ferrocenesuccinate, polymers 1 and 3, the fluorescent intensities of 2 are markedly enhanced in the solid state.  相似文献   

6.
The monomeric compounds [Fe(dpa)2(X)2] · solv [X = NCS(solv = 0.5H2O) (1), (2) and dpa = 2,2-dipyridilamine] have been synthesised and characterised. They crystallise in the P21/n and in the Cc monoclinic systems, respectively. Four of six nitrogen atoms coordinated to the Fe(II) ions belong to two dpa ligands which lie in cis conformation. The remaining positions are occupied by two nitrogen atoms of the pseudo-halide ligands. The magnetic susceptibility measurements at ambient pressure have revealed that compound 1 exhibits an incomplete spin crossover behaviour (T1/2 ≈ 88 K), whereas compound 2 remains in the high-spin configuration. Pressure studies performed on compound 1 have shown virtually complete spin crossover behaviour as pressure attains 6.5 kbar.  相似文献   

7.
Two adamantane-1,3-dicarboxylato bridged cobalt(II) phenanthroline complexes [Co2(H2O)2(phen)2(adc)2]·(C2H7N)·2H2O (1) and [Co(H2O)(phen)(adc)]·H2O (2) were synthesized in a mixed solvent under 45 °C (H2adc = adamantane-1,3-dicarboxylic acid). Compound 1 consists of dinuclear [Co2(H2O)2(phen)2(adc)2] complex molecules, dimethylamine (C2H7N) molecules and hydrogen-bonded water molecules. The dinuclear molecules, via intermolecular hydrogen bonds, are interconnected into hydrogen-bonded chains along [1 0 0] and interdigitation of phen ligands due to interchain π?π stacking interactions assembles the hydrogen-bonded chains into 2D supramolecular layers parallel to (0 0 1). In compound 2, the Co(II) ions are bridged by adamantane-1,3-dicarboxylate anions to form 1D chains along [0 0 1], and the resulting chains are assembled into double-chains based on interchain π?π interactions. The double-chains are further held together via hydrogen bonds into 2D supramolecular layers parallel to (1 0 0). The variable temperature magnetic measurements show an overall weak antiferromagnetic behavior for 1, and an weak ferromagnetic behavior over 300-75 K followed by antiferromagnetic behavior below 75 K for 2.  相似文献   

8.
Reaction of sodium picolinate with FeIII oxo-centered carboxylate triangles in MeCN in the presence of PPh4Cl yields (PPh4)[Fe4O2(O2CR)7(pic)2] (R = Ph (1), But (2)). Omitting the phosphonium cation produces [Fe8Na4O4(O2CPh)16(pic)4(H2O)4] (3), which contains two Fe4Na2 units bridged by two picolinate ligands. X-ray crystal structures of 1 and 3 are reported.Voltammetric profiles in MeCN show four one-electron reduction steps for complexes 1 and 2. Variable-temperature magnetic susceptibility measurements in polycrystalline samples of 1 and 3 reveal strong antiferromagnetic couplings leading to = 0 ground states.  相似文献   

9.
Four cobalt(III) complexes containing the polypyridine pentadentate ligands N,N-bis(2-pyridylmethyl)amine-N′-ethyl-2-pyridine-2-carboxamide (PaPy3H), N,N-bis(2-pyridylmethyl)amine-N′-[1-(2-pyridylethyl)acetamide (MePcPy3H), and N,N-bis(2-pyridylmethyl)amine-N′-(2-pyridylmethyl)acetamide (PcPy3H), have been synthesized. All three ligands bind the Co(III) center in the same fashion with the exception of loss of conjugation between the carboxamide moiety and the pyridine ring in the latter two. The structures of [(PaPy3)Co(OH)][(PaPy3)Co(H2O)](ClO4)3 · 3H2O (1), [(PaPy3)Co(NO2)](ClO4) · 2MeCN (2), [(MePcPy3)Co(MeCN)](ClO4)2 · 0.5MeCN (3), and [(PcPy3)Co(Cl)](ClO4) · 2MeCN (4) have been determined. These ligands with strong-field carboxamido N donor stabilize the +3 oxidation state of the Co center as demonstrated by the facile oxidation of the corresponding Co(II) complexes (prepared in situ) by H2O2, [Fe(Cp)2](BF4), or nitric oxide (NO). The Co-Namido bond distances of 1-4 lie in the narrow range of 1.853-1.898 Å. 1H NMR spectra of these complexes confirm the low-spin d6 ground states of the metal centers.  相似文献   

10.
Mono- and di-manganese inclusion compounds 1 and 2 are reported. Two mono-manganese molecules Mn(bpy)2(NO3)2 (bpy=2,2′-bipyridine) and [Mn(bpy)2(NO3)(H2O)]·NO3 coexist in the mole ratio of 1:1 in the structure of 1, while two di-manganese molecules [Mn2O(bpy)2(phtha)2(H2O)2]·(NO3)2 (phtha=phthalate) and [Mn2O(bpy)2(phtha)2(NO3)(H2O)]·NO3 in the structure of 2. Refluxing Mn(NO3)2/bpy/phthalic acid reaction mixtures in CH3CN leads to the isolation of 1, further concentration of the reaction solution in raising temperature results in 2. The Mn1 and Mn2 units in the inclusion compounds 1 and 2 are similar to other reported Mn1 and Mn2 analogs, respectively. The Jahn–Teller distortion was observed to give rise to the elongation along the Oterminal---Mn---Ocarboxyl axes for all the four Mn(III) sites in 2, leading to unexpected longer Mn(III)---Oaqua than Mn(II)---Oaqua in 1. Extensive hydrogen bonding interactions among H2O, NO3 − and COOH were observed in the two inclusion compounds. Cyclic voltammetry of 2 in DMF displays two quasi-reversible redox couples at +0.10/+0.22 and −0.43/−0.36 V assigned to the Mn(III)Mn(IV)/2Mn(III) and 2Mn(III)/Mn(III)Mn(II), respectively. Variable temperature magnetic susceptibilities of 1 and 2 were measured. The data were fit to a model including axial zero-field splitting term and a good fit was found with D=1.77 cm−1, g=1.98 and F=1.48×10−5 for 1. For 2, the least-squares fitting of the experimental data led to J=2.37 cm−1, g=2.02 and D=0.75 cm−1 with R=1.45×10−3.  相似文献   

11.
Two novel ion-pair complexes, [RBzIQl]+[Ni(mnt)2] (mnt2− = maleonitriledithiolate, [RBzIQl]+ = 4-R-benzylisoquinolinium; R = H (1), Cl (2)) have been characterized structurally and magnetically. The anions and [BzIQl]+ cations of 1 form 1D column of alternating between cations and anions via π?π stacking interaction between Ni(mnt)2 plane and isoquinoline ring, and the Ni(mnt)2 anions between adjacent columns exist C?N, C?N, and N?N interaction. The anions and cations of 2 stack into well-segregated columns in the solid state; and the Ni(III) ions form a 1D zigzag chain in a Ni(mnt)2 column through intermolecular Ni?S, S?S, Ni?Ni or π?π interactions. The chain is uniform in 2 with the Ni?Ni distances of 3.784 Å. Magnetic susceptibility measurements for these complexes in the temperature range 1.8-300 K show that 1 exhibits antiferromagnetic coupling behavior, and 2 exhibits unusual magnetic phase transitions around 45 K. The overall magnetic behavior for 2 indicates the presence of antiferromagnetic interaction in the high-temperature phase (HT) and spin gap in the low-temperature phase (LT).  相似文献   

12.
A new mononuclear tetracyanometallic complex, (n-Bu4N)[(dbphen)Fe(CN)4] (1, dbphen = 5,6-dibromo-1,10-phenanthroline), has been prepared by reacting [(dbphen)FeII(py)2(SCN)2] and KCN in water and further oxidized with chlorine. With the use of 1 as building block, two trinuclear Fe2M complexes, [(dbphen)2Fe2(CN)8Cu(Me3tacn)]·3H2O (2), [(dbphen)2Fe2(CN)8Ni(dabhctd)]·2H2O (3) and a chain complex of squares [(dbphen)2Fe2(CN)8Co(MeOH)2]n (4), have been synthesized and structurally characterized. Magnetic studies show ferromagnetic coupling between FeIII and MII (M = Cu, 2; Ni, 3) ions bridged by cyanides in complexes 2 and 3, while complex 4 exhibits meta-magnetic behavior.  相似文献   

13.
The syntheses and structures of four antimony chloride complexes with tridentate N,N,O Schiff base ligands are reported. The tridentate ligands derived from 2-acetylpyridine and various acid hydrazides all lost a proton upon coordination. The ligand was either negative or zwitterionic depending on the acid hydrazide. The complexes are water soluble although a hydrolysis reaction can occur. The appearance of the μ-dichloro-μ-oxo-tetrachlorodiantimonate(III) anion in one of the complexes was unexpected but appears to be related to the temperatures used in the synthesis. The variation in the distances in the various complexes and the anion are discussed using bond valence sum calculations.  相似文献   

14.
Synthesis, structural characterization, and magnetic properties of a new cyano-bridged one-dimensional iron (III)-gadolinium (III) compound, trans-[Gd(o-phen)2(H2O)2(μ-CN)2Fe(CN)4]n · 2no-phen (o-phen = 1,10-phenanthroline), have been described. The compound crystallizes in the triclinic space group with the following unit cell parameters: a = 10.538(14) Å, b = 12.004(14) Å, c = 20.61(2) Å, α = 92.41(1)°, β = 92.76(1)°, γ = 112.72(1)°, and Z = 2. In this complex, each gadolinium (III) is coordinated to two nitrile nitrogens of the CN groups coming from two different ferricyanides, the mutually trans cyanides of each of which links another different GdIII to create -NC-Fe(CN)4-CN-Gd-NC- type 1-D chain structure. The one-dimensional chains are self-assembled in two-dimensions via weak C-H?N hydrogen bonds. Both the variable-temperature (2-300 K, 0.01 T and 0.8 T) and variable-field (0-50 000 Gauss, 2 K) magnetic measurements reveal the existence of very weak interaction in this molecule. The temperature dependence of the susceptibilities has been analyzed using a model for a chain of alternating classic (7/2) and quantum (1/2) spins.  相似文献   

15.
Herein, we report the syntheses, spectral and structural characterization, and magnetic behavior of four new dinuclear terephthalato-bridged copper(II) complexes with formulae [Cu2(trpn)2(μ-tp)](ClO4)2 · 2H2O (1), [Cu2(aepn)2(μ-tp)(ClO4)2] (2), [Cu2(Medpt)2(μ-tp)(H2O)2](ClO4)2 (3) and [Cu2(Et2dien)2(μ-tp)(H2O)](ClO4)2 (4) where tp = terephthalate dianion, trpn = tris(3-aminopropyl)-amin, aepn = N-(2-aminoethyl)-1,3-propanediamine, Medpt = 3,3′-diamino-N-methyldipropylmine and Et2dien = N,N-diethyldiethylenetriamine. The structures of these complexes consist of two μ-tp bridging Cu(II) centers in a bis(monodentate) bonding fashion. The coordination geometry of the Cu(II) ions in these compounds may be described as close to square-based pyramid (SP) with severe significant distortion towards trigonal bipyramid (TBP) stereochemistry in 1. The visible spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Cu(II) centers. Also, the solid infrared spectral data for the stretching frequencies of the tp-carboxalato groups, the ν(COO) reveals the existence of bis(monodentate) coordination mode for the bridged terephthalate ligand. The susceptibility measurements at variable temperature over the range 2-300 K are reported. Despite the same bonding mode of the tp bridging ligand, there has been observed slight antiferromagnetic coupling for the compounds 1 and 4 with J values of −0.5 and −2.9 cm3 K mol−1, respectively, and very weak ferromagnetic coupling for 2 and 3 with J values of 0.8 and 10.1 cm3 K mol−1, respectively. The magnetic results are discussed in relation to other related μ-terephthalato dinuclear Cu(II) published compounds.  相似文献   

16.
A series of tetramethylammonium tetrahalogenoferrates(III), [FeBr4−nCln] (n = 0, 1, 3, 4), of general formula [(CH3)4N][FeBr4−nCln], have been synthesized. The crystal and molecular structures of [(CH3)4N][FeCl4] were determined. The compound is isostructural with its [FeBr4−nCln] (n = 0, 1, 3, 4) analogues. Magnetic measurements of the powdered samples of [(CH3)4N][FeBr4−nCln] gave negative values of the Weiss constant, which suggest antiferromagnetic coupling. The strength of the antiferromagnetic interactions strongly depends on the kind of halide ligands in the coordination sphere of iron(III) and increases with an increasing number of the bromide anions.  相似文献   

17.
The synthesis, magnetic properties and single crystal study of a new spin crossover compound [Fe(EPPA)(bpym)](ClO4)2 with EPPA = N-(2-aminoethyl)-N-(3-aminopropyl)-2-(aminomethyl)pyridine, bpym = 2,2′-bipyrimidine are reported. Variable-temperature magnetic susceptibility data collected in the temperature range 10-294 K reveal the occurrence of a relatively cooperative spin transition with T1/2 = 108 K. The crystal structure of [Fe(EPPA)(bpym)](ClO4)2 was determined by single-crystal X-ray diffraction method. The structure of the complex consists of mononuclear [Fe(EPPA)(bpym)](ClO4)2 units. The potentially bis-bidentate bpym ligand acting as a bidentate one, is coordinated to iron(II) in cis-position by two nitrogen atoms. The four remaining positions in the pseudooctahedral [FeN6] core are occupied by one pyridinic and three aliphatic nitrogens of the EPPA ligand. The network of cooperative links in the crystal lattice is represented by H-bonding and π stacking interactions.  相似文献   

18.
A series of new iridium(III) complexes containing pentamethylcyclopentadienyl (Cp = η5-C5Me5) and 1,8-naphthyridine (napy) have been prepared. X-ray crystallography revealed that napy acted as a monodentate, a didentate chelating, and a bridging ligand in complexes of [CpIrCl2(napy)] (1), [CpIrCl(napy)]PF6 (2), and [(CpIrCl)2(H)(napy)]PF6 (4), respectively. The crystal structure of [CpIr(napy)2](PF6)2 (3) has also been determined; the dicationic complex bore both monodentate and chelating napy ligands. Dinuclear CpIrIII complex bridged by napy was only isolable if two IrIII centers were supported by a hydride (H) bridge. In complexes 2 and 3, the four-membered chelate rings formed by napy exhibited a large steric strain; in the rings the NIrN bond angles were only 60.5(2)-61.0(4)° and the IrNC angles were 94.7(8)-96.7(8)°. The bridging coordination of napy in complex 4 also afforded a large strain, i.e., the IrIII centers were displaced by 0.84(3) Å from the napy plane, due to the steric interaction between two CpIrCl moieties. The monodentate napy complex 1 in CDCl3 or CD2Cl2 at ambient temperature showed a rapid coordination-site exchange reaction, which gave two N sites of napy equivalent; at temperatures below −40 °C, the 1H NMR spectra corresponded to the molecular structure of [CpIrCl2(napy-κN)]. The analogous diazido complex of [CpIr(N3)2(napy)] (5) has also been prepared, and the crystal structure has been determined. In contrast to the dichloro complex 1, the diazido complex 5 exhibited a dissociation equilibrium of coordinated napy in solution.  相似文献   

19.
The synthesis and characterization of the nickel(II) complexes of a series of pentadentate and hexadentate aminopyridine ligands that contain ethylenediamine and/or propylenediamine groups are described. The ligands include: 1,12-bis(2-pyridyl)-2,5,8,11-tetraazadodecane, TRIEN-pyr; 1,13-bis(2-pyridyl)-2,5,9,12-tetraazatridecane, DIEN-PN-pyr; 1,14-bis(2-pyridyl)-2,6,9,13-tetraazatetradecane, DIPN-EN-pyr; 1,15-bis(2-pyridyl)-2,6,10,14-tetraazapentadecane, TRIPN-pyr; 1,9-bis(2-pyridyl)-2,5,8-triazanonane, DIEN-pyr; and 1,11-bis(2-pyridyl)-2,6,10-triazaundecane, DIPN-pyr. The following methods were used to determine the binding geometries of the nickel(II) complexes in the solid, solution, and gas phases: magnetic susceptibility measurements, absorption spectroscopy, EPR spectroscopy, electrochemistry, and electrospray ionization mass spectrometry. All of the ligands form 6-coordinate compounds in the solid, liquid, and gas states, with the exception of the TRIEN-pyr, DIEN-PN-pyr(partially), DIPN-pyr, and DIEN-pyr ligands which form 5-coordinate species in the gas state. All of the complexes could be oxidized to Ni(III) species electrochemically, although the Ni(III) complexes of TRIPN-pyr and DIPN-pyr were much less stable than the other four ligands. EPR spectra of the frozen solutions showed the low spin d7 Ni(III) complexes of TRIEN-pyr and DIPN-EN-pyr to be similar to those that have been found for poly-aza macrocyclic compounds.  相似文献   

20.
We report experimental evidences including molecular solid-state structure determinations, magnetic measurements and EPR studies for the formation (in the solid-state) of novel dinuclear (μ-OMe)2(L)4 complexes (HL are 2-ylidenhydrazidebenzoic-1,3-dithiolane acid and N′-cyclopentylidene-2-hydroxybenzohydrazide). The two novel dinuclear iron compounds described in the present contribution exhibit antiferromagnetic intra-molecular coupling. Crystal structures of the supporting ligands as well as one mononuclear species have also been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号