首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mono- and di-manganese inclusion compounds 1 and 2 are reported. Two mono-manganese molecules Mn(bpy)2(NO3)2 (bpy=2,2′-bipyridine) and [Mn(bpy)2(NO3)(H2O)]·NO3 coexist in the mole ratio of 1:1 in the structure of 1, while two di-manganese molecules [Mn2O(bpy)2(phtha)2(H2O)2]·(NO3)2 (phtha=phthalate) and [Mn2O(bpy)2(phtha)2(NO3)(H2O)]·NO3 in the structure of 2. Refluxing Mn(NO3)2/bpy/phthalic acid reaction mixtures in CH3CN leads to the isolation of 1, further concentration of the reaction solution in raising temperature results in 2. The Mn1 and Mn2 units in the inclusion compounds 1 and 2 are similar to other reported Mn1 and Mn2 analogs, respectively. The Jahn–Teller distortion was observed to give rise to the elongation along the Oterminal---Mn---Ocarboxyl axes for all the four Mn(III) sites in 2, leading to unexpected longer Mn(III)---Oaqua than Mn(II)---Oaqua in 1. Extensive hydrogen bonding interactions among H2O, NO3 − and COOH were observed in the two inclusion compounds. Cyclic voltammetry of 2 in DMF displays two quasi-reversible redox couples at +0.10/+0.22 and −0.43/−0.36 V assigned to the Mn(III)Mn(IV)/2Mn(III) and 2Mn(III)/Mn(III)Mn(II), respectively. Variable temperature magnetic susceptibilities of 1 and 2 were measured. The data were fit to a model including axial zero-field splitting term and a good fit was found with D=1.77 cm−1, g=1.98 and F=1.48×10−5 for 1. For 2, the least-squares fitting of the experimental data led to J=2.37 cm−1, g=2.02 and D=0.75 cm−1 with R=1.45×10−3.  相似文献   

2.
This work presents a systematic investigation on coordination chemistry of a novel pyridine-2,6-dicarboxylic acid N-oxide (pydco), and also reveals the significant function of supramolecular interactions in dominating the resultant crystalline nets. Assemblies of pydco with transition-metal ions under similar conditions yield a series of polymers in the absence/presence of the organonitrogen ligands {[Cu(pydco)(L)0.5(H2O)] · 2H2O}n (L = bipy (1), bpa (2) and bpe (3)), {[M(pydco)(bpp)(H2O)] · 2H2O}n (M = Cu (4) and Ni (5)), [Ag2(pydco)]n (6) and [Ag2Cu(pydco)2]n (7) (bipy = 4,4′-bipyridine, bpa = 1,2-bis(4-pyridyl)ethane, bpe = 1,2-bis(4-pyridyl)ethene, bpp = 1,3-bis(4-pyridyl)propane). 1-5 feature different structural characteristics, although they exhibit analogous chain networks. Remarkably, extended architectures are further constructed with the aid of weak interactions. Reaction of pydco with AgAc yields a 2-D polymer 6, which was reported in our recent Communication. A mixed-metal coordination polymer 7 was obtained by the self-assembly of AgAc, Cu(Ac)2 · H2O and pydco.In 7, two left- and right-hand helical chains are constructed by carboxylic groups of pydco and Cu centers, which are further connected by [AgCO2]2 cores into a 2-D network. Structural evolution under the co-ligand intervention in this series of compounds, as well as the general coordination rule of pydco, has been further discussed. Furthermore, variable temperature magnetic properties of 1, 3 and 7 are also studied. The magnetic measurements of 1 and 3 reveal the existence of weak antiferromagnetic interactions with J1 = −4.59 cm−1 and J2 = −4.63 cm−1, respectively. Whereas 7 displays weak ferromagnetic interactions with J3 = 1.81 cm−1.  相似文献   

3.
Two new complexes, [Co(Himdc)2(H2O)2] (1) and {[Cd(pzdc)(H2O)]·H2O}n (2) (H2imdc = imidazole-4, 5-dicarboxylic acid, H2pzdc = pyrazine-2, 3-dicarboxylic acid), have been synthesized and structurally characterized. Compound 1 is a new triclinic mononuclear complex formed by two Himdc ligands trans coordinated to the CoII center in bidentate chelate mode and two water ligands. Compound 2 shows a two dimensional layer structure in which pzdc2− dianion ligand adopts unique doubly bridging bis-bidentate μ4 coordination mode. Temperature-dependent magnetic susceptibilities and thermal stability for 1 and solid-state fluorescent properties for 2 have been discussed in detail.  相似文献   

4.
Three new Fe(II) complexes [Fe(HIM2py)2(SCN)2] (1), [Fe(HIM2py)2(H2O)2](ClO4)2 · 2H2O (2), and [Fe(HIM2py)2(4,4-bipy)](ClO4)2 · 3CH3CH2OH (3) (4,4-bipy = 4,4′-bipyridine, HIM2py = 1-hydroxyl-2(2′-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole) have been synthesized and characterized structurally as well as magnetically. The X-ray analysis reveals that HIM2py ligands are coordinated to the metal ions as an unusual six-membered didentate chelate with the κ2N(py), O(HIM) mode. Fe(II) ions in complex 3 are bridged by 4,4-bipy, leading to a 1D chain structure. The magnetic behavior of complex 3 is investigated, showing weak antiferromagnetic interactions.  相似文献   

5.
A new mononuclear tetracyanometallic complex, (n-Bu4N)[(dbphen)Fe(CN)4] (1, dbphen = 5,6-dibromo-1,10-phenanthroline), has been prepared by reacting [(dbphen)FeII(py)2(SCN)2] and KCN in water and further oxidized with chlorine. With the use of 1 as building block, two trinuclear Fe2M complexes, [(dbphen)2Fe2(CN)8Cu(Me3tacn)]·3H2O (2), [(dbphen)2Fe2(CN)8Ni(dabhctd)]·2H2O (3) and a chain complex of squares [(dbphen)2Fe2(CN)8Co(MeOH)2]n (4), have been synthesized and structurally characterized. Magnetic studies show ferromagnetic coupling between FeIII and MII (M = Cu, 2; Ni, 3) ions bridged by cyanides in complexes 2 and 3, while complex 4 exhibits meta-magnetic behavior.  相似文献   

6.
Two new first-raw transition metal diphosphonate complexes, namely, {[Ni3([hpyedpH)2(H2O)4]·(H2O)2}n (1) and [Mn[hpyedpH2](H2O)]n (2), based on a multidentate ligand 1-hydroxy-2-(3-pyridyl)-ethylidene-1,1-diphosphonic acid (hpyedpH4) have been synthesized under hydrothermal reaction and structurally characterized by single-crystal X-ray diffraction, IR spectroscopy and element analyses. The data reveals that complex 1 is a 2D layer structure, whereas the complex 2 possesses a 1D motif. The powder X-ray diffraction (PXRD) patterns for complexes 1 and 2 were collected as well, which match well with the ones calculated from their single-crystal structure data. Magnetic measurements show that complex 1 is a ferrimagnet with Tc = 5.0 K. Magnetic studies of complex 2 indicate antiferromagnetic behavior.  相似文献   

7.
《Inorganica chimica acta》2006,359(12):3795-3799
Two lanthanide-decorated polyoxometalates K[Ln2(α-SiW11O39)(H2O)11] (Ln = La, Ce) have been successfully synthesized and characterized with single-crystal X-ray diffraction, IR spectroscopy and thermogravimetric analysis. The two compounds have analogy structures, which consist of one-dimensional chains based on [α-SiW11O39]8− building blocks. The chains are further connected to a two-dimensional layer by potassium ions. The magnetic studies of compound 1 demonstrate a ferromagnetic interaction in 1.  相似文献   

8.
Two new Co(II) coordination polymers with mixed ligands, {[Co(BTA)0.5(DBI)2]·DBI·H2O}n (1) and [Co(PDA)(DBI)(H2O)]n (2) (H4BTA = benzene-1,2,4,5-tetracarboxylic acid; H2PDA = 2,2′-(1,2-phenylene)diacetic acid; DBI = 5,6-dimethyl-1H-benzoimidazole) have been synthesized under hydrothermal conditions, respectively. Both of them are characterized by elemental analyses, powder X-ray diffraction, thermogravimetric analysis, single-crystal X-ray diffraction, and magnetic susceptibilities. In 1, the Co(II) ions are four-coordinated and lie in distorted tetrahedron coordination environment. 1D ladder-like chain structure is formed by the bridging BTA4− ligand. In 2, the Co(II) ions are in slightly distorted octahedral coordination geometry, and linked by PDA2− ligand exhibiting a 2D layer structure. Temperature-dependent magnetic susceptibility measurements of 1 and 2 revealed that there are antiferromagnetic interactions between Co(II) ions.  相似文献   

9.
Two iron(III) complexes, [Fe4OCl(O2CMe)3(O3PC6H9)3(py)5] (1) and [Fe7O2(O2CPh)9(O3PC6H9)4(py)6] (2), have been prepared through solution reactions of [Fe3O(O2CR)6(H2O)3]Cl (R = Me, Ph) with cyclohexenephosphonic acid. Both compounds contain triangular oxo-centered [Fe33-O)]7+ units. In complex 1, the fourth iron atom is capped on this triangular unit through O-P-O bridges, forming a tetranuclear cluster with a tetrahedral arrangement of iron atoms. In complex 2, two equivalent [Fe33-O)]7+ units are connected by the fourth iron atom through four phosphonate ligands, forming a heptanuclear cluster. Variable temperature susceptibility measurements were performed for 1 and 2. Both exhibit dominant antiferromagnetic interactions between the Fe(III) centers.  相似文献   

10.
Three new ion-pair complexes (m-MPYNN)2Ni(mnt)2 (1), (p-MPYNN)2Ni(mnt)2 (2) and (p-MPYNN)2Cu(mnt)2 (3) (m- or p-MPYNNI = [3- or4- (4,4,5,5-tetramethyl-1-oxido-3-oxyl-4,5-dihydro-3H-imidazol-2′-yl)-1-methylpyridinium] iodide, mnt = maleonitriledithiolate) have been prepared and characterized by elemental analyses, IR, single crystal X-ray diffraction and magnetic susceptibility. In complex 1, the m-MPYNN cations form a centrosymmetric dimer, and the [Ni(mnt)2]2− anion lies on a center of inversion. Complexes 2 and 3 show layered packing, and the p-MPYNN cations lie between the layers of the anions. Magnetic susceptibility measurements in the temperature range 2-300 K show that the three complexes exhibit weak antiferromagnetic behaviors. The behavior of complex 1 was explained with the singlet-triplet model.  相似文献   

11.
Three new C3-symmetric tritopic ligands with a central phloroglucinol bridging unit have been synthesized and characterized. The ligands are accessible through Schiff-base condensation of 2,4,6-triformylphloroglucinol with 2-aminomethylpyridine (H3tfpg-ampy), N,N-bis(pyridin-2-ylmethyl)-ethylenediamine (H3tfpg-unspenp), and benzhydrazide (H6tfpg-bhy). These ligands differ in nature and number of the donor atoms within the resulting binding pockets. Based on these ligands the synthesis of the first trinuclear phloroglucinol-bridged nickel(II) complexes with three octahedrally coordinated nickel centers is reported. The ligands H3tfpg-ampy and H6tfpg-bhy, which provide tridentate binding pockets, react with nickel(II) perchlorate in the presence of bis(pyridin-2-ylethyl)-amine (bpea) as an additional tridentate capping ligand leading to the formation of the trinuclear complexes [Ni3(tfpg-ampy)(bpea)3](ClO4)3 and [Ni3(tfpg-bhy)(bpea)3](ClO4)3, respectively. Due to the pentadentate binding pocket in ligand H3tfpg-unspenp, no additional coligand is needed and a water molecule occupies the sixth coordination site at the nickel(II) ion resulting in the complex [Ni3(tfpg-unspenp)(H2O)3](ClO4)3. Temperature-dependent magnetic measurements reveal overall weak antiferromagnetic exchange interactions within the trinuclear complex together with a rather strong zero-field splitting (ZFS) for the nickel(II) ions. The observed isotropic coupling constants for the three complexes are in the range of 0.14 < − J < 0.37 cm−1, whereas for the zero-field splitting parameter ∣D∣ values between 1.8 and 5.5 cm−1 are found. This is indicative for competitive spin-polarization and superexchange mechanisms, with the latter prevailing the interaction between the nickel(II) ions through the meta-phenylene-linkage for the complexes reported.  相似文献   

12.
A series of pyrazole-bridged heterometallic 3d-4f complexes, [CuDy(ipdc)2(H2O)4] · (2H2O)(H3O+) (1) and [CuLn(pdc)(ipdc)(H2O)4] · H3O+ (Ln = Ho (2), Er (3), Yb (4); H3ipdc = 4-iodo-3,5-pyrazoledicarboxylic acid; H3pdc = 3,5-pyrazoledicarboxylic acid), {[Cu3Ln4(ipdc)6(H2O)16] · xH2O}n (Ln = Sm (5), x = 8.5; Ln = Eu (6), x = 7; Ln = Gd (7), Tb (8), x = 9), have been synthesized and structurally characterized. Ligand H3ipdc was in situ obtained by iodination of ligand H3pdc. Complexes 1-4 are pyrazole-bridged heterometallic dinuclear complexes, and 2-4 are isostructural. Complexes 5-8 are isostructural and comprised of an unusual infinite one-dimensional tape-like chain based on pyrazole-bridged heterometallic dinuclear units. The magnetic properties of compounds 1-4, 7 and 8 have been investigated through the magnetic measurement over the temperature range of 1.8-300 K.  相似文献   

13.
Using the tetracyanometalate precursor [Fe(4,4′-dmbipy)(CN)4]- (4,4′-dmbipy = 4,4′-dimethyl-2,2′-bipyridine) as the building block, two new cyano-bridged one-dimensional heterobimetallic coordination polymers, [M(CH3OH)2Fe2(4,4′-dmbipy)2(CN)8]n (M = Cu, 1; Mn, 2), have been synthesized and structurally characterized. X-ray crystallography reveals that complexes 1 and 2 consist of heterobimetallic chains of squares, and the central MII ion is six-coordinated as an elongated distorted octahedral geometry. Magnetic studies show ferromagnetic coupling between FeIII and CuII ions in complex 1. Complex 2 exhibits ferrimagnetic behavior caused by the noncompensation of the local interacting spins (SMn = 5/2 and SFe = 1/2), which interact antiferromagnetically through bridging cyanide groups. magpack program has been employed to investigate the magnetic nature of squares chain structure.  相似文献   

14.
Using the pyridine dicarboxamide derivative N,N′-bis(1,3,4-thiadiazol-2-yl)-2,6-pyridinedi-carboxamide (H2-btapca) as ligand, two novel polynuclear complexes: dimeric {[Cu2(μ2-O2H)(btapca)2]·DMF·H2O} (1) and tetrameric {[Ni4((μ2-O2H)2(btapca)4)]·DMF·MeOH·3.5H2O} (2) were obtained. In complex 1, two center Cu(II) ions are bounded by two btapca ligands and one aqueous molecule acting as a μ2-H2O bridge connect them together. Complex 2 is a tetrameric complex, in which the based backbone is an assumed Ni4 tetrahedron with two μ2-O2H bridges existing inside the tetrahedron forming a basic [Ni2(μ2-O2H)]2 core, which are surrounded by four btapca ligands. The magnetic properties of the two polynuclear complexes were determined, the results show that for both of the two complexes, the overall weak ferromagnetic exchange interactions between central metal ions are evident, the best fitting parameters are: J = 7.47 cm−1 (g = 2.21) for dimeric Cu(II) complex 1, and 2J1 = 4.8 cm−1, 2J2 = −0.00204 cm−1(g = 2.14, zJ′ = 0.00077 cm−1) for tetrameric Ni(II) complex 2.  相似文献   

15.
Three complexes of composition [Co3(Hdcp)2(phen)3(H2O)2]n · nH2O (1), [Ni2(Hdcp)2(H2O)4](Im)2 (2) and [Cu2(Hpca)2(H2O)2(Im)2] (3) (H3dcp = 3,5-pyrazoledicarboxylic acid, H2pca = 1H-pyrazole-5-carboxylic acid, Im = imidazole and phen = 1,10-phenanthroline) have been synthesized via hydrothermal reactions and their structures have been characterized. Complex 1 is mainly constructed by Hdcp and ancillary ligand 1,10-phenanthroline and exhibits one-dimensional linear chain structure. Complexes 2 and 3 are pyrazolato-bridged dinuclear complexes. The ancillary imidazole ligand was not involved in the coordination and stacked to the lattice of the complex in 2. In the process of synthesis 3, imidazole ligand was coordinated to the metal centre; with one of the carboxylic group of the H3dcp ligand was eliminated to form [Cu2(Hpca)2(H2O)2(Im)2] (3) in situ. The results of magnetic susceptibility measurements indicate that there exist antiferromagnetic interactions between Co(II) and Ni(II) centres in compounds 1 and 2, respectively.  相似文献   

16.
Two adamantane-1,3-dicarboxylato bridged cobalt(II) phenanthroline complexes [Co2(H2O)2(phen)2(adc)2]·(C2H7N)·2H2O (1) and [Co(H2O)(phen)(adc)]·H2O (2) were synthesized in a mixed solvent under 45 °C (H2adc = adamantane-1,3-dicarboxylic acid). Compound 1 consists of dinuclear [Co2(H2O)2(phen)2(adc)2] complex molecules, dimethylamine (C2H7N) molecules and hydrogen-bonded water molecules. The dinuclear molecules, via intermolecular hydrogen bonds, are interconnected into hydrogen-bonded chains along [1 0 0] and interdigitation of phen ligands due to interchain π?π stacking interactions assembles the hydrogen-bonded chains into 2D supramolecular layers parallel to (0 0 1). In compound 2, the Co(II) ions are bridged by adamantane-1,3-dicarboxylate anions to form 1D chains along [0 0 1], and the resulting chains are assembled into double-chains based on interchain π?π interactions. The double-chains are further held together via hydrogen bonds into 2D supramolecular layers parallel to (1 0 0). The variable temperature magnetic measurements show an overall weak antiferromagnetic behavior for 1, and an weak ferromagnetic behavior over 300-75 K followed by antiferromagnetic behavior below 75 K for 2.  相似文献   

17.
Two novel complexes Co(N3)2(PNN)4 (I) and Mn(N3)2(PNN)2(CH3OH)(C2H5OH) (II) (PNN=2-(p-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3–oxide) were synthesized and characterized by infrared spectra, elemental analyses and UV–Vis techniques. The crystal structures of both complexes have been determined by X-ray diffraction analysis. Complex I is a neutral five-spin system and adopts a centrosymmetric tetragonally compressed octahedral coordination geometry in which Co(II) ion is coordinated to four radicals through the nitrogen atoms of the pyridine rings and two azide anions occupying the axial positions. Complex II is a neutral three-spin system in which Mn(II) ion is bound to two azide anions, two alcohol molecules and two radicals through the nitrogen atom of pyridine rings, and shows one-dimensional chain structure via hydrogen bonds (dON=2.78 Å). The magnetic properties for complexes I and II have been investigated in the temperature range 2–300 K. A theoretical model has been developed for complex I and the magnetic behaviors for both complexes have been discussed in detail.  相似文献   

18.
Two 3d/5d-4f metal complexes [DyL3(H2O)2]n(1.5nHgCl4) · 2nH2O (1) and (1.5nZnCl4) · nH2O (2), where L and L′ are isonicotinic acid and nicotinic acid, respectively, have been synthesized via hydrothermal reaction and structurally characterized by single-crystal X-ray diffractions. Both complexes are characteristic of a one-dimensional polycationic chain-like structure. Photoluminescent investigation reveals that complex 1 displays emissions in violet, blue and yellow regions, and the violet emission is stronger than the blue and yellow ones. Complex 2 displays emissions in orange and red regions, and the emission are attributed to the characteristic emissions of 5D0 → 7FJ (J = 0, 1, 2, 3, 4) of Eu3+ ions. Optical absorption spectra reveal the presence of an optical gap of 3.31 and 3.86 eV for 1 and 2, respectively. The magnetic properties show that complex 1 exhibits antiferromagnetic-like interactions.  相似文献   

19.
Two novel molecular magnetic materials, [RBzTPP][Ni(mnt)2] (mnt2− = maleonitriledithiolate, [RBzTPP]+ = 4-R-benzyltriphenylphosphinium; R = CN (1), Cl (2)) were synthesized and characterized by X-ray diffraction, IR spectroscopy, and magnetic susceptibility measurements. In crystal of 1, the [Ni(mnt)2] anions form a dimer via Ni?S and π?π stacking interactions between Ni(mnt)2 planes, and the C-H?Ni and C-H?N H-bonding interactions are found between the [Ni(mnt)2] anions and the neighboring [CNBzTPP]+ cations. The anions and cations of 2 stack into well-segregated columns in the solid state; and the Ni(III) ions form a 1D alternating chain in a Ni(mnt)2 column through intermolecular Ni?S, or π?π interactions with the Ni?Ni distances of 3.900, 4.198, and 4.165 Å. Magnetic susceptibility measurements for these complexes in the temperature range 1.8-300 K show that the overall magnetic behavior for 1 and 2 indicates the presence of antiferromagnetic interaction, but 1 exhibits an activated magnetic behavior in the high-temperature (HT) region together with a Curie tail in the low-temperature (LT) region.  相似文献   

20.
Four novel metal coordination polymers, [Zn(2-PBIM)(OH-BDC)]n (1), [Cd(2-PBIM)(OH-BDC)]n (2), [Mn(2-PBIM)(OH-BDC)]n·1.5nH2O (3), [Cu(2-PBIM)(OH-BDC)]n·nH2O (4) [2-PBIM = 2-(2-pyridyl)benzimidazole; OH-H2BDC = 5-hydroxy-1,3-benzenedicarboxylic acid], have been synthesized under hydrothermal conditions and structurally characterized by single crystal X-ray diffraction analysis, elemental analysis, IR spectroscopy, and thermogravimetric analysis. Compound 1 possesses left-handed screw (M-helix) and right-handed screw (P-helix) chains that are further connected though intermolecular hydrogen bonds and π-π stacking interactions resulting in a three-dimensional (3D) network. Compound 2 has a two-dimensional metal-organic framework which is connected into a 3D network by intermolecular hydrogen bonds and π-π stacking interactions. Compounds 3 and 4 are isostructural and possess one-dimensional (1D) channels. Free 2-PBIM and OH-H2BDC ligands and complexes 1, 2 show fluorescent emissions in the visible and near-infrared region. Magnetic susceptibility measurements indicate that both 3 and 4 exhibit antiferromagnetic coupling between adjacent center atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号