首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Reaction of [Mn(NCMe)3(CO)3][PF6] with Li3[7-NHBut-nido-7-CB10H10] in THF (THF = tetrahydrofuran) affords the twelve-vertex manganacarborane dianion [1-NHBut-2,2,2-(CO)3-closo-2,1-MnCB10H10]2−, isolated as the bis-[N(PPh3)2]+ salt (5a). This species reacts with {Pt(dppe)}2+ (dppe = Ph2PCH2CH2PPh2) to afford the bimetallic complex [1-NH2But-2,3-{Pt(dppe)}-2,2,2-(CO)3-closo-2,1-MnCB10H9] (7) which has an Mn-Pt bond. In contrast, with {Cu(PPh3)}+ the anion of 5a yields a CuMnCu trimetallic compound [1-{NH(But)Cu(PPh3)}-2,3,7-{Cu(PPh3)}-3,7-(μ-H)2-2,2,2-(CO)3-closo-2,1-MnCB10H8] (8) in which one of the Cu centers is bonded to Mn, whilst the other is attached to the pendant NHBut group. Upon treatment with Ag+, compound 5a is oxidized giving the very unusual Mn(III)-carbonyl complex [1,2-μ-NHBut-2,2,2-(CO)3-closo-2,1-MnCB10H10] (9a) in which the carborane ligand formally acts as an eight-electron donor to manganese. The novel structural features of compounds 7, 8, and 9a have been confirmed by X-ray diffraction studies.  相似文献   

2.
The reaction of an aqueous solution of Mn(ClO4)2 · 6H2O with 5-fluoro-2-hydroxypyrimidine (HFpymo) and NaOH in 1:2:1 ratio affords a species analysing as Mn(Fpymo)2(H2O)2 (1) in 70% yield. Single crystal X-ray analysis reveals that 1 consists of [Mn2(μ-Fpymo-N1,O2)2(Fpymo-O2)2(H2O)4] dinuclear units, in which each Mn(II) ion shows a slightly distorted trigonal bipyramidal stereochemistry. Thermal treatment of 1 above 150 °C gives an anhydrous, amorphous material analysing as Mn(Fpymo)2 (2a). Further heating of this compound above 250 °C results in the formation of the microcrystalline Mn(Fpymo)2 species (2b). The thermal dependence of the magnetic susceptibility χ has been studied for species 1 and 2b in the 2-300 K temperature range at 100, 300 and 5000 Oe field strengths. The fitting of the χ values of 1 to the Curie-Weiss equation gives values of C = 2.450(2) and θ = 1.0(2) K, which is indicative of an almost negligible magnetic interaction between the Mn(II) centres. At variance, 2b shows a significant antiferromagnetic behaviour, with a decrease of the μeff values upon cooling. The fitting of the χ values of 2b to the Curie-Weiss equation gives the respective C and θ values of 4.26(1) and −14.8(3) K, which agrees with an efficient coupling of the magnetic Mn(II) centres, possibly through bridges of the Fpymo-N1,N3 kind, within a polymeric network. The N2 and CO2 gas adsorption measurements at 77 K and 293 K, respectively, show that the 2b phase is not microporous, which is reflected in its low BET surface (19 m2 g−1) and its BJH pore size distribution.  相似文献   

3.
Three bulky silanes, [SiH2Mes2] (1), [SiHMeMes2] (2), SiHMes3 (3), two novel amines, [NH(SiHMes2)2] (4), NH2(SiMeMes2) (5), and three novel alkali metal ion complexes, [Na{N(SiHMes2)2}(OEt2)] (6), Li{N(SiHMes2)2} (7), K{N(SiHMes2)2} (8), have been synthesized and characterized by multinuclear NMR and mass spectroscopy. The structures of compounds 1, 4 and 6 have been determined by X-ray crystallography. The spectroscopy and structural results are discussed.  相似文献   

4.
Mono- and bis-substituted phosphite complexes [Ru3(CO)12−x Lx] (L = tris(2,4-di-tert-butylphenyl) phosphite; x = 1, 2) were synthesized by simple substitution reactions, and were characterized by spectroscopic methods. The monosubstituted ruthenium complex disproportionates in acetone producing a mononuclear ruthenium complex as one of the decomposition products. Single crystal X-ray diffraction analysis established the molecular structure of this new compound.  相似文献   

5.
The ligand exchange reaction of the anionic binuclear rhenium complexes (R = H (1) or Me (2)) has been studied with the arylalcohols 4-aminophenol (3, 4), 3-dimethylaminophenol (5), 3-cyanophenol (6) and 4-cyanophenol (7, 8) and the diol ethylene glycol (9). Complete exchange of the three hydroxy or methoxy ligands by aryl alcohols can be attained by heating the reaction mixture or allowing the mixture to stir for several days. Incomplete exchange is achieved by stoichiometric control of the incoming ligand and is complete within twelve hours. For the alkyl alcohol ethylene glycol complete exchange can be obtained in 8 h. Crystal structure determinations for several of these derivatives have been carried out.  相似文献   

6.
Thiocyanate ions reduce perrhenate in aqueous acidic solution, and on addition of a suitable countercation (PPh4Cl) afford (PPh4)2[Re(NCS)6] (1) and (PPh4)2[ReO(NCS)5] (2), which have been confirmed by X-ray crystallography. The kinetics of the above reaction has been studied. Both the complexes exhibit efficient and highly selective catalytic epoxidation ability in the presence of NaHCO3 as a co-catalyst and competent catalytic properties in the selective oxidation of alcohols to the corresponding aldehydes or ketones in the presence of pyrazole as an additive and sulfides to sulfoxides and sulfones. H2O2 was used as the terminal oxidant in all the above-mentioned oxidation reactions.  相似文献   

7.
Variable-temperature X-ray structural study of the complex [(Ph3P)2N]2[Pt2Ag4Cl2(C2Ph)8] prepared by the reaction of cis-[PtCl2(AsPh3)2] and [(Ph3P)2N][Ag(C2Ph)2] in 1:2 M ratio, revealed isolated (non-polymerised) [Pt2Ag4Cl2(CCPh)8]2− anions with a pseudo-octahedral arrangement of metal atoms. The Pt atoms (in mutually trans vertices) are each σ-bonded to four alkynyl ligands in a square planar arrangement; these moieties are bridged by four Ag atoms; each silver atom being η2-bonded to two alkynyl groups. Chloride ligands are asymmetrically bridging two opposite Ag-Ag edges. Silver atoms show strong and unusual temperature-dependent disorder.  相似文献   

8.
The synthesis and characterization of four new complexes with the bioactive ligand 3-aminoflavone (3-af) are reported. The complexes of general formula [M(3-af)2(H2O)2](NO3)2 · nH2O], where M = Co(II), Ni(II), and Zn(II), and n = 0, 2, 0, respectively, and [Cu(3-af)2(NO3)2] compound were prepared and studied. In particular, to investigate the binding in detail, the crystal structures of the free ligand (3-af) and [Cu(3-af)2(NO3)2] (1) were determined. The new coordination compounds were identified and characterized by elemental analysis, magnetic measurements, and infrared and ligand-field spectra. The crystal structure of the Cu(II) complex reveals that the ligand acts as a N,O-bidentate chelate ligand forming a five-membered ring with the copper(II) ion. The copper(II) ion is octahedrally surrounded by the two amino nitrogens and two carbonyl oxygens from two chelating organic ligands in trans arrangement. Two molecules of coordinated nitrate anions occupy axial positions. The spectral and magnetic properties are in accordance with the structural data of the copper(II) compound. From X-ray powder-diffraction patterns and IR spectra, the complexes of nickel(II) (2) and cobalt(II) (3) were found to be mutually isomorphous. The results of the spectroscopic studies suggest a mononuclear structure of 2 and 3 complexes. The variable-temperature (1.8-300 K) magnetic susceptibility data of 2 indicate a weak ferromagnetic interaction. The magnetic behavior of complex 3 is characteristic of cobalt(II) systems with an important orbital contribution via spin-orbit-coupling and also suggests a weak ferromagnetic interaction.  相似文献   

9.
New manganese(III) complexes of Hphox (2-(2′-hydroxyphenyl)-oxazoline) and HClphox (2-(5′-chloro-2′-hydroxyphenyl)-oxazoline) have been synthesised. The X-ray structures of [Mn(phox)2(MeOH)2][Mn(phox)2(ClO4)2](H2O)2 and [Mn(Clphox)2(MeOH)2](ClO4) show the manganese(III) ions to be octahedrally coordinated with methanol or perchlorate at the axial coordination sites. The cyclic voltammograms of the complexes, with the exception of [Mn(phox)2(acac)] (Hacac=2,4-pentanedione), show an irreversible reduction wave of manganese(III) to manganese(II). After addition of an excess of 1-methylimidazole (1-Meim), the reduction process shifts towards lower potentials and becomes (quasi-) reversible, indicating that the presence of 1-Meim affects the catalytic efficiency of the complexes. The complexes catalyse the epoxidation of styrene by dihydrogen peroxide. The cumulative turnover numbers towards styrene oxide obtained after 15 min. vary from 16 for [Mn(Clphox)2(MeOH)2](ClO4) to 26 for [Mn(phox)2(acac)]. Ligand degradation appears to be the limiting factor for obtaining higher turnover numbers.  相似文献   

10.
The reaction rate of the oxidative addition and the following CO insertion step of methyl iodide with [Rh(acac)(CO)(P(OCH2)3CCH3)] is determined. The key finding is that while [Rh(acac)(CO)(P(OCH2)3CCH3)] oxidatively adds methyl iodide ca 300 times faster than the Monsanto catalyst, the CO insertion step is much slower. However, the rate-determining step of the oxidative addition reaction of the phosphorus-containing acetylacetonato-rhodium(I) complex, the carbonyl insertion step, is still in the same order or faster than the rate-determining oxidative addition step of iodomethane to [Rh(CO)2I2].  相似文献   

11.
When a solution of [Co2(Ph2PCH2PPh2)(CO)6] in chloroform or deuterochloroform is allowed to stand in air at room temperature, it deposits dark green crystals of [Co{Ph2P(O)CH2P(O)Ph2}3][CoCl4] · 8CHCl3. The same product is formed more quickly and in much higher yield (80% based on Co) if the reaction is carried out in the presence of 2 equiv. of [Ph2PCH2PPh2]; the CoII appears to catalyse the air-oxidation of [Ph2PCH2PPh2]. The salt was characterised by X-ray crystallography and shown to contain octahedral CoII cations and CoII tetrahedral anions having normal bond lengths and angles.  相似文献   

12.
13.
Complexes of the type [Pt(amine)4]I2 were synthesized and characterized mainly by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The compounds were prepared with different primary amines, but not with bulky amines, due to steric hindrance. In 195Pt NMR, the signals were observed between −2715 and −2769 ppm in D2O. The coupling constant 3J(195Pt-1H) for the MeNH2 complex is 42 Hz. In 13C NMR, the average values of the coupling constants 2J(195Pt-13C) and 3J(195Pt-13C) are 18 and 30 Hz, respectively. The crystal structure of [Pt(EtNH2)4]I2 was determined by X-ray diffraction methods. The Pt atom is located on an inversion center. The structure is stabilized by H-bonding between the amines and the iodide ions. The compound with n-BuNH2 was found by crystallographic methods to be [Pt(n-BuNH2)4]2I3(n-BuNHCOO). The crystal contains two independent [Pt(CH3NH2)4]2+ cations, three iodide ions and a carbamate ion formed from the reaction of butylamine with CO2 from the air. When the compound [Pt(CH3NH2)4]I2 was dissolved in acetone, crystals identified as trans-[Pt(CH3NH2)2(H3CNC(CH3)2)2]I2 were isolated and characterized by crystallographic methods. Two trans bonded MeNH2 ligands had reacted with acetone to produce the two N-bonded Schiff base Pt(II) compound.  相似文献   

14.
The reaction of [Os6(CO)18] 1 with [(SPPh2)2NH] in the presence of Me3NO produces a purple compound characterized spectroscopically and by X-ray crystallography, as [HOs6(CO)17(SPPh2)2N] 2. The structure shows the hexanuclear fragment to have suffered a geometrical rearrangement to give a metal framework that can be described as an edge-bridged tetrahedron with an additional terminal osmium atom bonded to one of the bridged metal atoms. The ligand acts as a bimetallic tetraconnective unit through both sulphur atoms between two non-bonded osmium atoms.  相似文献   

15.
Four-coordinate 1:2 gold(I) complex salts with cis-bis(diphenylphosphino)ethene, [Au(dppey)2]X have been synthesized for X = PF6, CF3SO3, BF4, Cl, Br and BPh4 and characterized by NMR spectroscopy and electrospray mass spectrometry. Single crystal X-ray structure determinations show the BF4, Cl and Br complexes to be isostructural, although with different degrees of hydration, while the BPh4 complex crystallizes as an acetone solvate with two molecules in the asymmetric unit. The Au(P-P)2 core for the BF4, Cl and Br complexes adopts D2 symmetry with Au-P bond lengths 2.3980(7)-2.4009(7) Å and inter-ligand P-Au-P angles 114.78(2)-127.82(2))°. The Au(P-P)2 core in the BPh4 complex is unsymmetrical with Au-P bond lengths 2.364(1)-2.420(1) Å and inter-ligand P-Au-P angles 104.76(5)-137.50(4)°. In vitro cytotoxicity studies show the PF6, CF3SO3, BF4, Cl, Br and I complexes to be potent and selective growth inhibitors of the human cell lines MCF7 (hormone-dependent breast cancer), MDA-MB-231 (hormone-independent breast cancer), MM96L (melanoma), CI80-13S (cisplatin resistant ovarian cancer) and a normal cell line NFF (neonatal foreskin fibroblasts), achieving IC50 values between 13 and 196 nM. The halogen and triflate salts were approximately twice as potent towards the MCF7 and MDA-MB-231 cell lines compared to the PF6 and BF4 derivatives; while the cytotoxicity of all complexes towards the sensitive CI80-13S and MM96L cancer cell lines was approximately 10-fold greater than that displayed towards the normal human cell line (NFF).  相似文献   

16.
Structural changes between [OsIIL3]2+ and [OsIIIL3]3+ (L: 2,2′-bipyridine; 1,10-phenanthroline) and molecular and electronic structures of the OsIII complexes [OsIII(bpy)3]3+ and [OsIII(phen)3]3+ are discussed in this paper. Mid-infrared spectra in the ν(bpy) and ν(phen) ring stretching region for [OsII(bpy)3](PF6)2, [OsIII(bpy)3](PF6)3, [OsII(phen)3](PF6)2, and [OsIII(phen)3](PF6)3 are compared, as are X-ray crystal structures. Absorption spectra in the UV region for [OsIII(bpy)3](PF6)3 and [OsIII(phen)3](PF6)3 are dominated by very intense absorptions (ε = 40 000-50 000 M−1 cm−1) due to bpy and phen intra-ligand π → π transitions. In the visible region, relatively narrow bands with vibronic progressions of ∼1500 cm−1 appear, and have been assigned to bpy or phen-based, spin-orbit coupling enhanced, 1π → 3π electronic transitions. Also present in the visible region are ligand-to-metal charge transfer bands (LMCT) arising from π(bpy) → t2g(OsIII) or π(phen) → t2g(OsIII) transitions. In the near infrared, two broad absorption features appear for oxidized forms [OsIII(bpy)3](PF6)3 and [OsIII(phen)3](PF6)3 arising from dπ-dπ interconfigurational bands characteristic of dπ5OsIII. They are observed at 4580 and 5090 cm−1 for [OsIII(bpy)3](PF6)3 and at 4400 and 4990 cm−1 for [OsIII(phen)3](PF6)3. The bpy and phen infrared vibrational bands shift to higher energy upon oxidation of Os(II) to Os(III). In the cation structure in [OsIII(bpy)3](PF6)3, the OsIII atom resides at a distorted octahedral site, as judged by ∠N-Os-N, which varies from 78.78(22)° to 96.61(22)°. Os-N bond lengths are also in general longer for [OsIII(bpy)3](PF6)3 compared to [OsII(bpy)3](PF6)2 (0.010 Å), and for [OsIII(phen)3](PF6)3 compared to [OsII(phen)3](PF6)2 (0.014 Å). Structural changes in the ligands between oxidation states are discussed as originating from a combination of dπ(OsII) → π (bpy or phen) backbonding and charge redistribution on the ligands as calculated by natural population analysis.  相似文献   

17.
The reactions of the polysulfur and selenium cationic clusters S82+ and Se82+ with various iron carbonyls were investigated. Several new chalcogen containing iron carbonyl cluster cations were isolated, depending on the nature of the counteranion. In the presence of SbF6 as a counterion, the cluster [Fe3(E2)2(CO)10] [SbF6]2·SO2 (E = S, Se) could be isolated from the reaction of E82+ and excess iron carbonyl. The cluster is a picnic-basket shaped molecule of two iron centers linked by two Se2 groups, with the whole fragment capped by an Fe(CO)4 group. Crystallographic data for C10O12Fe3Se4Sb2F12S (I): space group monoclinic P21/c, A = 11.810(9), b = 24.023(6), c = 10.853(7) Å, β = 107.15(5)°, V = 2942(3) Å3, Z = 4, R = 0.0426, Rw = 0.0503. When Sb2F11 is present as the counterion, or Se4[Sb2F11]2 is used as the cluster cation source, a different cluster can be isolated, which has the formula [Fe4(Se2)3(CO)12] [SbF6]2·3SO2. The dication contains two Fe2Se2 fragments bridged by an Se2 group. Crystallographic data for C12O18Fe4Se6Sb2F12S3 (III): space group triclinic , b = 18.400(9), C = 10.253(4) Å, = 93.10(4), β = 103.74(3), γ = 93.98(3)°, V = 1995(1) Å3, Z = 2, R = 0.0328, Rw = 0.0325. The CO stretches in the IR spectrum all show a large shift to higher wavenumbers, suggesting almost no τ backbonding from the metals. This also correlates with the observed bond distances. All the compounds are extremely sensitive to air and water, and readily lose SO2 when removed from the solvent. Thus all the crystals were handled at −100°C. The clusters seem to be either insoluble or unstable in all solvents investigated.  相似文献   

18.
Two series of A-frame complexes, [Pd2(dppm)2(R)2(μ-X)]+ (R = Me and X = Cl, Br, I, H; R = Mes and X = Br, I), were investigated by cyclic voltammetry (CV). The 2-electron reduction potentials for the first series increase from I (−1.10), Br (−1.17), Cl (−1.25) to H (−1.65 V versus SCE, in CHCl3), as well as in the second series; Br (−1.35) and I (−1.38 V versus SCE, in THF). The nature of the LUMO where the electron reduction takes place is qualitatively addressed by DFT on the corresponding model complexes [Pd2(H2PCH2PH2)2(R)2(μ-X)]+. The LUMO and (LUMO + 1) of the halide derivatives exhibit the presence of Pd dx2-y2 atomic orbitals interacting in an anti-bonding fashion with the n-donor orbitals of X, P, and Me, explaining in part the observed reactivity upon reduction. The X-ray structure of [Pd2(dppm)2(Me)2(μ-Br)]+ compound exhibits the typical A-frame structure with a Pd?Pd non-bonding distance of 3.036(1) Å, and long Pd-Br bonds of 2.5623(5) and 2.5793(5) Å.  相似文献   

19.
The reaction of 2 equiv. of [Os3(CO)10(MeCN)2] with R-CC-L-CC-R (R = H, L = (C4H2S); R = SiMe3, L = (C4H2S-C4H2S), (C4H2S-C4H2S-C4H2S), (C4H2S)-(C14H8)-(C4H2S)) affords the series of linked clusters [{Os3(CO)10}(HCC(C4H2S)CCH){Os3(CO)10}] (1), [{Os3(CO)10}(Me3SiCC(C4H2S-C4H2S)CCSiMe3){Os3(CO)10}] (2), [{Os3(CO)10}(Me3SiCC(C4H2S-C4H2S-C4H2S)CCSiMe3){Os3(CO)10}] (4) and [{Os3(CO)10}(Me3SiCC(C4H2S)-(C14H8)-(C4H2S)CCSiMe3){Os3(CO)10}] (6) as the major products. The complexes have been characterised by a range of spectroscopic methods and, in the case of 1 and 2 by single crystal X-ray crystallography. The alkyne groups cap the osmium triangles in the expected μ32-||-bonding mode and each triangle is coordinated by nine terminal and one μ2-carbonyl group. Solution UV-Vis spectra of the complexes were similar to those observed for the free ligands consistent with there being little delocalisation between the cluster units and the thiophene groups.  相似文献   

20.
The reaction of [N(PPh3)2]2[Ni6(CO)12] with Cu(PPh3)xCl (x=1, 2), as well as the degradation of [N(PPh3)2]2[H2Ni12(CO)21] with PPh3, affords the new and unstable dark orange–brown [N(PPh3)2]2[Ni9(CO)16].THF salt in low yields. This salt has been characterized by a CCD X-ray diffraction determination, along with IR spectroscopy and elemental analysis. The close-packed two-layer metal core geometry of the [Ni9(CO)16]2− dianion is directly related to that of the bimetallic [Ni6Rh3(CO)17]3− trianion and may be envisioned to be formally derived from the hcp three-layer geometry of [Ni12(CO)21]4− by the substitution of one of the two outer [Ni3(CO)3(μ−CO)3]2− layers with a face-bridging carbonyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号