首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four novel isostructural lanthanide phosphonate compounds with formula Ln2(O2CCH2PO3)2(H2O)3 · H2O [Ln = La (1), Pr (2), Nd (3), Sm (4)] have been prepared through hydrothermal reactions of phosphonoacetate acid and lanthanide nitrates. All show layered structures made up of {LnO9} polyhedra and {CPO3} tetrahedra with the lattice water molecules locating between the layers. Within the layer, chains of edge-sharing {LnO9} polyhedra are connected via corner-sharing by phosphonate oxygens forming a two-dimensional -Ln-O- linkage. Thermal analyses and XRD measurements reveal that the framework structures can be maintained up to 400 °C.  相似文献   

2.
Synthesis and spectroscopic characterization of new lanthanide complexes [Ln(QAD)3(EtOH)(H2O)], (Ln = Tb, Eu; HQAD = 1-phenyl-3-methyl-4-adamantylcarbonyl-pyrazol-5-one), [H3O][Tb(QAD)4], [Ln(QAD)3(N-N)] (Ln = Tb, Eu; N-N = 1,10-phenanthroline (Phen), 2,2′-bipyridyl (Bipy), 4,4′-dimethyl-2,2′-bipyridyl (4,4′-Me2Bipy)) are reported. The crystal structures of the proligand HQAD and of complexes [H3O][Tb(QAD)4] and [Tb(QAD)3(4,4′-Me2Bipy)] have been determined. In both complexes the lanthanide ions are in a square antiprismatic environment, the H3O+ cation in the former acid complex being stabilized by H-bonding. Luminescence studies have been performed on selected derivatives.  相似文献   

3.
Lanthanide coordination compounds are important due to their unique luminescence and magnetic properties. Direct synthesis of oligo- and polymeric Ln complexes with a predicted structure is hampered due to high coordination numbers and unstable coordination polyhedra. A «building blocks» strategy for the synthesis of Ln(Q)3L polymers (Ln = Eu, Tb or Gd; HQ = 1-phenyl-3-methyl-4-RC(O)pyrazol-5-one in general, in detail HQS, R = thienyl; HQCP: R = cyclopentyl; L = bis(diphenylphosphine)methane dioxide dppMO2, bis(diphenylphosphine)ethane dioxide dppEO2, and bis(diphenylphosphine)butane dioxide dppBO2) has been used: {Ln(Q)3} mononuclear fragments have been linked by dppXO2 bridges when X = E or B, while monomeric molecular derivatives have been isolated with dppMO2. Eighteen new complexes were prepared, 12 of them showing a polymeric nature and 6 being monomers. Three compounds have been structurally characterized, further confirming the hypothesized connectivity where metal centers have been found to exist in LnO8 square antiprismatic environments. Luminescence properties have been also investigated.  相似文献   

4.
A new amide-based ligand derived from biphenyl, N-benzyl-2-{2′-[(benzyl-methyl-carbamoyl)-methoxy]-biphenyl-2-yloxy}-N-methyl-aceamide (L) was synthesized. Solid complexes of lanthanide picrates with this new ligand were prepared and characterized by elemental analysis, conductivity measurements, IR and electronic spectroscopies. The molecular structure of [Eu(pic)3L] shows that the Eu(III) ion is nine-coordinated by four oxygen atoms from the L and five from two bidentate and one unidentate picrates. All the coordinate picrates and their adjacent equivalent picrates form intermolecular π-π stacking. Furthermore, the [Eu(pic)3L] complex units are linked by the π-π stacking to form a two-dimensional (2-D) netlike supramolecule. Under excitation, the europium complex exhibited characteristic emissions. The lifetime of the 5D0 level of the Eu(III) ion in the complex is 0.22 ms. The quantum yield Φ of the europium complex was found to be 1.01 × 10−3 with quinine sulfate as reference. The lowest triplet state energy level of the ligand indicates that the triplet state energy level of the ligand matches better to the resonance level of Eu(III) than Tb(III) ion.  相似文献   

5.
The synthesis of a number of lanthanide tetracyanometallate (TCM) compounds have been carried out by reaction of Ln3+ nitrate salts and potassium tetracyanometallates in solvent systems containing dimethylsulfoxide and water. These reactions result in the isolation of three distinct structure types: (1) monoclinic [Ln(DMSO)4(H2O)3M(CN)4](M(CN)4)0.5·2H2O (Ln = Eu, Tb and M = Pd, Pt), (2) orthorhombic {La(DMSO)3(H2O)2(NO3)M(CN)4}·H2O (M = Pd, Pt), and (3) orthorhombic {Ln(DMSO)3(H2O)(NO3)M(CN)4} (Ln = Tb and M = Pd, Pt; Ln = Er, Yb and M = Pt) in the form of single crystals. Single-crystal X-ray diffraction has been used to investigate their structural features. Structure type 1 is a zero dimensional ionic compound with a M/Ln ratio of 1.5:1. It contains coordinated as well as uncoordinated [M(CN)4]2− (M = Pd, Pt) anions and features relatively long platinophilic interactions. Structure types 2 and 3 differ quite drastically from structure type 1, but they are very similar to each other. Both of the latter are one-dimensional in nature due to chains containing linkage of Ln3+ coordination spheres with trans-bridging [M(CN)4]2− anions. These coordination polymers both have a M/Ln ratio of 1:1, a lack of platinophilic interactions, and incorporation of a bidentate NO3 for charge balance. Photoluminescence properties for select Eu3+ and Tb3+ compounds have been investigated. They show characteristic absorption and emission for the Ln3+ ions, but no significant influence of the tetracyanometallate anions.  相似文献   

6.
The reactions of Ln(NO3)3 · xH2O, CoSO4 · 7H2O or ZnSO4 · 6H2O and 2-pyridylphosphonic acid under hydrothermal conditions result in heterometallic phosphonate compounds with formula [Ln2M3(C5H4NPO3)6] · 4H2O (Ln2M3; M = CoII or ZnII; Ln = LaIII, CeIII, PrIII, NdIII, SmIII, EuIII, GdIII, TbIII, DyIII). These compounds are isostructural and crystallize in a chiral cubic space group I213. Each structure contains the {LnO9} polyhedra and {MN2O4} octahedra which are connected by edge-sharing to form an inorganic open-framework structure with a 3-connected 10-gon (10, 3) topology. The nature of LnIII-CoII magnetic interactions in Ln2Co3 is investigated by a comparison with their LnIII-ZnII analogues. It is found that the LnIII-CoII interaction is weak antiferromagnetic for Ln = Ce and ferromagnetic for Ln = Sm, Gd, Tb and Dy. In the cases of Ln = Pr, Nd and Eu, no significant magnetic interaction is observed.  相似文献   

7.
Five new lanthanide complexes [Ln2(DTDN)4(phen)4]·7H2O·2H3O+ (Ln = Nd (1), Sm (2), Eu (3), Tb (4), Dy (5), H2DTDN = 2,2′-dithiodinicotinic acid, phen = 1,10-phenanthroline) have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, and TG analyses. By in situ oxidation of 2-mercaptonanicotinic acid (2-H2MN), the expected ligand H2DTDN was generated. All crystals are isostructural and crystallize in monoclinic system with space group C2/c. The metal center is eight-coordinated completely by four carboxylic oxygen atoms from four different DTDN2− ligands, and four nitrogen atoms from two phen molecules with a distorted square-antiprismatic geometry. The structures can be considered as two-dimensional (2D) structures and further linked by hydrogen bonds into the final trinodal 4-connected network. Photoluminescence studies revealed that complexes 2-5 exhibit strong fluorescent emission bands in the solid state at room temperature.  相似文献   

8.
Four lanthanide coordination polymers, [{Ln2(bpdc)3(phen)2(H2O)2} · (H2O)6]n (Ln = Sm (1); Eu (2); Gd (3), Tb (4)), were self-assembled from 2,2′-bipyridine-3,3′-dicarboxylic acid (H2bpdc),1,10-phenanthroline(phen) and corresponding lanthanide oxides by hydrothermal synthesis. Compounds 1-4 are found to be isomorphous and isostructural. Single-crystal X-ray diffraction studies show that compounds 1-4 are all of one-dimensional zigzag chain structures and extend to two-dimensional networks through π-π interactions and hydrogen bonds. The pyridyl nitrogen atoms of the 2,2′-bipyridyl unit in the bpdc ligand are uncoordinated in an anti-conformation along the central C-C bond of the ligand. Thermogravimetric analysis of 1-4 showed an obvious thermal stability indicating that the coordination habit of the metal ions with bpdc and phen has an effect on the overall framework. Photoluminescence measurement indicates that compound 2 and compound 4 are strong red and green emitters, respectively.  相似文献   

9.
New solid complex compounds of La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III) and Gd(III) ions with morin were synthesized. The molecular formula of the complexes is Ln(C15H9O7)3 · nH2O, where Ln is the cation of lanthanide and n = 6 for La(III), Sm(III), Gd(III) or n = 8 for Ce(III), Pr(III), Nd(III) and Eu(III). Thermogravimetric studies and the values of dehydration enthalpy indicate that water occurring in the compounds is not present in the inner coordination sphere of the complex. The structure of the complexes was determined on the basis of UV-visible, IR, MS, 1H NMR and 13C NMR analyses. It was found that in binding the lanthanide ions the following groups of morin take part: 3OH and 4CO in the case of complexes of La, Pr, Nd, Sm and Eu, or 5OH and 4CO in the case of complexes of Ce and Gd. The complexes are five- and six-membered chelate compounds.  相似文献   

10.
In this paper, we report the synthesis and the characterization of a novel series of lanthanide (III) complexes with two potentially hexadentate ligands.The ligands contain a rigid phenanthroline moiety and two flexible hydrazonic arms with different donor atom sets (NNN′N′OO and NNN′N′N″N″, respectively for H2L1 (2,9-diformylphenanthroline)bis(benzoyl)hydrazone and H2L2 (2,9-diformylphenanthroline)bis(2-pyridyl)hydrazone).Both nitrate and acetate complexes of H2L1 with La, Eu, Gd, and Tb were prepared and fully characterized, and the X-ray crystal structure of the complex [Eu(HL1)(CH3 COO)2] · 5H2O is presented.The stability constants of the equilibria Ln3+ + H2L1 = [Ln(H2L1)]3+ and Ln3+ + (L1)2− = [Ln(L1)]+ (Ln = La(III), Eu(III), Gd(III), and Tb(III)) are determined by UV spectrophotometric titrations in DMSO at t = 25 °C. The nitrate complexes of H2L2 with La, Eu, Gd and Tb were also synthesized, and the X-ray crystal structures of [La(H2L2)(NO3)2(H2O)](NO3), [Eu(H2L2)(NO3)2](NO3) and [Tb(H2 L2)(NO3)2](NO3) are discussed.  相似文献   

11.
The hydrothermal reaction of CuBr2 and tpyprz in the presence of NH4VO3 and HF for 72 h at 170 °C provided [(tpyprz)3Cu10Br10] (1) in 20% yield. The two-dimensional structure of 1 may be described as Cu(I)-tpyprz chains, linked through {Cu4Br5} clusters in the ac-plane and decorated with {Cu3Br5}2− clusters projecting from one face of the layer in the b-direction. The Cu(I) sites exhibit distorted trigonal coordination {CuBr3} and distorted tetrahedral geometries, {CuBr2N2} and {CuN4}. Crystal data for 1: monoclinic space group C2, a = 12.7561(8) Å, b = 19.359(1) Å, c = 15.860(1) Å, β = 97.178(1)°, V = 3885.8(4) Å3, Z = 2, Dcalc = 2.222 g cm−3, μ(Mo Kα) = 78.75 cm−1.  相似文献   

12.
The synthesis of a series of lanthanide tetracyanoplatinates containing the auxiliary ligands 1,10′-phenanthroline (phen) or 2,2′-bipyridine (bpy) have been carried out by reaction of Ln3+ nitrate salts with phen or bpy and potassium tetracyanoplatinate in solvent systems containing dimethylsulfoxide and dimethylformamide. The use of these solvents has lead to the isolation of [{Ln(DMSO)2(C12H8N2)(H2O)3}2Pt(CN)4](Pt(CN)4)2·2C12H8N2·4H2O (Ln = Eu (Eu-1), Tb (Tb-1), Yb(Yb-1)), [Ln(DMF)3(C12H8N2)(H2O)2NO3]Pt(CN)4 (Ln = La (La-2), Eu (Eu-2), Tb (Tb-2)), and [Ln(DMF)3(C10H8N2)(H2O)2NO3]Pt(CN)4 (Ln = La (La-3), Sm (Sm-3), Eu (Eu-3), Tb (Tb-3)) in the form of single crystals. Single-crystal X-ray diffraction has been used to investigate their structural features. The use of DMSO versus DMF as the solvent results in markedly different structural features. Eu-1 contains [{Eu(DMSO)2(C12H8N2)(H2O)3}2Pt(CN)4]2+ complex cations where the two Eu3+ centers are linked by a trans-bridging Pt(CN)42− anion to form a dimeric lanthanide complex cation. An additional uncoordinated Pt(CN)42− anion balances charge. Eu-2 and Eu-3 consist of zero-dimensional salts with [Eu(DMF)3(C12H8N2)(H2O)2(NO3)]2+ or [Eu(DMF)3(C10H8N2)(H2O)2(NO3)]2+ complex cations, respectively, and only non-coordinated Pt(CN)42− anions. Photoluminescence measurements illustrate that the Eu3+ and Tb3+ compounds for all three structure types display enhanced emission due to intramolecular energy transfer from the coordinated cyclic amines.  相似文献   

13.
Two novel lanthanide(III) two-dimensional (2D) coordination polymers [Ln2(PDC)2(OH)2(H2O)2] · H2O (Ln = Eu (1) and Tb (2), H2PDC = pyridine-3,4-dicarboxylic acid) have been prepared under hydrothermal conditions and characterized by elemental analysis, IR, TGA and single-crystal X-ray diffraction. Compounds 1 and 2 crystallize in the triclinic system, space group , they are isostructural and exhibit the same two-dimensional topological network constructed by PDC-connected Ln-O-Ln double chains. Photoluminescence properties of the compounds 1 and 2 have been investigated in the solid state at room temperature.  相似文献   

14.
By comparing the nephelauxetic ratios β of a number of molecular PrIII compounds, and the Slater parameters F2 (or Racah parameters E1) of molecular NdIII and selected SmIII compounds, presumably more covalent types of EuIII compounds could be identified. Powdered [Eu{N(SiMe3)2}3] (1), “[Eu{OC(tBu)3}3]” (“3”) and [Eu(η5-C5H5)3(CNC6H11)] (5) were resynthesized following usual procedures. The absorption transitions 7F0 → 5D0 of an oriented single crystal of 1, a glassy frozen solution of 1 dissolved in a mixture of 2-MeTHF/THF (ratio 3:1) ([Eu{N(SiMe3)2}3(THF)], (2)), of “3” dissolved in 2-MeTHF ([Eu{OC(tBu)3}3(MeTHF)], (4)), and of 5 dissolved in a mixture of the inert solvents methylcyclohexane/toluene (ratio 1:1), were measured at room and low temperatures (90 K). The energy differences of this transition for compounds 1, 2, 4 and 5 are larger than those of [Eu(H2O)9]3+ or even gaseous Eu3+, indicating quasi “anti-nephelauxetic” effects. Crystal field calculations, however, reveal that lower Slater parameters F2 (or Racah parameters E1) have to be used than those of [Eu(H2O)9]3+ in order to reproduce the experimental energy differences between 7F0 and 5D0, thus indicating the expected nephelauxetic effects of more covalent EuIII compounds.  相似文献   

15.
Two lanthanide(III) complexes with l-glutamate ligands [{Ln2(l-Glu)2(H2O)8} · 4(ClO4) · 2.5H2O]n (Ln = Gd (1), Eu (2)) have been prepared and characterized by single-crystal X-ray diffraction. The compounds are isomorphous with infinite cationic 2D layers stacked together by secondary bonds. The building blocks are slightly different non-centrosymmetric dinuclear units placed in alternating layers, the resulting structures thus containing four non-equivalent Ln metal sites. The dinuclear units contain a fourfold bridge, two in the η112 and two in the η212 modes, from two α- and two γ-carboxylates of four different l-Glu residues, respectively.  相似文献   

16.
The 1D triclinic {CuHg(en)(μ-NCS-N,S)4}n (1) and 2D monoclinic {CuHg(en)(μ-NCS-N,S)3(SCN)}n (2) (en = ethylenediamine) heterometallic coordination polymers, as the two polymorphs of the {CuHg(en)(NCS)4}n, were synthesized at room temperature by the reaction of mercuric thiocyanate, potassium thiocyanate, copper(II) malonate and ethylenediamine using different reagent ratios. XRD on single crystals shows that the compound 1 consists of 1D ladder like zigzag ribbons extended along the b axis, whereas compound 2 shows a 2D wavy polymeric structure running parallel to the ab plane. In the crystal packing of the both polymorphs, the polymeric structures are further interlinked to each other via weak interactions and hydrogen bonding to afford a 3D network. Diagnostic ligand and metal-ligand bands in the IR, far-IR and Raman spectra are assigned for the studied compounds. While compound 1 shows no significant emission upon excitation at any wavelength in the UV-Vis region, compound 2 exhibits intense emission at around 410 nm. Moreover, the room temperature X-band EPR spectrum of a powdered sample of 1, shows a signal of rhombic symmetry with g1 = 2.2637, g2 = 2.0765 and g3 = 2.0483. In contrast to this, 2 reveals an axial signal with g = 2.0742; however, the g|| is unresolved.  相似文献   

17.
The synthesis and characterization of new lanthanide complexes of formulae [M(Q)3(H2O)(EtOH)], NBu4[M(Q)4] and [M(Q)3(L)] (M = Eu or Tb; HQ = 1-phenyl-3-methyl-4-R-pyrazol-5-one: R = cyclopentylcarbonyl, HQ = HQCP; R = cyclopentylpropionyl, HQ = HQEtCP; L = 1,10-phenanthroline (phen) or 4,7-diphenyl-1,10-phenanthroline (bathophen)) are reported. The crystal structure of the tetrakis (β-diketonate) complex [NBu4][Eu(QETCP)4] containing an eight-coordinated Eu atom in a distorted square antiprismatic environment has been determined. Luminescence studies have been performed on selected derivatives: the data suggested a strong influence of the nature of the acyl moiety in Q ligands and of Ph groups in bathophen (with respect to phen) on the luminescence properties.  相似文献   

18.
Although reactions of samarium(III) chloride, SmCl3 · 6H2O, with potassium hydrotris(1-pyrazolyl)borate K[BH(pz)3] (pz = 1-pyrazolyl) in a molar ratio of (1/1) in THF afford [SmCl{BH(pz)3}2(Hpz)], similar reactions with K[B(pz)4] gave rise to separation of anhydrous H[B(pz)4]. The homoleptic eight-coordinate complex [Sm{B(pz)4}3] obtained from SmCl3 · 6H2O and threefold moles of K[B(pz)4] was allowed to react with twofold moles of K[BH(pz)3] to give a mixture of three major species [Sm{B(pz)4}n{BH(pz)3}(3 − n)] (n = 2, 1, 0), whereas similar reactions of [Sm{BH(pz)3}3] with K[B(pz)4] did not proceed at all. The acetylacetonato (acac) complex [Sm{B(pz)4}2(acac)], derived from the triflate “Sm{B(pz)4}2(OTf)”, was treated with twofold moles of K[BH(pz)3] and showed its quantitative conversion to [Sm{BH(pz)3}2(acac)]. However, analogous reaction of [Sm{BH(pz)3}2(acac)] with K[B(pz)4] did not proceed. Accordingly, samarium(III) ion was determined to prefer coordination of BH(pz)3 ligand to that of B(pz)4, indicating less σ-donating electronic character of the latter. The complexes [Sm{B(pz)4}2(L-L)] (L-L = β-ketoenolato) in toluene-d8 exhibited 1H NMR spectroscopic equivalence of all four pyrazolyl groups at high temperatures, and are regarded as a new class of B(pz)4 complexes, showing fast intramolecular exchange of their coordinated and uncoordinated pyrazolyl groups. Four compounds were crystallographically characterized.  相似文献   

19.
The first organic amine templated europium sulfate [C2N2H10]1.5[Eu(SO4)3(H2O)] · 2H2O (1), has been synthesized under solvothermal conditions by using a mixture of n-butanol and water as the solvent. The colorless block crystals were characterized by IR, TGA and ICP. Crystal structure analysis shows that the corrugated layered framework of compound 1 is constructed from EuO9 polyhedra and sulfate groups, while non-coordination water molecules and ethylenediamine molecules link the adjacent layers by hydrogen bonds. Compound 1 represents a strong luminescence upon the excitation.  相似文献   

20.
Mesoporous Ln(III)-TiO2 (Ln = Tb, Eu, Sm) nanomaterials composites have been successfully synthesized by using sol-gel technique.XRD pattern, FT-IR, Raman spectra, and SEM were used to characterize the Ln(III)-TiO2 nanomaterials. The prepared lanthanide doped TiO2 nanomaterials have anatase phase and exhibit Ti-O-Ln bond. The absorption spectra of all prepared samples reflect the increasing photoresponse of doped samples to visible light over pure TiO2. Surface area is remarkably increased due to lanthanide ion-doping.Two newly prepared Ln(III)-TiO2 (Ln = Eu, Sm) luminescent nanomaterials exhibit enhanced pure red or orange light emission due to energy transfer from host TiO2 to guest Eu(III) or Sm(III), respectively.In addition, the commercially available textile dye Remazol Red RB-133 degradation was used as a probe reaction to determine the efficiency of the Ln(III)-TiO2 photocatalysts. The Ln(III) doping brought about remarkable improvement in the photoactivity over pure TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号