首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A series of binuclear iron compounds has been synthesized using diamide, bis-phenolate ligands in which the carbon-linker between the amide nitrogen atoms has been varied. Two diferrous compounds in the series, along with their two-electron oxidized, di-μ-methoxy-bridged counterparts, have been crystallographically characterized, as have the di-μ-methoxy compounds (H2Hbab = 1,2-bis(2-hydroxybenzamido) benzene, H2Hbach = trans-1,2-bis(2-hydroxybenzamido) cyclohexane, H2Hbame = 1,2-bis(2-hydroxybenzamido) ethane, H2Hbap = 1,3-bis(2-hydroxybenzamido) propane, H2Hbabn = 1,4-bis(2-hydroxybenzamido) butane, H2Hbapen = 1,5-bis(2-hydroxybenzamido) pentane, N-MeIM = N-methylimidazole and OMe = methoxide). are structurally very similar to previously reported diferrous compounds of this family of ligands that have been shown to be active as oxygen atom transfer catalysts. Flexibility in the carbon-linker allows some variability in the orientation of the phenolate arms of the ligands in the diferric di-μ-methoxy compounds, but the Fe2O2 core remains largely unchanged across the series. Two-electron oxidation of the ferrous compounds in methanol shows a substantial ligand rearrangement that is consistent with other spectroscopic, electrochemical and kinetic investigations. The loss of both phenolate bridges upon oxidation is reminiscent of the “carboxylate shift” observed in binuclear non-heme enzymes and could provide insight into the driving force behind this family of compounds’ function as a catalyst.  相似文献   

2.
3.
The compound Tl2B12H12 which consists of icosahedral anions and Tl+ cations shows a metal-centered r.t. luminescence at λmax = 530 nm which originates from the lowest-energy sp triplet of Tl+. This emission indicates a considerable covalent interaction between Tl+ and which is based on the hydridic nature of the boron cluster.  相似文献   

4.
Ethyl tricyanoethylenecarboxylate (ETCE) is a one-electron acceptor related to tetracyanoethylene that can serve as a building block for the construction of molecule-based magnets. The reactions of ETCE with decamethylmetallocenes, (M = Cr, Mn, Fe) give three new charge-transfer salt magnets, [ETCE] 1, [ETCE] 2 and [ETCE] 3. The expected mixed pi stacking of anions and cations is obtained, with the ETCE radical anion exhibiting typical disorder over two nearly equivalent footprints. Powder diffraction supports the belief that all three compounds are isomorphous. Magnetic measurements indicate that 1 is a soft ferromagnet, ordering below a critical temperature, Tc, of 3.8 K. Compound 2 exhibits complex magnetic behavior consisting of two frequency-dependent peaks in the ac susceptibility, the first at about 11.2 K and the second at about 7 K. At 1.8 K, the compound is hysteretic and exhibits a coercive field of 10 kG. Compound 3 is a glassy, apparently canted, ferromagnet displaying an out-of-phase ac susceptibility signal below about 3 K.  相似文献   

5.
Reaction of [MoO2(acac)2] with (S is a thioether, S′ a thiophenolate function) yielded the compound Li7(thf)17{MoO}8 · 10thf · hexane, where {MoO}8 represents one 1, three (2, linked, via the oxo group, to [Li(thf)3]+) and two (3a, linked by two [Li(thf)2]+).A mixed-valent variant of 3, (3b, with an additional[Li(thf)3]+ attached to S′), was also identified. The compounds model features pertinent to oxo-transferases containing the molybdopterin cofactor.  相似文献   

6.
Anna N. Bukiya 《FEBS letters》2009,583(17):2779-20212
Ethanol-induced inhibition of myocyte large conductance, calcium- and voltage-gated potassium (BK) current causes cerebrovascular constriction, yet the molecular targets mediating EtOH action remain unknown. Using BK channel-forming (cbv1) subunits from cerebral artery myocytes, we demonstrate that EtOH potentiates and inhibits current at lower and higher than ∼15 μM, respectively. By increasing cbv1’s apparent -sensitivity, accessory BK β1 subunits shift the activation-to-inhibition crossover of EtOH action to <3 μM , with consequent inhibition of current under conditions found during myocyte contraction. Knocking-down KCNMB1 suppresses EtOH-reduction of arterial myocyte BK current and vessel diameter. Therefore, BK β1 is the molecular effector of alcohol-induced BK current inhibition and cerebrovascular constriction.  相似文献   

7.
Unlike other chlorometallate complexes that catalyze the photodecomposition of haloalkanes through photodissociation of a chlorine atom, both and catalyze chloroform decomposition through a process that appears to involve C-H bond breakage from an excited state association complex with chloroform. This would account for the greatly retarded rate of decomposition in CDCl3 and for the generation of CCl4 as a side product. In chloroform, and are in slow equilibrium with each other. The rate for the conversion of - in chloroform at 23 °C obeys the expression (0.03 M−1 s−1) [][Cl]. The equilibrium constant, K = [][Cl]2/[]2, was estimated to be 3 × 10−3 M in CHCl3.  相似文献   

8.
9.
We examined whether and how pretreatment with carbon monoxide (CO) prevents apoptosis of cardioblastic H9c2 cells in ischemia-reperfusion. Reperfusion (6 h) following brief ischemia (10 min) induced cytochrome c release, activation of caspase-9 and caspase-3, and apoptotic nuclear condensation. Brief CO pretreatment (10 min) or a caspase-9 inhibitor (Z-LEHD-FMK) attenuated these apoptotic changes. Ischemia-reperfusion increased phosphorylation of Akt at Ser472/473/474, and this was enhanced by CO pretreatment. A specific Akt inhibitor (API-2) blunted the anti-apoptotic effects of CO in reperfusion. In normoxic cells, CO enhanced generation, which was inhibited by a mitochondrial complex III inhibitor (antimycin A) but not by a NADH oxidase inhibitor (apocynin). The CO-enhanced Akt phosphorylation was suppressed by an scavenger (Tiron), catalase or a superoxide dismutase (SOD) inhibitor (DETC). These results suggest that CO pretreatment induces mitochondrial generation of , which is then converted by SOD to H2O2, and subsequent Akt activation by H2O2 attenuates apoptosis in ischemia-reperfusion.  相似文献   

10.
Mitochondria consume nitric oxide (NO) mainly through reaction with superoxide anion (). Here, we analyzed the sources for NO degradation by isolated rat liver mitochondria. Electron leakage from complex III and reverse electron transport to complex I accounted for -dependent NO degradation by mitochondria in the presence of a protonmotive force. Mitochondria incubated with NAD(P)H also presented intense generation and NO degradation rates that were insensitive to respiratory inhibitors and abolished after proteinase treatment. These results suggest that an outer membrane-localized NAD(P)H oxidase activity, in addition to the electron leakage from the respiratory chain, promotes -dependent NO degradation in rat liver mitochondria.  相似文献   

11.
The hydrothermal reactions of NH4VO3, Cu(NO3)2·H2O or Cu(CH3CO2)2·H2O As2O5 and the appropriate organonitrogen ligand in the presence of HF as mineralizer yield a series of bimetallic oxides of the Cu/V/O/As family. The materials [Cu(bpy)(VO2)(AsO4)] (1) and [Cu(bpy)VO2(OH)(AsO4H)]·H2O (2·H2O) are one-dimensional (bpy = 2,2′-bipyridine). While phase 1 is constructed from chains decorated by {Cu(bpy)}2+ groups, compound 2 consists of {V2O4(OH)2(AsO4H)2}2− clusters linked through {Cu(bpy)}2+ subunits. In contrast, the structure of [Cu2(bpyrm)(VO2)2(AsO4)2]·H2O (3·H2O) is three-dimensional, consisting of layers, linked through {Cu2(bpyrm)}4+ rods (bpyrm = bipyrimidine).  相似文献   

12.
Electron spin resonance using spin-trapping is a useful technique for detecting direct reactive oxygen species, such as superoxide (). However, the widely used spin trap 2,2-dimethyl-3,4-dihydro-2H-pyrrole N-oxide (DMPO) has several fundamental limitations in terms of half-life and stability. Recently, the new spin trap 2-diphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide (DPhPMPO) was developed by us. We evaluated the biological applicability of DPhPMPO to analyze in both cell-free and cellular systems. DPhPMPO had a larger rate constant for and formed more stable spin adducts for than DMPO in the xanthine/xanthine oxidase (X/XO) system. In the phorbol myristate acetate-activated neutrophil system, the detection potential of DPhPMPO for was significantly higher than that of DMPO (kDMPO = 13.95 M−1 s−1, kDPhPMPO = 42.4 M−1 s−1). These results indicated that DPhPMPO is a potentially good candidate for trapping in a biological system.  相似文献   

13.
The oxidation from to in HCl aq. was studied in situ by combining electrochemistry with XAFS spectroscopy. During the oxidation of , isosbestic points were observed in Pt LIII and LII XANES spectra as a function of time, indicating that the Pt(II/IV) redox equilibrium is the only reaction in the system. The Pt LIII and LII X-ray absorption edge energies of the initial PtIICl42− are 11562.9 and 13271.8 eV, respectively, while those of the electrolyzed species are 11564.6 and 13273.7 eV which are identical with those of a reference sample. The coordination of the electrolyzed species was characterized by structural parameters derived from the EXAFS curve fit, and identified to .  相似文献   

14.
Communities of marine phytoplankton consist of cells of many different sizes. The size-structure of these communities often varies predictably with environmental conditions in aquatic systems. It has been hypothesized that physiological differences in nutrient and light requirements and acquisition efficiencies contribute to commonly observed correlations between phytoplankton community size structure and resource availability. Using physiological models we assess how light and nutrient availability can alter the relative growth rates of phytoplankton species of different cell sizes. Our models predict a change in the size dependence of growth rate depending on the severity of limitation by light and nutrient availability. Under conditions of growth-saturated resource supply, phytoplankton growth rate (mol C ) scales with cell volume with a size-scaling exponent of ; light limitation reduces the size-scaling exponent to approximately , and nutrient limitation decreases the exponent to as a consequence of the size-scaling of resource acquisition. Exponents intermediate between and occur under intermediate availability of light and nutrients and depend on the size-scaling of pigment photoacclimation and the size range examined.  相似文献   

15.
The compounds Pt(quinap)(CN)2, and [Cu(quinap)I]2 with quinap = 1-(2-diphenylphosphino-1-naphthyl)isoquinoline were synthesized. Quinap is a bidentate ligand which contains a isoquinoline and an arylphosphine group with CT acceptor properties. Accordingly, the Pt(II) and Cu(I) quinap complexes are characterized by a phosphorescence originating from the lowest-energy MLCT triplets with some IL admixture.  相似文献   

16.
Incorporation of diplatinum component [Pt2(μ-dppm)2(CCbpy)4] (1, dppm = Ph2PCH2PPh2, CCbpy = 2,2′-dipyridyl-5-acetylide) with Re(CO)5Cl, Ru(bpy)2Cl2 (bpy = 2,2′-bipyridine) and Gd(hfac)3(H2O)2 (Hhfac = hexafluoroacetylacetone) via 2,2′-dipyridyl chelating induced isolation of (2), (3), and (4) complexes, respectively. The structures of 2 and 4 were determined by X-ray single crystal diffraction. Intense low-energy absorptions occur in the range 360-510 nm originating from metal-to-ligand charge transfer (MLCT) transitions. These compounds display photoluminescence in both solid states and dichloromethane at room temperature with emissive lifetimes in the range of microseconds.  相似文献   

17.
A new heterometallacrown coordination polymer [K2Cu(NPA)2(H2O)4]n (where H2NPA = 3-nitro-phthalic acid) has been synthesized and it’s crystal structure has been elucidated. In the complex, the o-phthalate group coordinates to metal atoms behaving as both tetradentate and heptadentate coordination, the modes of which have been found for the first time. The thermal behaviors of this complex and the thermal decomposition kinetics have been studied. Kinetic analysis shows that the decomposition of title complex in the main range acts as two separate transitions with the first one being a double-step following reaction, , and the second being a three-step following reaction of t:f,f, . The kinetic parameters of these processes were also obtained.  相似文献   

18.
Versatile synthetic routes have been applied to prepare the new asymmetric phosphine-phosphite ligands 8 and 12. The chiral ligands have been designed so that the corresponding ligating groups have similar electronic properties and steric bulk, but 8 forms 6-, while 12 forms 7-membered chelate rings in their coordination compounds. The chelate size variation results in a markedly different coordination behavior towards Pt(II). In their reactions with Pt(PhCN)2Cl2 at 1:1 stoichiometry 12 forms the expected Pt(12)Cl2 complex, while 8 gives the cation quantitatively. In the kinetically controlled reaction is the major product even at a 8:Pt(PhCN)2Cl2 = 1:2 ratio. Most interestingly, at 1:1 ligand to precursor ratio, cation rearranges to Pt(8)Cl2 within one day, indicating that the neutral complex is thermodynamically more favorable.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号