首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The thiocarbamates 4-RC6H4NHC(S)NR2′ (R = H, Cl; R′ = Me, Et), 4-ClC6H4NHC(S)NR (NR = 2-pyridylpiperazine) react with cis-[PtCl2(PTA)2] (PTA = 1,3,5-triaza-7-phosphaadamantane) in the presence of base to afford the monocationic platinum(II) complexes cis-[Pt{SC(NR2′) = NC6H4R}(PTA)2]+ (R = H, Cl; R′ = Me, Et), cis-[Pt{SC(NR) = NC6H4Cl}(PTA)2]+ (NR = 2-pyridylpiperazine), which were isolated as their PF6 salts in high yields. The complexes were fully characterised spectroscopically and also by X-ray crystallography. Cytotoxicity of these complexes was studied in vitro in three human cancer cell lines (CH1, A549 and SW480) using the MTT assay.  相似文献   

2.
In order to examine the effects of coordinated hydroxide ion and free hydroxide ion in configurational conversion of a tetraamine macrocyclic ligand complex, the kinetics of the cis-to-planar interconversion of cis-[Ni(isocyclam)(H2O)2]2+ (isocyclam, 1,4,7,11-tetraazacyclotetradecane) has been studied spectrophotometrically in basic aqueous solution. The interconversion requires the inversion of one sec-NH center of the folded cis-complex to have the planar species. Kinetic data are satisfactorily fitted by the rate law, R = kOH[OH][cis-[Ni(isocyclam)(H2O)2]2+], where kOH = 3.84 × 103 dm3 mol−1 s−1 at 25.0 ± 0.1 °C with I = 0.10 mol dm−3 (NaClO4). The large ΔH, 61.7 ± 3.2 kJ mol−1, and the large positive ΔS, 30.2 ± 10.8 J K−1 mol−1, strongly support a free-base-catalyzed mechanism for the reaction.  相似文献   

3.
Substitution reaction of fac-[FeII(CN)2(CO)3I] with triphenylphosphine (PPh3) produced mono phosphine substituted complex cis-cis-[FeII(CN)2(CO)2(PPh3)I]. Crystal structure of the product showed that carbonyl positioned trans- to iodide was replaced by PPh3. The substitution reaction was monitored by quantitative infrared spectroscopic method, and the rate law for the substitution reaction was determined to be rate = k[[FeII(CN)2(CO)2(PPh3)I]][PPh3]. Transition state enthalpy and entropy changes were obtained from Eyring equation k = (kBT/h)exp(−ΔH/RT + ΔS/R) with ΔH = 119(4) kJ mol−1 and ΔS = 102(10) J mol−1 K−1. Positive transition state entropy change suggests that the substitution reaction went through a dissociative pathway.  相似文献   

4.
The reaction of trans(N)-[Co(d-pen)2] (pen = penicillaminate) with HgCl2 or HgBr2 in the molar ratios of 1:1 gave the sulfur-bridged heterodinuclear complex, [HgX(OH2){Co(d-pen)2}] (X = Cl (1a) or Br (1b)). A similar reaction in the ratio of 2:1 produced the trinuclear complex, [Hg{Co(d-pen)2}2] (1c). The enantiomers of 1a and 1c, [HgCl(OH2){Co(l-pen)2}] (1a′) and [Hg{Co(l-pen)2}2] (1c′), were also obtained by using trans(N)-[Co(l-pen)2] instead of trans(N)-[Co(d-pen)2]. Further, the reaction of cis · cis · cis-[Co(d-pen)(l-pen)] with HgCl2 in the molar ratio of 1:1 resulted in the formation of [HgCl(OH2){Co(d-pen)(l-pen)}] (2a). During the formations of the above six complexes, 1a, 1b, 1c, 1a′, 1c′, and 2a, the octahedral Co(III) units retain their configurations. On the other hand, the reaction of cis · cis · cis-[Co(d-pen)(l-pen)] with HgCl2 in the molar ratio of 2:1 gave not [Hg{Co(d-pen)(l-pen}2] but [Hg{Co(d-pen)2}{Co(l-pen)2}] (2c), accompanied by the ligand-exchange on the terminal Co(III) units. The X-ray crystal structural analyses show that the central Hg(II) atom in 1c takes a considerably distorted tetrahedral geometry, whereas that in 2c is of an ideal tetrahedron. The interconversion between the complexes is also examined. The electronic absorption, CD, and NMR spectral behavior of the complexes is discussed in relation to the crystal structures of 1c and 2c.  相似文献   

5.
The synthesis and characterisation of cis- and trans-[Co(tmen)2(NCCH3)2](ClO4)3 are described. Solvolysis rates have been measured by both 1H NMR spectroscopy and UV-Vis spectrophotometry in dimethyl sulfoxide at 298.2 K. The cis isomer undergoes solvolysis by consecutive first-order reactions, k1=5.61 × 10−4 and k2=5.35 × 10−4 s−1, each with steric retention. The measured solvolysis rate (single step reaction) for the trans isomer is k=1.54 × 10−5 s−1. The solvent exchange rates have been measured by 1H NMR spectroscopy in CD3CN at 298.2 K: kex(cis)=kct + kcc=2.0 × 10−5 and kex(trans)=ktc + ktt=4.56 × 10−6 s−1. From these data, the measured cis-trans isomerisation rate (1.71 × 10−6 s−1) and equilibrium position in CH3CN (17% trans), the steric course for substitution in the exchange processes has been determined: trans reactant - 69% trans product; cis reactant - 99% cis product. Aquation rates for cis- and trans-[Co(tmen)2(NCCH3)2](ClO4)3 have also been determined spectrophotometrically and by NMR; kcis=1.3 × 10−4 and ktrans=2.7 × 10−5 s−1. In both cases the steric course for the primary aquation step is indeterminate because the subsequent steps are faster. Where data are available, the [Co(tmen)2X2]n+ complexes are found to be consistently much more reactive than their [Co(en)2X2]n+ analogues.  相似文献   

6.
We report the homogeneous catalytic air oxidation of 1-hexene, cyclohexene and styrene using cis-[MoO2(hap-SBDTC)(solv)] (1b) and cis-[MoO2(hap-SMDTC)(solv)] (2b), where hap-SBDTC and hap-SMDTC are Schiff bases derived from o-hydroxyacetophenone (hap) and S-benzyldithiocarbazate (SBDTC) or S-methyldithiocarbazate (SMDTC), respectively. Both hap-SBDTC and hap-SMDTC are dissymmetric tridentate O,N,S-donor Schiff base ligands. The catalytic tests were performed in DMF solvent at 60 °C under 1 atm O2.The olefin conversion was determined using gas chromatography. The percentage conversion of the above-mentioned substrates at the end of 6 h was in the range 86-98%. The final oxidation products were found to be 1-hexanal for 1-hexene, styrene epoxide and phenyl acetaldehyde (81:19) for styrene and cyclohexene epoxide and 2-cyclohexen-1-ol (85:15) in the case of cyclohexene. The oxidation reaction typically followed pseudo-order kinetics; however, a two-stage first order reaction is evident with complex 2b. This is attributed to less steric and electron-donating methyl substitution on S in 2b that possibly imparted a higher reactivity accompanying the formation of an intermediate in a relatively faster reaction step prior to the formation of final oxidation products. A reaction mechanism that explains the experimental results is proposed.  相似文献   

7.
EtCN partially displaces coordinated carbon monoxide from cis-PtCl2(CO)2 giving an equilibrium mixture of the two geometrical isomers of PtCl2(CO)(NCEt), together with unreacted cis-PtCl2(CO)2, as monitored by IR and NMR measurements. The equilibrium has also been studied starting from PtCl2(NCEt)2, through displacement of coordinated EtCN by CO. The equilibrium constant of the reaction between PtCl2(CO)(NCEt) [cis + trans] and CO to produce cis-PtCl2(CO)2 (48 ± 6, corresponding to ΔG0 = −9.5 ± 0.3 kJ mol−1) has been measured at 23.4 °C, in the presence of SnCl2 as catalyst, the uncatalysed reaction being exceedingly slow. With an appropriate control of the CO partial pressure, PtCl2(CO)(NCEt) was obtained in a nearly quantitative yield either from cis-PtCl2(CO)2 + EtCN or from PtCl2(NCEt)2 + CO. The molecular and crystal structure of cis-PtCl2(CO)(NCEt) has been solved by X-ray diffractometry.  相似文献   

8.
The multinuclear (1H, 15N, 31P and 195Pt) NMR spectroscopies, ES-MS and HPLC have been employed to investigate the structure-activity relationship for the reactions between guanosine 5′-monophosphate (5′-GMP) and the platinum(II)-triamine complexes of the general formulation cis-[Pt(NH3)2(Am)Cl]NO3 (where Am represents a substituted pyridine). The order of reaction rate of the reactions was found to be: 3-phpy > 4-phpy > py > 4-mepy > 3-mepy > 2-mepy. The two basic factors, steric and electronic, were attributed to the order of the binding rate constants. A possible mechanism of the reaction of cis-[Pt(NH3)2(Am)Cl]+ with 5′-GMP suggested that the reactions proceed via direct nucleophilic attack and no loss of ammonia. cis-[Pt(NH3)2(Am)Cl]+ binds to the N7 nitrogen of the guanine residue of 5′-GMP to form a coordinate bond with the Pt metal centre. This mechanism is apparently different from that of cisplatin. The pKa value of cis-[Pt(NH3)2(4-mepy)(H2O)](NO3)2 (5.63) has been determined at 298 K by the use of distortionless enhancement by polarization transfer (DEPT) 15N NMR spectroscopy and compared to the pKa value of cis-[PtCl(H2O)(NH3)2]+.  相似文献   

9.
The reaction of K2[ReX6] (X = Cl, Br) with oxalic acid and triethylamine in dimethylformamide solution yields the substituted complexes [ReX4(ox)]2− and cis-[ReX2(ox)2]2−, which can be obtained separately depending on the amount of added amine. The crystal structures of (PPh4)2[ReBr4(ox)], cis-(PPh4)2[ReBr2(ox)2] and cis-(AsPh4)2[ReCl2(ox)2] have been determined by single-crystal X-ray diffraction. The anionic complexes are octahedral with only slight distortions. The direct isolation of the pure complexes as well as the formation of only the cis isomers - without the presence of trans isomers and/or [Re(ox)3]2− - is probably due to the kinetic inertness of Re(IV)-X bonds, which increases with the number of oxalato ligands bound to the metal ion.  相似文献   

10.
Photochemical and photophysical properties of fac-[Re(CO)3(Clphen)(trans-L)]+ complexes, Clphen = 5-chloro-1,10-phenathroline and L = 1,2-bis(4-pyridyl)ethylene, bpe, or 4-styrylpyridine, stpy, were investigated to complement the understanding of intramolecular energy transfer process in tricarbonyl rhenium(I) complexes having an electron withdrawing group attached to polypyridyl ligands. These new compounds were synthesized, characterized and the photoisomerization quantum yields were accurately determined by 1H NMR spectroscopy. The true quantum yields for fac-[Re(CO)3(Clphen)(trans-bpe)]+ were constant (Φ = 0.55) at all investigated irradiation wavelengths. However, for fac-[Re(CO)3(Clphen)(trans-stpy)]+, similar true quantum yields were observed only at higher energy irradiation (Φ313 nm = 0.53 and Φ365 nm = 0.57), but it decreased significantly at 404 nm (Φ = 0.41). These results indicated different deactivation pathways for the trans-stpy complex photoisomerization. Quantum yields decreased as the 3ILtrans-L and 3MLCTRe→NN excited states become closer and the behavior was discussed in terms of the excited state energy gaps. Additionally, luminescence properties of photoproducts, fac-[Re(CO)3(Clphen)(cis-L)]+, were also investigated in different environments to analyze the relative energy of the 3MLCTRe→Clphen excited state for each compound.  相似文献   

11.
Two 15N-labelled cis-Pt(II) diamine complexes with dimethylamine (15N-dma) and isopropylamine (15N-ipa) ligands have been prepared and characterised. [1H,15N] HSQC NMR spectroscopy is used to obtain the rate and equilibrium constants for the aquation of cis-[PtCl2(15N-dma)2] at 298 K in 0.1 M NaClO4 and to determine the pKa values of cis-[PtCl(H2O)(15N-dma)2]+ (6.37) and cis-[Pt(H2O)2(15N-dma)2]2+ (pKa1 = 5.17, pKa2 = 6.47). The rate constants for the first and second aquation steps (k1 = (2.12 ± 0.01) × 10−5 s−1, k2 = (8.7 ± 0.7) × 10−6 s−1) and anation steps (k−1 = (6.7 ± 0.8) × 10−3 M−1 s−1, k−2 = 0.043 ± 0.004 M−1 s−1) are very similar to those reported for cisplatin under similar conditions, and a minor difference is that slow formation of the hydroxo-bridged dimer is observed. Aquation studies of cis-[PtCl2(15N-ipa)2] were precluded by the close proximity of the NH proton signal to the 1H2O resonance.  相似文献   

12.
New ruthenium(II) complexes with cyanamide ligands, cis-[Ru(bpy)2(Ipcyd)2] (1) and [Ru(bpy)2(OHpcyd)2] (2) (bpy = 2,2′-bipyridine, Ipcyd = 4-iodophenylcyanamide anion, OHpcyd = 4-(3-hydroxy-3-methylbut-1-ynil)phenylcyanamide), have been prepared and characterized by UV-Vis, IR and 1H NMR spectroscopies as well as electrochemical technique (CV). The complex cis-[Ru(bpy)2(Ipcyd)2] (1) crystallized with empirical formula of C34H24I2N8Ru in a monoclinic crystal system and space group of P21/c with a = 11.769(7) Å, b = 24.188(12) Å, c = 11.623(2) Å, β = 91.63(3)°, V = 3308(3) Å3 and Z = 4.  相似文献   

13.
Novel ionic mixed-ligands complexes of the types cis- and trans-[Pt(amine)2(pm)2](NO3)2 (where pm = pyrimidine) were synthesized and studied in the solid state by IR spectroscopy and in aqueous solution by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The results of the solution NMR characterization have shown that the isolated compounds are pure. In 195Pt NMR, the cis RNH2 complexes were observed at slightly lower fields (ave. −2441 ppm) than the equivalent trans analogues (ave. −2448 ppm). For Me2NH, the difference between the two isomers is larger (29 ppm). The complexes are observed at lower fields (difference of 100 ppm) than the corresponding [Pt(amine)4]2+ complexes, which might indicate the presence of π-backdonation in the Pt-pm bond. In 1H NMR, the coupling constants 3J(195Pt-1Hamine) are larger in the cis compounds (38-48 Hz) than in the trans analogues (30-36 Hz). The 3J(195Pt-1Hpm) values are also larger for the cis isomers. In 13C NMR spectroscopy, the coupling constants 3J(195Pt-13Camine) are 36 Hz (ave.) for the cis complexes and 26 Hz (ave.) for the trans isomers, while the 2J(195Pt-13Camine) are 18 Hz (cis) and 14 Hz (trans), respectively. The 3J(195Pt-13C5(pm)) values are 36 Hz (cis) and 28 Hz (trans). A few 2J(195Pt-13Cpm) couplings were observed (7-10 Hz).  相似文献   

14.
Hexa-coordinated chelate complex cis-[Ru(CO)2I2(P∩S)] (1a) {P∩S = η2-(P,S)-coordinated} and penta-coordinated non-chelate complexes cis-[Ru(CO)2I2(P∼S)] (1b-d) {P∼S = η1-(P)-coordinated} are produced by the reaction of polymeric [Ru(CO)2I2]n with equimolar quantity of the ligands Ph2P(CH2)nP(S)Ph2 {n = 1(a), 2(b), 3(c), 4(d)} in dichloromethane at room temperature. The bidentate nature of the ligand a in the complex 1a leads to the formation of five-membered chelate ring which confers extra stability to the complex. On the other hand, 1:2 (Ru:L) molar ratio reaction affords the hexa-coordinated non-chelate complexes cis,cis,trans-[Ru(CO)2I2(P∼S)2] (2a-d) irrespective of the ligands. All the complexes show two equally intense terminal ν(CO) bands in the range 2028-2103 cm−1. The ν(PS) band of complex 1a occurs 23 cm−1 lower region compared to the corresponding free ligand suggesting chelation via metal-sulfur bond formation. X-ray crystallography reveals that the Ru(II) atom occupies the center of a slightly distorted octahedral geometry. The complexes have also been characterized by elemental analysis, 1H, 13C and 31P NMR spectroscopy.  相似文献   

15.
Reaction of NH4VO3 with 2,6-pyridinedimethanol in water at 85 °C followed by the room temperature addition of HCl (aq) yields [HVO2(pydim)]x (pydim = 2,6-pyridinedimethanolato dianion), as a sparingly soluble off-white solid. This acid may be deprotonated by titration with NaOH (aq), yielding Na[VO2(pydim)] · 4H2O, which has been structurally characterized by single-crystal X-ray diffraction. Treating Na[VO2(pydim)] · 4H2O with HCl (aq) regenerates [HVO2(pydim)]x, but reaction with additional NaOH (aq) displaces the pyridinedimethanolato ligand from the vanadium center. Similarly, treating [HVO2(pydim)]x with excess HCl (aq) strips the pyridinedimethanolato ligand from the vanadium center and yields the adduct [H3(pydim)]+Cl as one component in a mixture of products. This adduct has been structurally characterized by single-crystal X-ray diffraction. The optimum pH range for stable dioxovanadium(V) complexes stabilized by the 2,6-pyridinedimethanolato ligand is at least 1.5-9.4.  相似文献   

16.
In order to examine the effects of coordinated hydroxide ion and free hydroxide ion in configurational conversion of a tetraamine macrocyclic ligand complex, the kinetic of the cis-to-planar interconversion of cis-[Ni(isocyclam)(H2O)2]2+ (isocyclam = 1,4,7,11-tetraazacyclotetradecane) has been examined spectrophotometrically. All kinetic data have been satisfactorily fitted by the rate law, R = (k1KOH[OH]2 + k2[OH])(1 + KOH[OH])−1(cis-[Ni(isocyclam)(H2O)2]2+ + [Ni(isocyclam)(OH)]+), where k2 = (3.40 ± 0.12) × 103 dm3 mol−1 s−1 is almost equal to kOH determined in buffer solution (lowly basic media), KOH = 22.7 ± 1.4 dm3 mol−1 at I (ionic strength) = 0.10 mol dm−3 (NaClO4 + NaOH) and 25.0 °C. Rate constants, k2 and KOH, are functions of ionic strength, giving a good evidence for an intermolecular pathway. The reaction follows a free-base-catalyzed mechanism where nitrogen inversion, solvation and ring conformational changes are occurred.  相似文献   

17.
A new class of asymmetric N-capped (dianionic/trianionic) tripodal proligands [Hx(Ln)] (x = 2, n = 1-6; x = 3, n = 7, 8) which possess pendant arms with N2OS, N2S2 or NOS2 donor groups and with different chelate ring sizes {5,5,5} or {5,6,5} has been prepared. Treatment of these ligands with [WO2Cl2(dme)] (dme = 1,2-dimethoxyethane) in the presence of base (triethylamine or KOH) leads to the formation of cis-dioxotungsten(VI) complexes of the types [WO2(Ln)] (n = 1-6) and K[WO2(Ln)] (n = 7, 8). Reaction of these tetradentate ligands with [MoO2(acac)2] (acac = acetylacetonate) gives the corresponding Mo(VI) analogues [MoO2(Ln)] (n = 1-6) and K[MoO2(Ln)] (n = 7, 8). Moreover, a new five coordinate dioxomolybdenum(VI) complex with an NS2 tridentate ligand [MoO2(L9)] has been synthesised using similar procedure. All these compounds have been spectroscopically characterised and the molecular structures of [MoO2(Ln)] (n = 2, 6) and [WO2(L6)] have been established by X-ray diffraction analysis. The electrochemistry and the catalytic activity for oxidation of allylic and benzylic alcohols of these dioxo complexes have also been investigated.  相似文献   

18.
The reaction of cis-[Os(CO)4Me2] with Me3NO in the THF or MeCN yields the complexes fac-[Os(CO)3(L)Me2] (where L = THF or MeCN). Whereas the THF complex is unstable and only characterised spectroscopically, fac-[Os(CO)3(MeCN)Me2] has been isolated as a white solid and fully characterized by both analytical and spectroscopic methods. These complexes fac-[Os(CO)3(L)Me2] are shown to be useful intermediates. Thus, reaction with PPh3 gives fac-[Os(CO)3(PPh3)Me2] in good yield.Reactions of fac-[Os(CO)3(L)Me2] (L = CO or MeCN) with CPh3PF6 or B(C6F5)3 have been investigated. Whereas cis-[Os(CO)4Me2] showed no reaction with either CPh3PF6 or B(C6F5)3, the reaction of fac-[Os(CO)3(MeCN)Me2] with CPh3PF6 in CH2Cl2 occurred over 16 h at room temperature to give an unstable cationic product and CPh3Me. The reaction was monitored by both IR and NMR spectroscopies. When this reaction of fac-[Os(CO)3(MeCN)Me2] was carried out in the presence of a trapping ligand such as MeCN, the stable cationic product [Os(CO)3(MeCN)2Me]+ could be isolated and identified spectroscopically.  相似文献   

19.
The monofunctional and bifunctional bindings of the potential anticancer drug trans-isopropylaminedimethylaminedichloroplatinum (trans-IPADMADP) and its cis isomer to purine base in DNA are explored by using density functional theory and IEF-PCM solvation models. The computed lowest free energy barrier in the aqueous solution is 14.0/11.6 kcal/mol (from trans-Pt-chloroaqua complex to trans-/cis-monoadduct) for guanine(G), and 11.7/13.3 kcal/mol (from trans-Pt-chloroaqua complex to trans-/cis-monoadduct) for adenine(A). Our calculations demonstrate that the trans reactant complexes (or isolated reactants) can generate trans- or cis-monoadducts via similar trigonal bipyramidal transition state structures, suggesting that the monoadducts can subsequently close to form the bifunctional intrastrand Pt-DNA adducts and simultaneously distort DNA in the similar way as cisplatin. Our calculations show that Pt(isopropylamine)(dimethylamine)G22+ head-to-head path has the lowest free energy of activation at 17.6 kcal/mol, closely followed by the Pt(isopropylamine)(dimethylamine)GA2+ head-to-head path at 19.6 kcal/mol when the monofunctional cis-Pt-G complex serves as the reactant; while the Pt(isopropylamine)(dimethylamine)G22+ head-to-tail adduct has the lowest barrier of 20.5 kcal/mol, closely followed by the Pt(isopropylamine)(dimethylamine)GA2+ head-to-tail adduct at 23.0 kcal/mol if the monofunctional trans-Pt-G complex is the reactant.The calculated relatively lower activation energy barrier than that of cisplatin theoretically confirm that trans-[PtCl2(isopropylamine)(dimethylamine)] is a potential anticancer drug as described by experiment.  相似文献   

20.
The Pd(II) and Pt(II) complexes with triazolopyrimidine C-nucleosides L1 (5,7-dimethyl-3-(2′,3′,5′-tri-O-benzoyl-β-d-ribofuranosyl-s-triazolo)[4,3-a]pyrimidine), L2 (5,7-dimethyl-3-β-d-ribofuranosyl-s-triazolo[4,3-a]pyrimidine) and L3 (5,7-dimethyl[1,5-a]-s-triazolopyrimidine), [Pd(en)(L1)](NO3)2, [Pd(bpy)(L1)](NO3)2, cis-Pd(L3)2Cl2, [Pd2(L3)2Cl4] · H2O, cis-Pd(L2)2Cl2 and [Pt3(L1)2Cl6] were synthesized and characterized by elemental analysis and NMR spectroscopy. The structure of the [Pd2(L3)2Cl4] · H2O complex was established by X-ray crystallography. The two L3 ligands are found in a head to tail orientation, with a Pd?Pd distance of 3.1254(17) Å. L1 coordinates to Pd(II) through N8 and N1 forming polymeric structures. L2 coordinates to Pd(II) through N8 in acidic solutions (0.1 M HCl) forming complexes of cis-geometry. The Pd(II) coordination to L2 does not affect the sugar conformation probably due to the high stability of the C-C glycoside bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号