共查询到20条相似文献,搜索用时 0 毫秒
1.
《Journal of inorganic biochemistry》1998,70(3-4):253-263
The oxalate catalyzed iron(III) transfer from a trihydroxamate siderophore ferrioxamine B, [Fe(Hdfb)+], to ethylenediaminetetraacetic acid (H4edta) has been studied spectro-photometrically in weakly acidic aqueous solutions at 298 K and a constant 2.0 M ionic strength maintained by NaClO4. The results reveal that oxalate is a more efficient catalyst than the so far studied synthetic monohydroxamic acids. Any role of reduction of Fe(Hdfb)+ by oxalate in the catalysis has been rejected by the experimentally observed preservation of the oxalate concentration during the reaction time. Therefore, catalysis has been proposed to be a substitution based process. Under our experimental conditions Fe(Hdfb)+ is hexacoordinated and addition of oxalate results in the formation of Fe(H2dfb)(C2O4), Fe(H3dfb)(C2O4)−2 and Fe(C2O4)3−3. Therefore, catalysis was proposed to be accomplished by the intermediate formation of the ternary and tris(oxalato) complexes. All three complexes react with H2edta2− to form thermodynamically stable Fe(edta)− as a final reaction product. Whereas the formation of the ternary complexes is fast enough to feature a pre-equilibrium process to the iron exchange reaction, the formation of Fe(C2O4)3−3 is slow and is directly involved in the rate determining step of the Fe(edta)− formation. Nonlinear dependencies of the rate constant on the oxalate and the proton concentrations have been observed and a four parallel path mechanism is proposed for the exchange reaction. The rate and equilibrium constants for the various reaction paths were determined from the kinetic and equilibrium study involving the desferrioxamine B- (H4dfb+), oxalate- and proton-concentration variations. The observed proton catalysis was attributed to the fast monoprotonation of ferrioxamine B as well as of the oxalate ligand. The observed catalysis of iron dissociation from the siderophore has been discussed in view of its significance with respect to in vivo microbial iron transport. 相似文献
2.
3.
H.F. Bienfait M.L. Van den Briel 《Biochimica et Biophysica Acta (BBA)/General Subjects》1980,631(3):507-510
L-(—)-ascorbate mobilizes iron from horse-spleen ferritin in the presence of oxygen at pH 8.0. The reaction is strongly stimulated by Cu2+. Dehydroascorbate and other stable oxidation products of ascorbate are ineffective. We present evidence that monodehydroascorbate mobilizes ferritin iron by reduction. 相似文献
4.
Desiccation preservation holds promise as a simplified alternative to cryopreservation for the long term storage of cells. We report a study on the protective effects of intracellular and extracellular sugars during bovine sperm desiccation and the supplemental effects of the addition of an antioxidant (catalase) or a chelator (desferal). The goal of the study was to preserve mammalian sperm in a partially or completely desiccated state. Sperm loaded intracellularly with two different types of sugars, trehalose or sucrose, were dried with and without catalase and desferal and evaluated for motility and membrane integrity immediately after rehydration. Intracellular sugars were loaded using ATP induced poration. Drying was performed in desiccator boxes maintained at 11% relative humidity (RH). Results indicated that sperm exhibited improved desiccation tolerance if they were loaded with either intracellular trehalose or sucrose. Survival was further enhanced by the addition of 1 mM desferal to the desiccation buffer. Though sperm motility after drying to low dry basis water fractions (DBWF) did not show significant improvement under any of the tested conditions, there was an increase in the sperm membrane integrity that could be retained after partial desiccation through the use of intracellular sugars and desferal. 相似文献
5.
The kinetics of Pd(II)-catalysed and Hg(II)-co-catalysed oxidation of D-glucose (Glc) and D-fructose (Fru) by N-bromoacetamide (NBA) in the presence of perchloric acid using mercury(II) acetate as a scavenger for Br- ions have been studied. The results show first-order kinetics with respect to NBA at low concentrations, tending to zero order at high concentrations. First-order kinetics with respect to Pd(II) and inverse fractional order in Cl- ions throughout their variation have also been noted. The observed direct proportionality between the first-order rate constant (k1) and the reducing sugar concentration shows departure from the straight line only at very higher concentration of sugar. Addition of acetamide (NHA) decreases the first-order rate constant while the oxidation rate is not influenced by the change in the ionic strength (mu) of the medium. Variation of [Hg(OAc)2] shows a positive effect on the rate of reaction. The observed negative effect in H+ at lower concentrations tends to an insignificant effect at its higher concentrations. The first-order rate constant decreases with an increase in the dielectric constant of the medium. The various activation parameters have also been evaluated. The products of the reactions were identified as arabinonic acid and formic acid for both the hexoses. A plausible mechanism involving HOBr as the reactive oxidising species, Hg(II) as co-catalyst, and [PdCl3.S]-1 as the reactive Pd(II)-sugar complex in the rate-controlling step is proposed. 相似文献
6.
Luísa M. D. R. S. Martins Armando J. L. Pombeiro Richard A. Henderson 《Inorganica chimica acta》1996,250(1-2):311-315
The kinetics of the displacement reactions of the bromide ligands of trans-[FeBr2(depe)2] (depe = Et2PCH2CH2PEt2) by the organonitrile NCCH2C6H4OMe-4, in tetrahydrofuran (either in the absence or in the presence of added Br−), to give the corresponding mono- and dinitrile complexes trans-[FeBr(NCCH2C6H4OMe-4)(depe)2]+ and trans-[Fe(NCCH2C6H4OMe-4)2(depe)2]2+, have been investigated by stopped-flow spectrophotometry. The substitution reaction occurs by a mechanism involving rate-limiting dissociation of bromo ligands to form the unsaturated intermediates [FeBr(depe)2]+ (k1 = 1.52 ± 0.02 s−1) and [Fe(NCR)(depe)2]2+ (k3 = 0.063 ± 0.008 s−1) which add the nitrile ligand to form those nitrile complexes. The competition between the nitrile and Br− for such metal centres has also been investigated and a stronger inhibiting effect of added Br− is observed for the substitution of the second bromo ligand relative to the first one. The kinetic data are rationalized in terms of π-electronic effects of these unsaturated metal centres and of the bromide and nitrile ligands. 相似文献
7.
Jennifer Cheek David Mandelman T. L. Poulos J. H. Dawson 《Journal of biological inorganic chemistry》1999,4(1):64-72
A series of ferric and ferrous derivatives of wild-type ascorbate peroxidase (APX) and of an engineered K+-site mutant of APX that has had its potassium cation binding site removed have been examined by electronic absorption and magnetic circular dichroism (MCD) spectroscopy at 4??°C. Wild-type ferric APX has spectroscopic properties that are very similar to those of ferric cytochrome c peroxidase (CCP) and likely exists primarily as a five-coordinate high-spin heme ligated on the proximal side by a histidine at pH 7. There is also evidence for minority contributions from six-coordinate high- and low-spin species (histidine-water, histidine-hydroxide, and bis-histidine). The K+-site mutant of APX varies considerably in the electronic absorption and MCD spectra in both the ferric and ferrous states when compared with spectra of the wild-type APX. The electronic absorption and MCD spectra of the engineered K+-site APX mutant are essentially identical to those of cytochrome b 5, a known bis-imidazole (histidine) ligated heme system. It therefore appears that the K+-site mutant of APX has undergone a conformational change to yield a bis-histidine coordination structure in both the ferric and ferrous oxidation states at neutral pH. This conformational change is the result of mutagenesis of the protein to remove the K+-binding site which is located ~8?Å from the peroxide binding pocket. Thus, mutations of protein residues on the proximal side of the heme cause changes in iron ligation on the distal side. 相似文献
8.
We report on the photostability of a mixture of vitamins B6 and B2 (riboflavin, Rf) upon visible light irradiation and on the possible role of the vitamin B6 family (B6D) as deactivators of reactive oxygen species (ROS). The work is a systematic kinetic and mechanistic study under conditions in which only Rf absorbs photoirradiation. Pyridoxine, pyridoxal hydrochloride, pyridoxal phosphate and pyridoxamine dihydrochloride were studied as representative members of the vitamin B6 family. The visible light irradiation of dissolved Rf and B6D in pH 7.4 aqueous medium under aerobic conditions induces photoprocesses that mainly produce B6D degradation. The overall oxidative mechanism involves the participation of ROS. Photogenerated (3)Rf* is quenched either by oxygen, giving rise to O(2)((1)Δ(g)) by electronic energy transfer to dissolved ground state oxygen, or by B6D yielding, through an electron transfer process, the neutral radical RfH˙, and O(2)˙(-) in an subsequent step. B6D act as quenchers of O(2)((1)Δ(g)) and O(2)˙(-), the former in a totally reactive event that also inhibits Rf photoconsumption. The common chromophoric moiety of B6D represented by 3-hydroxypyridine, constitutes an excellent model that mimics the kinetic behavior of the vitamin as an antioxidant towards Rf-generated ROS. The protein lysozyme, taken as an O(2)((1)Δ(g))-mediated oxidizable biological target, is photoprotected by B6D from Rf-sensitized photodegradation through the quenching of electronically excited triplet state of the pigment, in a process that competes with O(2)((1)Δ(g)) generation. 相似文献
9.
In photosynthetic cells the plastidic ascorbate-glutathione pathway is considered the major sequence involved in the elimination of active oxygen species. Ascorbate peroxidase (APO; EC 1.11.1.11) is an essential constituent of this pathway. In the present paper control of the appearance of APO was studied in the cotyledons of mustard (Sinapis alba L.) seedlings with the following results: (i) Two isoforms of APO (APO I, APO II) could be separated by anion-exchange chromatography; APO I is a plastidic protein, while APO II is extraplastidic, very probably cytosolic. (ii) The appearance of APO is regulated by light via phytochrome. This control is observed with both isoforms. Moreover, a strong positive control over APO II appearance (very probably over APO II synthesis) is exerted by photooxidative treatment of the plastids. (iii) Additional synthesis of extraplastidic APO II is induced by a signal created by intraplastidic pigment-photosensitized oxidative stress. The response is obligatorily oxygen-dependent and abolished by quenchers of singlet oxygen such as -tocopherol and p-benzoquinone. (iv) A short-term (4 h) photooxidative treatment suffices to saturate the signal. Signal transduction cannot be abolished or diminished by replacing the plants in non-photooxidizing conditions. Several observations indicate that control of APO synthesis by active oxygen is not an experimental artifact but a natural phenomenon.Abbreviations APO
ascorbate-specific peroxidase (EC 1.11.1.11)
- D
darkness
- FPLC
fast protein liquid chromatography
- FR
far-red light (3.5 W · m–2)
- NF
Norflurazon
- R
red light (6.8 W · m–2)
This research was supported by a grant from the Deutsche For-schungsgemeinschaft. B. Th. was the recipient of a stipend from the Studienstiftung des Deutschen Volkes. 相似文献
10.
11.
Shih L Ong GL Burton J Mishina D Goldenberg DM Mattes MJ 《Cancer immunology, immunotherapy : CII》2000,49(4-5):208-216
The tumor-specific localization of an anti-CD74 Ab, LL1, was demonstrated in nude mice bearing xenografts of human B-cell
lymphoma. This Ab, conjugated to radionuclides emitting Auger electrons, including 125I and 111In, was previously reported to kill tumor cells in vitro effectively and specifically. The cytotoxic potency of this Ab is
due to its uptake and catabolism at a very high level, which also affected the Ab biodistribution experiments. Thus, Ab localization
to the tumor was only detected if a “residualizing” radiolabel was used, meaning a label that is trapped within cells, usually
within lysosomes, after catabolism of the Ab to which it was conjugated. Similar results were obtained with three different
residualizing labels: 111In conjugated via the chelators benzyl diethylenetriaminepentaacetic acid (DTPA) or 1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′′′-tetraacetic
acid (DOTA), or 131I-dilactitol-tyramine, a residualizing form of iodine. The Ab protein dose could be high, 0.5 mg/mouse, without causing a
decrease in specific tumor uptake, probably reflecting the high capacity for uptake. Moreover, tumors of moderate size were
found to cause rapid, specific removal of the Ab from the blood, also a result of catabolic processes. This induced blood
clearance naturally affected the Ab localization experiments, but this factor could be circumvented by increasing the Ab protein
dose. Using a different Ab, anti-(mature MHC class II), the ability of Ab to penetrate relatively large solid tumors was investigated.
Complete saturation of antigenic sites was observed in tumors up to 0.3 g in size, but quite high Ab protein doses were required,
5.0 mg/mouse. These results provide a rationale for attempting therapy with radiolabeled LL1.
Received: 4 November 1999 / Accepted: 19 January 2000 相似文献
12.
Spiro[2,4]hepta-4,6-diene and spiro[4,4]nona-1,3-diene react with [Mo(CO)2Cp’(NCCH3)2][BF4] (Cp’ = Cp, Ind; Ind = η5-C9H7) to afford the corresponding diene complex [Mo(diene)(CO)2Cp′]+. When Cp’ = Ind, the reaction proceeded forward leading to ring opening in the case of the small spiro ring. Although this and another product resulting from migration of the side arm to the carbonyl were detected when Cp’ = Cp, they did not form from the diene complex. A DFT/PBE1PBE study was carried out and showed a kinetically controlled reaction pathway leading from the [Mo(diene)(CO)2Ind]+ to the reaction product, with an activation barrier of 21.3 kcal mol−1. The thermodynamic preferred species was the non-observed complex (insertion), and its formation required higher barriers. In the presence of Cp, all the barriers increased significantly, explaining the inertness of the initial diene complex. The interpretation of this behaviour is associated with the ease of the η5 → η3 haptotropic rearrangement of the indenyl, which helps to lower some relevant barriers. This route is not available for the Cp analogue. 相似文献
13.
Nobuaki Takahashi Kyohei Hayashi Yusuke Nakagawa Yutaka Furutani Mariko Toguchi Yumi Shiozaki-Sato Masayuki Sudoh Soichi Kojima Hideaki Kakeya 《Bioorganic & medicinal chemistry》2019,27(3):470-478
Hepatitis B, a viral infectious disease caused by hepatitis B virus (HBV), is a life-threatening disease that leads liver cirrhosis and liver cancer. Because the current treatments for HBV, such as an interferon (IFN) formulation or nucleoside/nucleotide analogues, are not sufficient, the development of a more effective agent for HBV is urgent required.CDM-3008 (1, 2-(2,4-bis(trifluoromethyl)imidazo[1,2-a][1,8]naphthyridin-8-yl)-1,3,4-oxadiazole) (RO8191)) is a small molecule with an imidazo[1,2-a][1,8]naphthyridine scaffold that shows anti-HCV activity with an IFN-like effect. Here, we report that 1 was also effective for HBV, although the solubility and metabolic stability were insufficient for clinical use. Through the structure-activity relationship (SAR), we discovered that CDM-3032 (11, N-(piperidine-4-yl)-2,4-bis(trifluoromethyl)imidazo[1,2-a][1,8]naphthyridine-8-carboxamide hydrochloride) was more soluble than 1 (>30?mg/mL for 11 versus 0.92?mg/mL for 1). In addition, the half-life period of 11 was dramatically improved in both mouse and human hepatic microsomes (T1/2, >120?min versus 58.2?min in mouse, and >120?min versus 34.1?min in human, for 11 and 1, respectively). 相似文献
14.
A binuclear complex has been produced by the reaction of an iron porphyrin (sodium tetra-p-sulfophenylporphine iron (III)-FeTPPS) with a copper metallo-tripeptide (copper (II) glycylglycyl-L-histidine-N-methylamide-CuGGH) in aqueous solution. The system has been characterized by electron spin resonance (ESR) spectroscopy, optical absorption spectroscopy, and electrochemical methods. Room-temperature ESR spectra of the copper complex and low-temperature ESR spectra of the iron porphine provide evidence for the formation of a binuclear complex. These findings are supported by absorption spectroscopy and electrochemical studies, and lead to a value of ca. 2 X 10(-3) M-1 (at room temperature) for the equilibrium constant for complex formation. The relevance of this system to the enzymic active site of mammalian cytochrome c oxidase is discussed. 相似文献
15.
The central part of the oxygen-evolving complex of photosystem II is a cluster of four manganese atoms. The known EPR spectra in the various oxidation states of the cluster are complicated by the magnetic interactions of the four Mn ions and accordingly are difficult to analyze. It has been shown recently that NO at -30 degrees C slowly reduces the cluster to a Mn(II)-Mn(III) state [Sarrou, J., Ioannidis, N., Deligiannakis, Y., and Petrouleas, V. (1998) Biochemistry 37, 3581-3587). We study herein the orientation dependence of the Mn(II)-Mn(III) EPR spectrum with respect to the thylakoid membrane plane. Both the powder and the oriented spectra are satisfactorily simulated with the same set of fine and hyperfine parameters assuming axial symmetry and collinear g and A tensors. The axial component of the tensors is found to be oriented at an angle of 20 degrees +/- 10 degrees to the membrane plane normal (mosaic spread Omega = 40 degrees ). We make the reasonable assumption that the Mn(II)-Mn(III) dimer is one of the di-mu-oxo units that has been suggested to comprise the Mn tetramer. On the basis of the sign of the hyperfine tensor anisotropy, the axial direction is assigned to the d(z(2)) orbital of Mn(III), which by comparison with synthetic model complexes is assumed to be oriented perpendicular to the Mn-(mu-oxo)-Mn plane. The present results complement earlier orientation studies by EXAFS and suggest that the Mn-(mu-oxo)-Mn plane makes a small angle (approximately 20 degrees) with the membrane plane and the axis connecting the bridging oxygens is approximately parallel to the plane. 相似文献
16.
The interaction of Cu(II) with pyridoxamine-5'-phosphate (PMP) and pyridoxal-5'-phosphate (PLP) was studied potentiometrically. The titration data were assessed by MINIQUAD program. Several protonated and nonprotonated complexes have been found to exist in solution. The reaction of PLP with Cu(II)-PMP has been studied kinetically, using the stopped-flow technique. Two rate steps have been observed. The first step has been attributed to the formation of a Schiff's base metal complex. The second step may be due to the formation of a ternary complex formation. A mechanism was suggested. 相似文献
17.
Seale AP de Jesus LA Kim SY Choi YH Lim HB Hwang CS Kim YS 《Biotechnology letters》2005,27(4):221-225
The inhibition of protein-tyrosine phosphatase 1B (PTP1B) is a potential target for treatment of type 2 diabetes. Vanadium and zinc metal coordinated complexes have insulin-enhancing activities, and while vanadium compounds inhibit PTP1B, little is known on the mode of action of zinc compounds. In this study we developed an automated PTP1B inhibition assay that allows for a rapid assessment of the PTP1B inhibition strength of candidate compounds. Synthetic vanadium(IV) and zinc(II) complexes were evaluated: IC50 values for vanadium complexes ranged from 0.06 to 0.8m whereas for zinc compounds, values were above 10 m. Vanadium sulfate, a non-conjugated inorganic salt, had stronger inhibition activity than any of the conjugated metal complexes. Revisions requested 14 October 2004; Revisions received 6 December 2004 相似文献
18.
19.
A novel hybridization indicator, bis(benzimidazole)cadmium(II) dinitrate (Cd(bzim)(2)(NO(3))(2)), was utilized to develop an electrochemical DNA biosensor for the detection of a short DNA sequence related to the hepatitis B virus (HBV). The sensor relies on the immobilization and hybridization of the 21-mer single-stranded oligonucleotide from the HBV long repeat at the glassy carbon electrode (GCE). The hybridization between the probe and its complementary sequence as the target was studied by enhancement of the peak of the Cd(bzim)(2)(2+) indicator using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Numerous factors affecting the probe immobilization, target hybridization, and indicator binding reactions were optimized to maximize the sensitivity and speed of the assay time. With this approach, a sequence of the HBV could be quantified over the range from 1.49x10(-7)M to 1.06x10(-6)M, with a linear correlation of r=0.9973 and a detection limit of 8.4x10(-8)M. The Cd(bzim)(2)(2+) signal observed from the probe sequence before and after hybridization with a four-base mismatch containing sequence was lower than that observed after hybridization with a complementary sequence, showing good selectivity. These results demonstrate that the Cd(bzim)(2)(2+) indicator provides great promise for the rapid and specific measurement of the target DNA. 相似文献
20.
CR1R2OH, Ri = CH3 or H, react with the complex [CoIII(NH3)5CN]2+ to form an observable intermediate probably via bonding to the nitrogen of the cyanide. This intermediate isomerizes to form a second intermediate. The second intermediate decomposes into Co2+(aq), 5NH4+, CN− and R1R2CO. The plausible structures of the intermediates are discussed. The radicals CH3, CH2CHO, , and are considerably less reactive towards this complex, the formation of intermediates in their presence is not observed. 相似文献