首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.

Background  

Burkholderia thailandensis, a close relative of Burkholderia pseudomallei, has previously been reported only from Southeast Asia and North America. It is biochemically differentiated from B. pseudomallei by the ability to utilize arabinose. During the course of environmental sampling for B. pseudomallei in the Northern Territory of Australia, an isolate, MSMB 43, was recovered that is arabinose positive.  相似文献   

2.
Burkholderia pseudomallei, a motile and rod Gram-negative bacterium, is the causative agent of melioidosis. The bacterium is an intracellular pathogen and that motility is generally crucial for their survival in a natural environment and for systemic infection inside a host. We report here a role of B. pseudomallei polyphosphate kinase in virulence, such as an oxidative stress response, motilities and biofilm formation. The polyphosphate kinase (ppk) mutant is susceptible to hydrogen peroxide in an oxidative stress condition, unable to perform swimming, swarming motilities, and has lower density biofilm forming capacity than the wild-type strain. We also demonstrated that both polyphosphate kinase and motile flagella are essential and independently involved in biofilm formation. The B. pseudomallei flagellin (fliC) mutant and B. mallei, a nonmotile species, are shown to produce higher density biofilm formation than the ppk mutant, but less than wild type B. pseudomallei.  相似文献   

3.
Extracellular protein profiles were compared for broth-grown cultures of Burkholderia pseudomallei and its avirulent close relative Burkholderia thailandensis. A number of protein bands were present in the B. pseudomallei profile but absent or less abundant in the B. thailandensis profile. Four such prominent secreted proteins were identified by using N-terminal sequencing coupled to searches of the B. pseudomallei genome sequence database. The genes for two proteins with similarity to carbohydrate-binding proteins, and a further protein homologous to known bacterial collagenases, were present in both B. pseudomallei and B. thailandensis. The putative collagenase gene was cloned and expressed as a fusion protein in Escherichia coli. Cell lysates from Escherichia coli containing the recombinant protein exhibited detectable gelatinase and collagenase activities.  相似文献   

4.
5.

Background  

Burkholderia pseudomallei is a saprophyte in tropical environments and an opportunistic human pathogen. This versatility requires a sensing mechanism that allows the bacterium to respond rapidly to altered environmental conditions. We characterized a two-component signal transduction locus from B. pseudomallei 204, mrgR and mrgS, encoding products with extensive homology with response regulators and histidine protein kinases of Escherichia coli, Bordetella pertussis, and Vibrio cholerae.  相似文献   

6.
The isolation of therapeutic and functional protease inhibitors in vitro via combinatorial chemistry and phage display technology has been described previously. Here we report the construction of a combinatorial mouse-human chimeric antibody fragment (Fab) antibody library targeted against the protease of the tropical pathogen, Burkholderia pseudomallei. The resulting library was biopanned against the protease, and selected clones were analyzed for their ability to function as protease inhibitors. Three families of Fabs were identified by restriction fingerprinting, all of which demonstrated high specificity towards the protease of B. pseudomallei. Purified Fabs also demonstrated the capacity to inhibit B. pseudomallei protease activity in vitro, and this inhibitory property was exclusive to the pathogenic protease. Thus these recombinant antibodies are candidates for immunotherapy and tools to aid in further elucidation of the mechanism of action of the B. pseudomallei protease.  相似文献   

7.

Background  

The bacterial biothreat agents Burkholderia mallei and Burkholderia pseudomallei are the cause of glanders and melioidosis, respectively. Genomic and epidemiological studies have shown that B. mallei is a recently emerged, host restricted clone of B. pseudomallei.  相似文献   

8.
The genus Burkholderia comprises more than 60 species isolated from a wide range of niches. Although they have been shown to be diverse and ubiquitously distributed, most studies have thus far focused on the pathogenic species due to their clinical importance. However, the increasing number of recently described Burkholderia species associated with plants or with the environment has highlighted the division of the genus into two main clusters, as suggested by phylogenetical analyses. The first cluster includes human, animal, and plant pathogens, such as Burkholderia glumae, Burkholderia pseudomallei, and Burkholderia mallei, as well as the 17 defined species of the Burkholderia cepacia complex, while the other, more recently established cluster comprises more than 30 non-pathogenic species, which in most cases have been found to be associated with plants, and thus might be considered to be potentially beneficial. Several species from the latter group share characteristics that are of use when associating with plants, such as a quorum sensing system, the presence of nitrogen fixation and/or nodulation genes, and the ability to degrade aromatic compounds. This review examines the commonalities in this growing subgroup of Burkholderia species and discusses their prospective biotechnological applications.  相似文献   

9.
Burkholderia pseudomallei, an infectious Gram-negative bacterium, is the causative pathogen of melioidosis. In the present study, a B. pseudomallei strain with mutation in the bsaQ gene, encoding a structural component of the type III secretion system (T3SS), was constructed. This bsaQ mutation caused a marked decrease in secretion of BopE effector and BipD translocator proteins into culture supernatant. The B. pseudomallei bsaQ mutant also exhibited decreased efficiencies of plaque formation, invasion into non-phagocytic cells and multinucleated giant cell (MNGC) development in a J774A.1 macrophage cell line. Co-localization of the bacteria and lysosome-associated membrane glycoprotein-1 (LAMP-1) containing vesicles suggested that defects in MNGC formation may result from the delayed ability of this B. pseudomallei mutant to escape from the vacuoles of macrophages. Veerachat Muangsombut and Supaporn Suparak contributed equally to this work.  相似文献   

10.
Melioidosis, caused by Burkholderia pseudomallei, is considered to be endemic to Northern Australia and Southeast Asia, with high mortality and relapse rates, regardless of powerful antibiotic therapy. Here we report the first genome sequence of Burkholderia pseudomallei strain BPC006, obtained from a melioidosis patient in Hainan, China. The genome sizes of the 2 chromosomes were determined to be 4,001,777 bp and 3,153,284 bp.  相似文献   

11.

Background  

Burkholderia species exhibit enormous phenotypic diversity, ranging from the nonpathogenic, soil- and water-inhabiting Burkholderia thailandensis to the virulent, host-adapted mammalian pathogen B. mallei. Genomic diversity is evident within Burkholderia species as well. Individual isolates of Burkholderia pseudomallei and B. thailandensis, for example, carry a variety of strain-specific genomic islands (GIs), including putative pathogenicity and metabolic islands, prophage-like islands, and prophages. These GIs may provide some strains with a competitive advantage in the environment and/or in the host relative to other strains.  相似文献   

12.
Burkholderia thailandensis is a close relative of Burkholderia pseudomallei. These organisms are very similar, but B. thailandensis is far less virulent than B. pseudomallei. Nucleotide sequencing and analysis of 14 B. thailandensis isolates revealed variation in the regions coding for the type III secreted BipD protein. The degree of B. thailandensis BipD sequence variation was greater than that found in B. pseudomallei. Western blot analysis indicated that, unlike B. pseudomallei, B. thailandensis type III secreted proteins including BipD and BopE could not be detected in the supernatant of culture medium unless induced by acidic conditions. In addition, culturing B. thailandensis under acidic growth conditions (pH 4.5) can induce the ability of this bacterium to invade human respiratory epithelial cells A549. The identification of an environmental stimulus that increases the invasion capability of B. thailandensis invasion is of value for those who would like to use this bacterium as a model to study B. pseudomallei virulence.  相似文献   

13.
Neutrophils play a key role in the control of Burkholderia pseudomallei, the pathogen that causes melioidosis. Here, we show that survival of intracellular B. pseudomallei was significantly increased in the presence of 3-methyladenine or lysosomal cathepsin inhibitors. The LC3-flux was increased in B. pseudomallei-infected neutrophils. Concordant with this result, confocal microscopy analyses using anti-LC3 antibodies revealed that B. pseudomallei-containing phagosomes partially overlapped with LC3-positive signal at 3 and 6 h postinfection. Electron microscopic analyses of B. pseudomallei-infected neutrophils at 3 h revealed B. pseudomallei-containing phagosomes that occasionally fused with phagophores or autophagosomes. Following infection with a B. pseudomallei mutant lacking the Burkholderia secretion apparatus Bsa Type III secretion system, neither this characteristic structure nor bacterial escape into the cytosol were observed. These findings indicate that human neutrophils are able to recruit autophagic machinery adjacent to B. pseudomallei-containing phagosomes in a Type III secretion system-dependent manner.  相似文献   

14.
Burkholderia pseudomallei is a category B pathogen and the causative agent of melioidosis – a serious infectious disease that is typically acquired directly from environmental reservoirs. Nearly all B. pseudomallei strains sequenced to date (> 85 isolates) contain gene clusters that are related to the contact‐dependent growth inhibition (CDI) systems of γ‐proteobacteria. CDI systems from Escherichia coli and Dickeya dadantii play significant roles in bacterial competition, suggesting these systems may also contribute to the competitive fitness of B. pseudomallei. Here, we identify 10 distinct CDI systems in B. pseudomallei based on polymorphisms within the cdiA‐CT/cdiI coding regions, which are predicted to encode CdiA‐CT/CdiI toxin/immunity protein pairs. Biochemical analysis of three B. pseudomallei CdiA‐CTs revealed that each protein possesses a distinct tRNase activity capable of inhibiting cell growth. These toxin activities are blocked by cognate CdiI immunity proteins, which specifically bind the CdiA‐CT and protect cells from growth inhibition. Using Burkholderia thailandensis E264 as a model, we show that a CDI system from B. pseudomallei 1026b mediates CDI and is capable of delivering CdiA‐CT toxins derived from other B. pseudomallei strains. These results demonstrate that Burkholderia species contain functional CDI systems, which may confer a competitive advantage to these bacteria.  相似文献   

15.

Background  

Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms.  相似文献   

16.
Burkholderia pseudomallei is the cause of melioidosis, a fatal tropical infectious disease, which has been reported to have a high rate of recurrence, even when an intensive dose of antibiotics is used. Biofilm formation is believed to be one of the possible causes of relapse because of its ability to increase drug resistance. EPS in biofilms have been reported to be related to the limitation of antibiotic penetration in B. pseudomallei. However, the mechanisms by which biofilms restrict the diffusion of antibiotics remain unclear. The present study presents a correlation between exopolysaccharide production in biofilm matrix and antibiotic resistance in B. pseudomallei using bpsI, ppk, and rpoS mutant strains. CLSM revealed a reduction in exopolysaccharide production and disabled micro‐colony formation in B. pseudomallei mutants, which paralleled the antibiotic resistance. Different ratios of carbohydrate contents in the exopolysaccharides of the mutants were detected, although they have the same components, including glucose, galactose, mannose, and rhamnose, with the exception being that no detectable rhamnose peak was observed in the bpsI mutant. These results indicate that the correlation between these phenomena in the B. pseudomallei biofilm at least results from the exopolysaccharide, which may be under the regulation of bpsI, ppk, or rpoS genes.  相似文献   

17.
The size and density of microbial cells determine the time that pathogens can remain airborne and thus, their potential to infect by the respiratory route. We determined the density and size distribution of Burkholderia pseudomallei cells in comparison with other Burkholderia species, including B. mallei and B. thailandensis, all prepared and analyzed under similar conditions. The observed size distribution and densities of several bacterial strains indicates that aerosolized particles consisting of one or of a few B. pseudomallei cells should be efficiently retained in the lungs, highlighting the risk of transmission of melioidosis by the respiratory route when the pathogen is present in fluids from infected patients or aerosolized from the environment.  相似文献   

18.
Burkholderia pseudomallei, the causative agent of melioidosis, is a Gram-negative saprophytic bacterium capable of surviving within phagocytic cells. To assess the role of BopC (a type III secreted effector protein) in the pathogenesis of B. pseudomallei, a B. pseudomallei bopC mutant was used to infect J774A.1 macrophage-like cells. The bopC mutant showed significantly reduced intracellular survival in infected macrophages compared to wild-type B. pseudomallei. In addition, the bopC mutant displayed delayed escape from endocytic vesicles compared with the wild-type strain. This indicates that BopC is important, and at least in part, needed for intracellular survival of B. pseudomallei.  相似文献   

19.
20.
Burkholderia pseudomallei and B. mallei are Gram-negative bacterial pathogens that cause melioidosis in humans and glanders in horses, respectively. Both bacteria are classified as category B select agents in the United States. Due to strict select-agent regulations, the number of antibiotic selection markers approved for use in these bacteria is greatly limited. Approved markers for B. pseudomallei include genes encoding resistance to kanamycin (Km), gentamicin (Gm), and zeocin (Zeo); however, wild type B. pseudomallei is intrinsically resistant to these antibiotics. Selection markers for B. mallei are limited to Km and Zeo resistance genes. Additionally, there are few well developed counter-selection markers for use in Burkholderia. The use of SacB as a counter-selection method has been of limited success due to the presence of endogenous sacBC genes in the genomes of B. pseudomallei and B. mallei. These impediments have greatly hampered the genetic manipulation of B. pseudomallei and B. mallei and currently few reliable tools for the genetic manipulation of Burkholderia exist. To expand the repertoire of genetic tools for use in Burkholderia, we developed the suicide plasmid pMo130, which allows for the compliant genetic manipulation of the select agents B. pseudomallei and B. mallei using allelic exchange. pMo130 harbors an aphA gene which allows for Km selection, the reporter gene xylE, which allows for reliable visual detection of Burkholderia transformants, and carries a modified sacB gene that allows for the resolution of co-integrants. We employed this system to generate multiple unmarked and in-frame mutants in B. pseudomallei, and one mutant in B. mallei. This vector significantly expands the number of available tools that are select-agent compliant for the genetic manipulation of B. pseudomallei and B. mallei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号