首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four new zinc(II) cyclams of the composition {Zn(L)(tp2−) · H2O}n (1), {Zn(L)(H2bta2−) · 2H2O}n (2), [Zn2(L)2(ox2−)] 2ClO4 · 2DMF (3), and Zn(L)(H2btc)2 · 2DMF (4), where L = cyclam, tp2− = 1,4-benzenedicarboxylate ion, H2bta2− = 1,2,4,5-benzenetetracarboxylate ion, ox2− = oxalate ion, DMF = N,N-dimethylformamide, and H2btc = 1,3,5-benzenetricarboxylate ion, have been synthesized and structurally characterized by a combination of analytical, spectroscopic and crystallographic methods. The carboxylato ligands in the complexes 1-4 show strong coordination tendencies toward zinc(II) cyclams with hydrogen bonding interactions between the pre-organized N-H groups of the macrocycle and oxygen atoms of the carboxylato ligands. The macrocycles in 1, 2, and 4 adopt trans-III configurations with the appropriate R,R,S,S arrangement of the four chiral nitrogen centers, respectively. However, the complex 3 shows an unusual cis V conformation with the R,R,R,R nitrogen configuration. The finding of strong interactions between the carboxylato ligands and the zinc(II) ions may provide additional knowledge for the improved design of receptor-targeted zinc(II) cyclams in anti-HIV agents.  相似文献   

2.
The synthesis, crystal structures and magnetic properties of two different copper(II) complexes of formula [Cu(L1)(dca)]n · nClO4 (1) and [Cu(L2)]2(dca)(ClO4) (2) [L1 = N,N-dimethylethylene-N′-(pyridine-2-carbaldiiminato), HL2 = N,N-dimethylethylene-N′-salicylaldiiminato, dca = dicyanamide anion] are described. Spectroscopic and electrochemical properties have also been discussed. A one-dimensional chain structure with single, symmetrical, μ1,5-dca bridges is found in compound 1. The copper atom in 1 has a square pyramidal geometry. A tridentate Schiff base ligand, having NNN donor sites, and one nitrogen atom from dca occupy the basal plane. N(18) of a neighbouring unit occupies the apical site. The Schiff base used in compound 2 is a tridentate anion with NNO donor sites, which changes the structure in a dinuclear unit of copper atoms bridged by single end-to-end dicyanamide ion. The environment around copper in 2 is square planar. Magnetic susceptibility measurements for 1 and 2 reveal the occurrence of weak antiferromagnetic interaction through the dca ligand.  相似文献   

3.
Novel bipyridine-type linking ligands L1 ((4-py)-CHN-C10H6-NCH-(4-py)) and L2 ((3-py)-CHN-C10H6-NCH-(3-py)), a pair of isomers due to possessing different pairs of terminal pyridyl groups, were prepared by the Schiff-base condensation. In ligand L1, the N?N separation between the terminal pyridyl groups is 16.0 Å, with their nitrogen donor atoms at the para positions (4,4′). The corresponding N?N separation in ligand L2 is 14.2 Å, with the nitrogen donor atoms at the meta positions (3,3′). 1-D zigzag-chain coordination polymers [Zn(L1)(NO3)2] (1) and [Zn(L2)(NO3)2] (2) were prepared by reactions of Zn(NO3)2 · 6H2O with ligands L1 and L2, respectively, by solution diffusion. Polymer 3, [Cd(L1)1.5(NO3)2], prepared from Cd(NO3)2 · 4H2O and L1, exhibits a 1-D ladder structure, whose repeating ladder unit consists of four Cd metals and four L1 ligands to create a large 76-membered ring with dimensions of 20.8 × 20.8 Å. All products were structurally characterized by X-ray diffraction.  相似文献   

4.
A chiral Schiff base N-(S)-2-(6-methoxylnaphthyl)-propanoyl-N′-(2-hydroxylbenzylidene)hydrazine (H2L) has been synthesized. Reaction of H2L with Cu(OAc)2 · H2O led to the formation of a metal complex {[CuL] · H2O · 2DMF} (1). In complex 1, the potential dinegative tridentate L2− ligand acting as tetradentate bridging ligand coordinate to two metal ions so as to form a novel infinite metal-organic coordination chain structure. The enantiomerically pure ligand H2L presents two different sets of signals in the 1H NMR spectrum either in chloroform solution or in dimethylsulfoxide solution, showing the presence of both (E) and (Z) isomers. The X-ray structural investigations of H2L revealed that it is the fully extended E-configuration in the solid state.  相似文献   

5.
Four new hetero-bimetallic Co3+-Na+ and Co3+-K+ coordination polymers having the molecular formulae [Na(H2O)Co(L)(N3)3]n (1), [Na2Co(L)(N3)3(H2O)5][Co(L)(N3)3] (2), K[Co(L)(NCS)3]·H2O (3) and K[Co(L)2][Co(NCS)4]·0.5H2O (4), were synthesized. Compounds 1-4 were characterized by single crystal X-ray diffraction, IR, UV-Vis, and thermogravimetric methods. These bimetallic systems have EE, EO azide bridge (1, 2) as well as bent (1, 2, 3) and linear (1, 4) aquo bridges. Important features observed among them were: a Z-shaped and diamond-shaped Co2Na2 clusters in 1, a centrosymmetric double ladder like polymer based on Na4 cluster in 2, and a linear KOK core having paddle-wheel structure in 4.  相似文献   

6.
Synthesis and single crystal X-ray structures of H2L1 and VO(L1)(HL) [H2L1 = N,N-bis(2-hydroxy-3,5-ditertiarybutyl)-N′,N′-dimethylethylendiamine) or simply aminebis(phenol) and H2L = salicylic acid) are reported here. The complex [VO(L1)(HL)] is in distorted octahedral geometry under O4N2 donor environment where the basal core is defined by O(1), O(3), O(2) and N(5) atoms and two axial coordinates are occupied by O(4), an alkoxo-group and N(1), an imino-nitrogen atom. The electron spray mass spectrometric study on [VO(L1)(HL)] in MeCN clearly points out the existence of single species in solution. Again, the 51V NMR of the bulk polycrystalline sample reveals that the complex [VO(L1)(HL)] mainly exists in three out of four possible isomers. The formation of [VO(L1)(HL)] from both [VO(L1)(OMe)] and [VO(L1)(OEt)] was followed kinetically by reacting with salicylic acid in MeCN. The presence of isosbestic point indicates a clean conversion of the reactants to product.  相似文献   

7.
Two novel complexes, Cd(HTMA)(NC5H5)2 · 0.5CH3OH · 0.5DMF (1) and Cd(HTMA) · 2H2O (2), of cadmium (II)-trimesates are obtained from slow vapor diffusion and urea hydrolysis, respectively. The Cd(II) centers in the two complexes are bridged by three separate HTMA3− ligands using a same coordination fashion, which contains one monodentate and two chelating bidentate carboxyl groups to form the herringbone-like motif. The herringbone-like motif is further interlinked to construct the two-dimensional Cd(II)-HTMA layer, which is stacked by mutual π-stacking of pyridines for 1 and by hydrogen bond of waters for 2. Thermal stabilities of the two complexes were investigated and the results indicated that Cd(II)-TMA layers in the two complexes are stable still upon 190 °C.  相似文献   

8.
A mononuclear compound [Cd(dpaH)2(dca)2] (1) and a tetranuclear based 2D coordination polymer [Hg4(dpa)4(dca)4]n (2) [dpaH = 2,2′-dipyridylamine, dpa = anion of dpaH, dca = dicyanamide] have been synthesized and characterized. X-ray structural analyses reveal that cadmium(II) center in 1 has a distorted octahedral geometry with a CdN6 chromophore ligated through two bidentate neutral dpaH units along with two nitrile N atoms of two terminally bound dca units in mutual cis orientation. Each of the four independent mercury(II) centers in 2 adopts a distorted trigonal bipyramidal environment coordinated by two pyridine N atoms of two different anionic dpa ligands, two nitrile N atoms of two μ1,5 bridged dca units and the fifth position is occupied by the amide N of one dpa. Cooperative intermolecular N-H···N and C-H···N hydrogen bondings promote dimensionality in 1. The compounds display intraligand 1(π-π) fluorescence in DMF solutions at room temperature.  相似文献   

9.
A series of mononuclear iron(III) complexes with containing phenolate donor of substituted-salicylaldimine based ligands [Fe(L1)(TCC)] · CH3OH (1), [Fe(L2)(TCC)] · CH3OH (2), [Fe(L3)(TCC)] (3), and [Fe(L4)(TCC)] (4) have been prepared and studied as functional models for catechol dioxygenases (H2TCC = tetrachlorocatechol, or HL1 = N′-(salicylaldimine)-N,N-diethyldiethylenetriamine, HL2 = N′-(5-Br-salicylaldimine)-N,N-diethyldiethylenetriamine, HL3 = N′-(4,6-dimethoxy-salycyl-aldimine)-N,N-diethyl-diethylenetriamine, HL4 = N′-(4-methoxy-salicylaldimine)-N,N-diethyl-diethylenetriamine). They are structural models for inhibitors of enzyme-substrate adducts from the reactions of catechol 1,2-dioxygenases. Complexes 1-4 were characterized by spectroscopic methods and X-ray crystal structural analysis. The coordination sphere of Fe(III) atom of 1-4 is distorted octahedral with N3O3 donor set from the ligand and the substrate TCC occupying cis position, and Fe(III) is in high-spin (S = 5/2) electronic ground state. The in situ prepared iron(III) complexes without TCC, [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)Cl2], and [Fe(L4)Cl2] are reactive towards intradiol cleavage of the 3,5-di-tert-butylcatechol (H2DBC) in the presence of O2 or air. The reaction rate of catechol 1,2-dioxygenase depends on the redox potential and acidity of iron(III) ions in complexes as well as the substituent effect of the ligands. We have identified the reaction products and proposed the mechanism of the reactions of these iron(III) complexes with H2DBC with O2.  相似文献   

10.
Compounds of the molecular formulae, [LH3](NO3)3 (1), [Fe(LH)2](PF6)4·5H2O (2), [Fe(L)2][Fe(L)(LH)](PF6)5·H2O (3), [Fe(L)2][Fe(L)(LH)](BF4)5·2H2O (4) and [Fe(L)2](Cr2O7)·6H2O (5) have been synthesized using 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine (L). The molecular structures of all the compounds were determined. The Fe(II) complexes are high spin in nature at room temperature and upon cooling a gradual spin-transition is observed. Among 1-5, hydrogen-bonding, π···π, and anion···π interactions as well as water tetramer and pentamer are present in the molecular packing.  相似文献   

11.
Two oxime-functionalized diazamesocyclic derivates, namely, N,N′-bis(acetophenoneoxime)-1,4-diazacycloheptane (H2L1) and N,N′-bis(acetophenonoxime)-1,5-diazacyclooctane (H2L2), have been prepared and characterized. Both ligands (obtained in the hydrochloride form) can form stable metal complexes with CuII and NiII salts, the crystal structures of which were determined by X-ray diffraction technique. The reactions of H2L1 with Cu(ClO4)2 and Ni(ClO4)2 afford a penta-coordinated mononuclear complex [Cu(H2L1)Cl] · ClO4 (1) and a four-coordinated monomeric [Ni(HL1)] · ClO4 (2), in which the ligand is monodeprotonated. The ligand H2L2 also forms a quite similar mononuclear [Ni(HL2)] · ClO4 complex with Ni(ClO4)2, according to our previous work. However, reactions of different CuII salts [Cu(ClO4)2, CuCl2 and Cu(NO3)2 for 3, and CuSO4 for 4] with H2L2 in the presence of NaClO4 yield two unusual mono-μ-Cl dinuclear CuII complexes [Cu2(HL2)2Cl] · (ClO4) (3), and [Cu2(H2L2)(HL2)Cl] · (ClO4)2 · (H2O)(4). These results indicate that the resultant CuII complexes (1, 3 and 4) are sensitive to the backbones of diazamesocycles and even auxiliary anions.  相似文献   

12.
Syntheses and crystal structures of tren-based amide, L1, N,N′,N″-tris[(2-amino-ethyl)-4-nitro-benzamide] and L2, N,N′,N″-tris[(2-amino-ethyl)-2-nitro-benzamide] are reported and compared with previously published tripodal amide receptor L3, N,N′,N″-tris[(2-amino-ethyl)-3-nitro-benzamide]. The crystallographic results show intramolecular and intermolecular hydrogen-bonding interactions between two arms of the tripodal receptor and two other adjacent molecules in cases of L1 and L2 whereas in addition to the above interactions an aromatic π···π stacking among tripodal arms is also observed in L3. Receptors L1, L2 and L3 having electron withdrawing -NO2 substituted (para, ortho and meta, respectively) phenyl moieties are explored toward their solution state anion binding properties and selectivity studies. The substantial changes in chemical shifts are observed for the amide protons (-NH) and aromatic protons (-CH) with F and Cl in cases of L1 and L3, and only with F for L2, indicating the participation of -NH and -CH protons in the solution state binding events. Binding constants for the above cases are calculated by 1H NMR titration upon monitoring the -NH signal. Receptor L2 shows exclusive selectivity toward F in dimethyl sulfoxide (DMSO). The structural aspects of binding I, ClO4 and SiF62− with the monoprotonated L1, L1H+·I·DMF (1), L1H+·ClO4·DMF (2) and L1H+·0.5SiF62−·H2O (3), respectively are examined crystallographically. Anion binding with multiple receptor units is observed via amide N-H···anion as well as aryl C-H···anion hydrogen-bonding interactions in all the complexes as observed in cases of previously reported crystal structures of anionic complexes of protonated L3. The aryl group having nitro functionality that contributes to solution state anion binding with the neutral receptor and solid state coordination in complexes 1-3 through CH···anion interactions is noteworthy.  相似文献   

13.
Four Cd(II) metal-organic complexes, namely, [Cd(Cl)2(bbdmbm)] (1), [Cd(NO3)(N3)(bbdmbm)1.5] (2), [Cd(BBA)2(bbdmbm)(H2O)] (3), [Cd(DNBA)2(bbdmbm)] (4), (bbdmbm = 1,1-(1,4-butanediyl)bis(5,6-dimethylbenzimidazole), HBBA = 4-bromobenzoic acid, and HDNBA = 3,5-dinitrobenzoic acid) have been obtained from hydrothermal reactions of different Cd(II) salts with the mixed ligands of bbdmbm and five anions (Cl, NO3, N3, BBA and DNBA). Single crystal X-ray diffraction analyses reveal that the four complexes exhibit different structures. Complex 1 possesses a one-dimensional (1D) helical chain, which is finally extended into a two-dimensional (2D) supramolecular structure through π-π stacking interactions. Complex 2 shows a 1D ladderlike chain bridged by bbdmbm ligands with two kinds of coordination conformations. Complex 3 is a 1D coordination polymer and is ultimately extended into a 2D supramolecular network through H-bonding interactions. Complex 4 displays a dinuclear cluster, which is finally packed into a three-dimensional (3D) supramolecular framework through three kinds of π-π stacking interactions. The Cd(II) exhibits four different coordination modes in complexes 1-4, respectively. The results indicate that the anion ligands with different steric hindrance and size play important roles in the coordination modes of Cd(II) and construction of the title complexes, leading to the structural diversity. In addition, the conformations of bbdmbm ligand also show some effect on the final structures. Fluorescence properties of complexes 1-4 are reported in this paper.  相似文献   

14.
Ferromagnetic dicopper(II) complexes [Cu2(μ-O2CCH3)(μ-OH)(L)2(μ-L1)](PF6)2, where L = 1,10-phenanthroline (phen), L1 = H2O in 1 and L = dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), L1 = CH3CN in 2, are prepared and structurally characterized. Crystals of 1 and 2 belong to the monoclinic space group of P21/n and P21/m, respectively. The copper(II) centers display distorted square-pyramidal geometry having a phenanthroline base and two oxygen atoms of the bridging hydroxo and acetate group in the basal plane. The fifth coordination site has weak axially bound bridging solvent molecule H2O in 1 and CH3CN in 2. The Cu···Cu distances are 3.034 and 3.046 Å in 1 and 2, respectively. The complexes show efficient hydrolytic cleavage of supercoiled pUC19 DNA as evidenced from the mechanistic studies that include T4 DNA ligase experiments. The binuclear complexes form monomeric copper(II) adducts [Cu(L)2(BNPP)](PF6) (L = phen, 3; dpq, 4) with bis(4-nitrophenyl)phosphate (BNPP) as a model phosphodiester. The crystal structures of 3 and 4 reveal distorted trigonal bipyramidal geometry in which BNPP binds through the oxygen atom of the phosphate. The kinetic data of the DNA cleavage reactions of the binuclear complexes under pseudo- and true-Michaelis-Menten conditions indicate remarkable enhancement in the DNA hydrolysis rate in comparison to the control data.  相似文献   

15.
New complexes of formulae [Cu(HL2)(H2O)(NO3)](NO3) (1), [{Cu(L1)(tfa)}2] (2), [{Cu(L1)}2(pz)](ClO4)2 (3) and {[{Cu(L1)}2(dca)](ClO4)}n (4), where HL1 = pyridine-2-carbaldehyde thiosemicarbazone, HL2 = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone, Htfa = trifluoroacetic acid (CF3COOH), pz = pyrazine (C4H4N2) and dca = dicyanamide [N(CN)2], have been synthesized and characterized. The crystal structures of these compounds are built up of monomers (1), dinuclear entities with the metal centers bridged through the non-thiosemicarbazone coligand (2 and 3) and 1D chains of dimers (4). In all the cases, square-pyramidal copper(II) ions are present, except for the square-planar ones in 3. Magnetic measurements show antiferromagnetic couplings in 2, 3 and 4. The susceptibility data were fitted by the Bleaney-Bowers’ equation for copper(II) dimers derived from H = -2JS1S2 being the obtained J/k values −4.8, −4.3 and −5.1 K for compounds 2-4, respectively. The magnetic susceptibility of the already known [{Cu(HL1)(tfa)}2](tfa)2 compound has been also measured for the first time. The J/k value is -0.3 K, lower than that in 2. The nuclease activity of 3 and 4 has been analyzed.  相似文献   

16.
A dissymmetrical double Schiff base Cu(II) mononuclear complex: CuHL (1) (where H3L is N-3-carboxylsalicylidene-N-salicylaldehyde-1,2-diaminoethane) and two trinuclear complexes: [CuL(H2O)CoCuL] · H2O · CH3OH (2) and [(CuL)2Ni] · 2H2O (3) have been synthesized and characterized by means of elemental analyses, IR and electronic spectra. The crystal structures of two heterotrinucler complexes were determined by X-ray analysis. Each dissymmetrical cell unit of the complex 2 contains two heterotrinucler neutral molecules. In each neutral molecule, the central Co2+ ion is located at the site of O6 with a distorted octahedral geometry and one terminal Cu2+ ion at the four-coordination site of N2O2, but the other one at the square-pyramidal environment of N2O3. Each dissymmetrical unit of the complex 3 contains a heterotrinucler neutral molecule, whose structure is similar to that of 2 except two terminal Cu2+ ions both at the inner site of N2O2. The magnetic properties of two heterotrinucler complexes have been determined in the temperature range of 5-300 K, which indicate that the interaction between the central Co2+ ion or Ni2+ ion and the outer Cu2+ ions is antiferromagnetic. The exchange integrals are equal to −26.2 cm−1 for 2 and −50.6 cm−1 for 3.  相似文献   

17.
Two new dianion metal-organic complexes {[Cd(pcl)(H2O)2]2[Cd(pcl)2(dca)2]} (1) and [Ni(pcl)(dca)(H2O)]2 (2) (dca = dicyanamide, Hpcl = picolinic acid) have been synthesized and characterized by IR spectra and X-ray diffraction. In complex 1, the pcl ligand both acts as chelate and bridging coordination ligands, while in complex 2, which only acts as a chelate ligand. In both cases, μ-1, 5-dca ligands bridge the metal ions to form square-grid like [M(dca)2]2 dimers. In complex 1, four of the trinuclear second building units {[Cd(pcl)(H2O)2]2[Cd(pcl)2(dca)2]} formed a honeycomb-like cavity, which further bridged by pcl and dca to give a 2D network. While in complex 2, a channel-like supramolecular structure is formed by the connection of numerous hydrogen-bond interactions and weak interactions among the dinuclear motifs. Thermally gravimetric analyses and differential thermal analyses indicate that the two complexes are thermal stable.  相似文献   

18.
A series of heterobimetallic polymeric complexes of manganese, cobalt, zinc, cadmium and nickel, [M(Mo2O5L2)(MeOH)2(H2O)2]n·nH2O {M = Mn (2), n = 1, Co (3), n = 0, Zn (4), n = 1 and Cd (5), n = 1} and [Ni(Mo2O5L2)(MeOH)(H2O)3]n·2H2O·MeOH (6) have been synthesized form the reaction of [{Na4(H2O)4(μ-H2O)2} ⊂ (Mo2O5L2)2] (1) {LH2 = 2-(3,5-di-tert-butyl-2-hydroxybenzylamino)acetic acid} with the corresponding metal salts. The complexes have been structurally characterized. The Complexes, 3 and 6 undergo thermal decomposition to afford mixed oxides of the type, MMoO4·MoO3 {M = Co or Ni}.  相似文献   

19.
A series of Ni(II) and Cu(II) complexes of the hexaaza macrocycles, 3,6,9,17,20,23-hexaazatricyclo[23.3.1.111,15]triaconta-1(29),11(30),12,14,25,27-hexaene (L1) and 3,6,9,16,19,22-hexaazatricyclo[22.2.2.211,14]triaconta-1(26),11(29),12,14(30),24(28),25-hexaene (L2), have been prepared and the crystal structures determined for [Ni2L1(O2CCH3)2(H2O)2](ClO4)2 (1), [Ni2L2(DMF)6](ClO4)4 · 2H2O (2), {[Cu2L2Br(O2CCH3)](ClO4)2}n (3), [Cu2L2(μ-CO3)(H2O)2]2(ClO4)4 · 8H2O (4), [Cu2L2(O2CCH3)2](BF4)2 (5), and [Cu2L1(μ-imidazolate)Br]2Br4 · 6H2O (6). In these complexes, two metal centers are bound per ligand; in 1 and 3-6, the N3 subunits of L1 or L2 coordinate meridionally to the metal centers, whilst in 2, each N3 subunit in L2 adopts a facial mode of coordination. The binuclear cations in 1 and 2 have chair-like conformations, with the distorted octahedral Ni(II) coordination spheres completed by terminal water and a bidentate acetate ligand in 1 and three DMF ligands in 2. The Cu(II) centers in 3-6 generally reside in square planar environments, although a weakly binding ligand enters the coordination sphere in some cases, generating a distorted square pyramidal geometry. The binuclear [Cu2L2]4+ units in 3, 4 and 5 adopt similar bowl-shaped conformations, stabilized by H-bonding interactions between pairs of amine groups from L2 and a perchlorate or tetrafluoroborate anion. In 3, the binuclear units are linked through acetate groups, bridging in a syn-anti fashion, to produce a zig-zag polymeric chain structure, whilst 4 incorporates a tetrameric cation consisting of two binuclear units linked via a pair of carbonate bridges. Compound 6 features an imidazolate bridge between the two Cu(II) centers bound by L1. Pairs of [Cu2L1(μ-imidazolate)]3+ units are then weakly linked through a pair of bromide anions.  相似文献   

20.
Two structurally related flexible imidazolyl ligands, bis(N-imidazolyl)methane (L1) and 1,4-bis(N-imidazolyl)butane (L2) reacted with Mn(II) salts of aliphatic dicarboxylic acids resulted in the formation of a number of novel metal-organic coordination architectures. All complexes have been structurally characterized by X-ray diffraction analysis. The different coordination modes of dicarboxylate anions due to their chain length, rigidity and diimidazolyl functionality lead to a range of different coordination structures. The coordination polymers exhibit 1D single chain, 2D sheet and 3D network structures. The aliphatic dicarboxylates can adopt chelating μ2, bridging μ2, and chelating-bridging μ3 coordination modes, or act as uncoordinated counter anions. The central metal ions are coordinated in N2O4 and N4O2 fashions depending on the ancillary ligands. The topology of [Mn(male)(L1)(H2O)2] (1, male = maleate) gives rise to singly bridged 1D chains, whereas compound [Mn(mal)(L1)(H2O)] · H2O (2, mal = malonate) exhibits 2D sheets in which the metal centers are bridged by both imidazolyl ligands and dicarboxylates. Compounds [Mn(L1)2(H2O)2](suc) · 6H2O (3, suc = succinate) and [Mn(L1)2(H2O)2](fum) · 6H2O (4, fum = fumarate) show doubly bridged 1D chains, and the dicarboxylate groups are not coordinated but form 2D corrugated sheets with water molecules intercalated between the cationic layers. Compound [Mn(suc)(L2)(H2O)2] (5, suc = succinate) was built from very flexible succinate and 1,4-bis(N-imidazolyl)butane which yielded three-dimensional interpenetrate networks, both succinate anion and the imidazolyl ligand act as bidentate bridging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号