首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A complete photophysical study has been carried out on an octahedral ruthenium(II) complex, incorporating two 4′-phenylethynyl-2,2′:6′,2″-terpyridine ligands. Weak emission is observed from the complex in fluid solution at room temperature, but both emission yield and lifetime increase as the temperature is lowered. Luminescence is confirmed to occur exclusively from the lowest energy triplet metal-to-ligand, charge-transfer (MLCT) state, though higher-lying MLCT and metal-centered states are required to adequately model the non-radiative decay kinetics. A comparison of parameters associated with deactivation of the complex and its counterpart, where only one terpy ligand incorporates the phenylethynyl unit, indicates that only the electron-vibrational coupling element is affected. It is also revealed that the extent of electron delocalisation at the triplet level does not critically depend on the number of 4-phenylethynyl-2,2′:6′,2″-terpyridine ligands in the complex.  相似文献   

2.
The synthesis and the crystal and molecular structure of a unique Rh(III) complex, [RhIII(Br)(acetonyl)2(4′-(4-tbutylphenyl)-2,2′:6′,2″-terpyridine)] (1) are described. The yellow crystals separate from the acetone solution of the starting complex [Rh(Br)(COD)]2 and the ligand 4′-(4-tbutylphenyl)-2,2′:6′,2″-terpyridine after standing at room temperature for a prolonged period of time. The crystals are almost insoluble in all common organic solvents. The single-crystal X-ray structure determination shows that compound 1 is the first Rh-complex with a terdentate nitrogen ligand and two axially oriented, σ-bound acetonyl groups. DFT-calculations on a model complex without the substituent on the terpyridine ligand were carried out and agree very well with the X-ray results, confirming the constitution and geometry of the molecule.  相似文献   

3.
To complete the elucidation of the electrochemical properties of MnII-bis(terpyridine) complexes in CH3CN and evaluate the influence of the bulkiness of the terpy substituents, the oxidation processes of [MnII(L)2]2+ (L = terpy for 2,2′:6′,2″-terpyridine, pTol-terpy for 4′-(4-methylphenyl)-2,2′:6′,2″-terpyridine and tBu3-terpy for 4,4′,4″-tri-tert-butyl-2,2′:6′,2″-terpyridine) have been investigated in aqueous (1 M) CH3CN solution. In this medium, exhaustive oxidations at 1.10-1.20 V versus Ag/Ag+ release two electrons per molecule of initial complex and lead to clean dimerization processes with the quantitative formation of the oxo-bridged binuclear [Mn2IVO2(L)2(H2O)2]4+ complex for L = tBu3-terpy and of the tetranuclear [Mn4IVO5(L)4(H2O)2]6+ complexes for L = terpy and pTol-terpy. The formation of the tetranuclear complex with the tBu3-terpy derivative is prevented by the steric hindrance induced by the bulkiness of the tert-butyl groups, as confirmed by molecular mechanics calculations, as well as by their strong electron-donating properties. All these electrogenerated multinuclear complexes have been fully characterized in solution by UV-vis and electron paramagnetic resonance (EPR) spectroscopy. A markedly improved chemical synthesis of [Mn4IVO5(terpy)4(H2O)2]6+ is also reported.  相似文献   

4.
The preparation and characterization of mono and binuclear complexes of Ru(II) with a newly synthesized derivate of the terpyridine ligand, 4-(5-bromothiophene)-2,2,6,2″-terpyridine, are communicated. In the binuclear complex, 2,5-bis(2,2,6,2″-terpyridine-4yl)thiophene was used as a bridge between two Ru(II) centers. The new compounds were characterized by H NMR, UV-Vis and IR spectroscopies. Bands at ∼500 nm for the Ru(II) to terpyridine charge transfer transition and absorption bands at λ<400 nm assigned to intraligand transitions, π*←π, centered in the tpy moiety were observed in the UV-Vis spectra of the complexes. Irradiation of the complexes in CH3CN at 337 or 500 nm induced luminescence with maxima at ∼670 nm and lifetimes τ?102 ns. Time-resolved absorption spectroscopy revealed the formation of long-lived species during the decay of the metal to ligand charge transfer excited states. The intermediates were tentatively assigned as unstable products of ligand-substitution or orthometalation excited state reactions.  相似文献   

5.
The complexes [{Ru(tpy)(bpy)}2(μ-adpc)][PF6]2 where tpy is 4,4′,4″-tri-(tert-butyl)-2,2′:6′,2″-terpyridine, bpy is 2,2′-bipyridine, and adpc2− is 4,4′-azo-diphenylcyanamide dianion and trans,trans-[{Ru(tpy)(pc)}2(μ-adpc)] where pc is 2-pyrazine-carboxylato were prepared and characterized by cyclic voltammetry and spectroelectrochemical methods. Intervalence band properties and IR spectroelectrochemistry of the mixed-valence complexes [{Ru(tpy)(bpy)}2(μ-adpc)]3+ and trans,trans-[{Ru(tpy)(pc)}2(μ-adpc)]+ are consistent with delocalized and valence-trapped mixed-valence properties respectively. The reduction in mixed-valence coupling upon substituting a bipyridine ligand with 2-pyrazine carboxylato strongly suggests that hole-transfer superexchange is the dominant mechanism for metal-metal coupling in these complexes.  相似文献   

6.
The kinetics of the complex-formation reactions between monofunctional palladium(II) complexes [Pd(NNN)Cl]+, where NNN is 2,2:6,2″-terpyridine (terpy), diethylenetriamine (dien) or bis(2-pyridylmethyl)amine (bpma), with pyridine, 4-methylpyridine, 4-acetylpyridine, 4-cyanopyridine and 4-aminopyridine, have been studied in methanol at 25 °C using stopped-flow spectrophotometry. The highest reactivity was observed for the [Pd(terpy)Cl]+ complex, whereas 4-aminopyridine is the strongest nucleophile. The results, compared with those previously published on the [Pt(NNN)Cl]+ complexes, are discussed in terms of reactivity and discrimination ability of the reaction centre. The crystal structure of [Pd(terpy)(py)](ClO4)2 has been determined by X-ray diffraction. Crystals are triclinic, space group , and consist of distorted square planar [Pd(terpy)(py)]2+ cations and perchlorate anions. The Pd-N bond length to the central atom of terpy ligand is well below 2.0 Å and significantly shorter than any of the other M-N distances. The pyridine plane forms a dihedral angle of 61.9(2)° with the coordination N4 donors.  相似文献   

7.
Joe Paul 《Inorganica chimica acta》2004,357(10):2827-2832
The reaction of the extended terpyridyl ligands, 4-(4′′′-pyridyl)-2, 2:6,2″-terpyridine (qtpy), and 4-phenyl-2,2:6,2′′-terpyridine (ptpy) with RhCl3 and [tpyRhCl3] (where tpy=2,2:6,2′′-terpyridine) has been investigated. This has led to the isolation and characterisation of four new complexes. All the new complexes have had their molecular structures confirmed via X-ray crystallography studies. It has been shown that, consistent with related systems, changes in the electronic properties of the coordinated ligand results in modulation of the electrochemical and photophysical properties of the complex to which it is coordinated.  相似文献   

8.
Six ruthenium(II) complexes have been prepared using the tridentate ligands 2,6-bis(benzimidazolyl) pyridine and bis(2-benzimidazolyl methyl) amine and having 2,2′-bipyridine, 2,2′:6′,2″-terpyridine, PPh3, MeCN and chloride as coligands. The crystal structures of three of the complexes trans-[Ru(bbpH2)(PPh3)2(CH3CN)](ClO4)2 · 2H2O (2), [Ru(bbpH2)(bpy)Cl]ClO4 (3) and [Ru(bbpH2)(terpy)](ClO4)2 (4) are also reported. The complexes show visible region absorption at 402-517 nm, indicating that it is possible to tune the visible region absorption by varying the ancillary ligand. Luminescence behavior of the complexes has been studied both at RT and at liquid nitrogen temperature (LNT). Luminescence of the complexes is found to be insensitive to the presence of dioxygen. Two of the complexes [Ru(bbpH2)(bpy)Cl]ClO4 (3) and [Ru(bbpH2)(terpy)](ClO4)2 (4) show RT emission in the NIR region, having lifetime, quantum yield and radiative constant values suitable for their application as NIR emitter in the solid state devices. The DFT calculations on these two complexes indicate that the metal t2g electrons are appreciably delocalized over the ligand backbone.  相似文献   

9.
The mixed-ligand ruthenium(II) complexes [(phen)2Ru(pzbzimH3)](ClO4)2·3H2O (1), [(phen)2Ru(bzimH)2](ClO4)2·3H2O (2) and [(bpy)2Ru(bpybzimH2)](ClO4)2 (3), where phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine, pzbzimH3 = pyrazole-3,5-bis(benzimidazole), bzimH = benzimidazole and bpybzimH2 = 6,6′-bis(benzimidazole-2-yl)-2,2′-bipyridine have been synthesized and spectroscopically characterized. The X-ray structures of the three compounds have been determined which show that relative to the polypyridine ligands (phen or bpy) two donor nitrogens of the second ligand occupy cis position. In case of 3, bpybzimH2 ligand is coordinated in puckered form where its bpy unit acts in a monodentate fashion. The electrochemical properties, absorption and emission spectral characteristics and lifetimes of luminescence decay of the complexes have been compared. Deprotonation of the azole NH moieties of the complexes lead to substantial lowering of redox potentials of the RuII/RuIII couple as well as the MLCT and emission band energies. Spectrophotometric and spectrofluorometric titrations of complexes 1 and 3 have been carried out in 3:2 acetonitrile-water as a function of pH over the range 3.5-12.0 and the pK values have been determined. The kinetic parameters for the decay of the 3MLCT excited states of 1 at different pH at 298 K have been evaluated.  相似文献   

10.
A series of mononuclear acetonitrile complexes of the type [Ru(CH3CN)(L)(terpy)]2+ {L = phen (1), dpbpy (3), and bpm (5)}, and their reference complexes [RuCl(L)(terpy)]+ {L = phen (2), dpbpy (4), and dpphen (6)} were prepared and characterized by electrospray ionization mass spectrometry, UV-vis spectroscopy, and cyclic voltammograms (CV). Abbreviations of the ligands (Ls) are phen = 1,10-phenanthroline, dpbpy = 4,4′-diphenyl-2,2′-bipyridine, bpm = 2,2′-bipyrimidine, dpphen = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, and terpy = 2,2′:6′,2″-terpyridine. The X-ray structures of the two complexes 2 and 3 were newly obtained. The metal-to-ligand charge transfer (MLCT) bands in the visible region for 1, 3, and 5 in acetonitrile were blue shifted relative to those of the reference complexes [RuCl(L)(terpy)]+. CV for all the [Ru(CH3CN)(L)(terpy)]2+ complexes showed the first oxidation wave at around 0.95 V, being more positive than those of [RuCl(L)(terpy)]+. The time-dependent-density-functional-theory approach (TDDFT) was used to interpret the absorption spectra of 1 and 2. Good agreement between computed and experimental absorption spectra was obtained. The DFT approach also revealed the orbital interactions between Ru(phen)(terpy) and CH3CN or Cl. It is demonstrated that the HOMO-LUMO energy gap of the acetonitrile ligand is larger than that of the Cl one.  相似文献   

11.
Reaction of [Ru(2,2′-bipyridine)(2,2′:6′,2″-terpyridine)Cl]PF6 (abbreviated to [Ru(bipy)(terpy)Cl]PF6) with 0.5 equiv of the bidentate ligand L produces the dinuclear complexes [{Ru(bipy)(terpy)}2(μ-L)](PF6)4 (L = 4,4′-bipyridine 1, 1,4-diisocyanobenzene 2 and pyrazine 3) in moderate yields. Treating [Ru(bipy)(terpy)Cl]PF6 with equal molar of 1,4-diisocyanobenzene affords [Ru(bipy)(terpy)(CNC6H4NC)](PF6)2 (2a). These new complexes have been characterized by mass, NMR, and UV-Vis spectroscopy, and the structures of 1-3 determined by an X-ray diffraction study. Cyclic voltammetric studies suggest that metal communication between the two ruthenium ions increases from 1 to 2 to 3.  相似文献   

12.
Electrochemical oxidation of [RuII(terpy)(sq)(NH3)]+ in neutral water (pH 8.0) at +0.8 V (versus SCE) generated [RuII(terpy)(q)(NH2)]2+ and/or [RuIII(terpy)(sq)(NH2)]2+ (terpy = 2,2′:6′,2′′-terpyridine, sq = 3,5-di-tert-butyl-1,2-semiquinonate, q = 3,5-di-tert-butyl-1,2-benzoquinone), which played roles in hydrogen abstraction and one-electron acceptor in the catalytic oxidation of methanol, ethanol, and 2-propanol affording formaldehyde, acetoaldehyde, and acetone, respectively, under the electrolysis conditions.  相似文献   

13.
The flexible polypyridine ligand, 2,2′:6′,2-terpyridine (terpy), was built into the backbone of oligonucleotides to form DNA conjugates. The terpy unit functioned as a good loop when the conjugates formed the bimolecular triplexes with complementary oligopurine. The triplex structure was destabilized by the specific interaction with divalent transition metal ions (Cu2+, Zn2+, and Fe2+), in particular Cu2+ ions. This ion destabilized one of the triplexes by 4.2 kcalmol?1 or made the triplex formation constant less than 1/103 at 298 K. This result is attributed to the substantial turbulence of the terminal structure of the triplexes.  相似文献   

14.
The hydrothermal reaction of MoO3, Na3VO4, 2,2′:6′,2″-terpyridine (terpy) and H2O in the mole ratio 1.53:1.00:1.30:1460 at pH 3 yields red crystals of [{VO(terpy)}MoO4] (1) in 55% yield. The structure of 1 is a one-dimensional chain of {VO(terpy)}2+ units bridged in the characteristic O,O′-mode by {MoO4}2− tetrahedra. Crystal data: C15H11N3O5MoV, orthorhombic, P212121, a=26.145(1) Å, b=6.7607(4) Å, c=9.2496(5) Å, V=1634.9(2) Å3, Z=2, Dcalc=1.869 g cm−3; structure solution and refinement converged at R1=0.0335 and wR2=0.0735.  相似文献   

15.
The synthesis and characterization of several complexes of the composition [{M(terpy)}n(L)](ClO4)m (M = Pt, Pd; L = 1-methylimidazole, 1-methyltetrazole, 1-methyltetrazolate; terpy = 2,2′:6′,2″-terpyridine; n = 1, 2; m = 1, 2, 3) is reported and their applicability in terms of a metal-mediated base pair investigated. Reaction of [M(terpy)(H2O)]2+ with 1-methylimidazole leads to [M(terpy)(1-methylimidazole)](ClO4)2 (1: M = Pt; 2: M = Pd). The analogous reaction of [Pt(terpy)(H2O)]2+ with 1-methyltetrazole leads to the organometallic compound [Pt(terpy)(1-methyltetrazolate)]ClO4 (3) in which the aromatic tetrazole proton has been substituted by the platinum moiety. For both platinum(II) and palladium(II), doubly metalated complexes [{M(terpy)}2(1-methyltetrazolate)](ClO4)3 (4: M = Pt; 5: M = Pd) can also be obtained depending on the reaction conditions. In the latter two compounds, the [M(terpy)]2+ moieties are coordinated via C5 and N4. X-ray crystal structures of 1, 2, and 3 are reported. In addition, DFT calculations have been carried out to determine the energy difference between fully planar [Pd(mterpy)(L)]2+ complexes Ip-IVp (mterpy = 4′-methyl-2,2′:6′,2″-terpyridine; L = 1-methylimidazole-N3 (I), 1-methyl-1,2,4-triazole-N4 (II), 1-methyltetrazole-N3 (III), or 3-methylpyridine-N1 (IV)) and the respective geometry-optimized structures Io-IVo. Whereas this energy difference is larger than 70 kJ mol−1 for compounds I, II, and IV, it amounts to only 0.8 kJ mol−1 for the tetrazole-containing complex III, which is stabilized by two intramolecular C-H?N hydrogen bonds. Of all complexes under investigation, only the terpyridine-metal ion-tetrazole system with N3-coordinated tetrazole appears to be suited for an application in terms of a metal-mediated base pair in a metal-modified oligonucleotide.  相似文献   

16.
Adsorption of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ (terpy = 2,2′:6′,2?-terpyridine) (1) onto montmorillonite K10 (MK10) yielded catalytic dioxygen (O2) evolution from water using a CeIV oxidant. The Mn K-edge X-ray absorption near edge structure (XANES) of the 1/MK10 hybrid suggested that the oxidation state of the di-μ-oxo Mn2 core could be MnIII-MnIV. However the pre-edge peak in the XANES spectrum of 1 adsorbed on MK10 is different from the neat 1 powder. The kinetic analysis of O2 evolution showed that the catalysis requires cooperation of two equivalents of 1 adsorbed on MK10. The reaction of the [(bpy)2Mn(μ-O)2Mn(bpy)2]3+ (bpy = 2,2′-bipyridine) (2)/MK10 hybrid with a CeIV oxidant evolved O2. However, the turnover number value was less than unity for 2/MK10, showing that 2 adsorbed on MK10 does not work as a catalyst. The terminal water ligands could be an important for the catalysis by adsorbed 1. The mechanism of O2 production by photosynthetic oxygen evolving complex is discussed based on catalytic O2 evolution by 1 adsorbed on MK10.  相似文献   

17.
The spin transition of the [Co(terpy)2]2+ complex (terpy = 2,2′:6′,2″-terpyridine) is analysed based on experimental data from optical spectroscopy and magnetic susceptibility measurements. The single crystal absorption spectrum of [Co(terpy)2](ClO4)2 shows an asymmetric absorption band at 14 400 cm−1 with an intensity typical for a spin-allowed d-d transition and a temperature behaviour typical for a thermal spin transition. The single crystal absorption spectra of suggest that in this compound, the complex is essentially in the high-spin state at all temperatures. However, the increase in intensity observed in the region of the low-spin MLCT transition with increasing temperature implies an unusual partial thermal population of the low-spin state of up to about 10% at room temperature. Finally, high-spin → low-spin relaxation curves following pulsed laser excitation for [Co(terpy)2](ClO4)2 dispersed in KBr discs, and as a comparison for the closely related [Co(4-terpyridone)2](ClO4)2 spin-crossover compound are given.  相似文献   

18.
[Pd(sac)(terpy)](sac)·4H2O (1), [Pt(sac)(terpy)](sac)·5H2O (2), [PdCl(terpy)](sac)·2H2O (3) and [PtCl(terpy)](sac)·2H2O (4) (sac = saccharinate, and terpy = 2,2′:6′,2″-terpyridine) have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR. In 1 and 2, a tridentate terpy ligand together with an N-coordinated sac ligand form the square-planar geometry around the palladium(II) or platinum(II) ions, while one sac anion remains outside the coordination sphere as a counter-ion. X-ray single crystal studies show that the [M(sac)(terpy)]+ ions in 1 and 2 reside in the centers of a hydrogen bonded honeycomb network formed by the uncoordinated sac ions and the lattice water molecules. Complexes 3 and 4 are isostructural and consist of a [M(Cl)(terpy)]+ cation, a sac anion and two lattice water molecules. The [M(Cl)(terpy)]+ ions interact with each other via M-M and π-π stacking interactions and these π interacted units are assembled to a 2D network by water bridges involving the sac ions and lattice water molecules. Convenient synthetic paths for 1-4 are also presented, and spectral, luminescence and thermal properties were discussed.  相似文献   

19.
The new ligand 4′-(4?-pyridyl-N-oxide)-2,2′:6′,2″-terpyridine (pyNoxterpy) and its homoleptic iron(II) complex have been synthesised, and structural and spectroscopic studies have been carried out. The obtained results have been compared with the reported data for the parent ligand 4′-(4?-pyridyl)-2,2′:6′,2″-terpyridine (pyterpy) and its homoleptic iron(II) complex. Significant differences between the spectral and electrochemical properties of the metal complexes have been found, derived from the changes in the electronic properties of the coordinated ligands.  相似文献   

20.
Two new lead(II) complexes with the ligand 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine (pyterpy), [Pb(pyterpy)(MeOH)I2] · MeOH and [Pb(pyterpy)(μ-AcO)]2(ClO4)2, have been synthesized and characterized by CHN elemental analysis, 1H NMR-, 13C NMR-, IR spectroscopy and structurally analyzed by X-ray single-crystal diffraction. The thermal stabilities of these compounds were studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The single crystal X-ray analyses show that the coordination number in these complexes is six with three “pyterpy” N-donor atoms and two or three of the anionic ligands. The arrangement of donor atoms in these complexes suggest a gap or hole in the coordination geometry of the lead atoms, possibly occupied by a stereoactive lone pair of electrons on lead(II) and the coordination sphere is hemidirected. The potentially tetradentate ligand 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine (pyterpy) acts as a tridentate donor to Pb(II). The noncoordinated pyridyl group interacts with hydrogen atoms of adjacent molecules and forms normal hydrogen bonds in [Pb(pyterpy)(MeOH)I2] · MeOH and weak C-H?N interactions for [Pb(pyterpy)(μ-AcO)]2(ClO4)2, thus extending the monomeric structures into one-dimensional networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号