首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The mesostructured lamellar phases with the general formula [CnH2n + 1NH3]4Ge4S10 (n = 12, 14, 16, 18) were synthesized by metathesis of alkyl ammonium chloride surfactants and Na4Ge4S10 in aqueous medium. The crystal structures of the phases with n = 12 and 14 were determined by single-crystal X-ray diffraction; [C12H13NH3]4Ge4S10 crystallizes in monoclinic C2/c space group (a = 16.149(3), b = 46.576(9) c = 9.147(2) Å, β = 97.13(3)° and Z = 4) and [C14H29NH3]4Ge4S10 in the triclinic space group (a = 9.1280(6), b = 16.1992(1), c = 26.971(2) Å, α =73.370(1)°, β = 88.307(1)°, γ = 82.825(1)° and Z = 2). These compounds possess layers of adamantane [Ge4S10]4− anions separated by layers of deeply interpenetrated long chain alkylammonium molecules. Strong hydrogen bonding is observed between the terminal sulfur atoms of the [Ge4S10]4− clusters and H atoms of the NH3 groups of the surfactant molecules. Spectroscopic and thermal characterization of these compounds is reported.  相似文献   

2.
The 1:1 and 1:2 complexes of cis-(NH3)2PtII with 9-methyladeninium cations, 9-MeAH+, have been prepared and characterized by X-ray crystallography: cis-[(NH3)2Pt(9-MeAH-N7)Cl](NO3)2 (1) and cis-[(NH3)2Pt(9-MeAH-N7)2](NO3)4 · 2HNO3 · 2H2O (2). The pKa values for 9-MeAH+ in H2O are 1.7 in 1 as well as 0.4 (pKa1) and 1.3 (pKa2) for 2, as determined by pD dependent 1H NMR spectroscopy. Compound 2 is special in that it crystallizes with two equivalents of HNO3 per Pt entity. The HNO3 molecules are stacked in rectangular channels provided by cis-(NH3)2PtII units, 9-methyladeninium ligands and nitrate anions, which form a porous network of hydrogen bonds.  相似文献   

3.
Copper(II)-zinc(II) bimetallic imidazolate metal-organic framework compounds of composition CuaZnbIm2(a + b) (Im = C3H3N2), including Cu2ZnIm6 (1), were prepared in high yields from the metal oxides under mild aqueous conditions using a novel acid catalysis method. Mild acidic hydrothermal treatment of paramagnetic 1 (≥120 °C) gave diamagnetic Cu(I)-containing Cu2ZnIm4 (2) in high yield. The formation mechanism of 2 involves electron transfer from Im to Cu(II), with concomitant formation of the unusual cyclotriimidazole, C9H6N6. Air-stable 2, characterized by single-crystal X-ray diffraction, crystallized in the tetragonal space group , with a = b = 10.9623(3), c = 6.3231(4) Å, α = β = γ = 90°, V = 759.86(6) Å3, and Z = 1.  相似文献   

4.
A new polyoxotungstate formed by Wells-Dawson clusters and copper(II) complexes, [{Cu(enMe)2(H2O)}{Cu(enMe)2}3P2W18O62] · nH2O (enMe = 1,2-diaminopropane, n = 0.81) has been synthesized under hydrothermal conditions. Single-crystal X-ray diffraction revealed that one terminal and three bridging oxygen atoms of the Wells-Dawson cluster in the title compound are coordinated to copper(II) atoms, and forming a unique tetrasupporting polyoxometalate structure. Its cyclic voltammetric behavior in aqueous electrolyte demonstrated that its modified carbon paste electrode has a good stability. It was exhibited that the compound has catalytic activity in epoxidation of maleic anhydride.  相似文献   

5.
Complexes of the type [Pt(amine)4]I2 were synthesized and characterized mainly by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The compounds were prepared with different primary amines, but not with bulky amines, due to steric hindrance. In 195Pt NMR, the signals were observed between −2715 and −2769 ppm in D2O. The coupling constant 3J(195Pt-1H) for the MeNH2 complex is 42 Hz. In 13C NMR, the average values of the coupling constants 2J(195Pt-13C) and 3J(195Pt-13C) are 18 and 30 Hz, respectively. The crystal structure of [Pt(EtNH2)4]I2 was determined by X-ray diffraction methods. The Pt atom is located on an inversion center. The structure is stabilized by H-bonding between the amines and the iodide ions. The compound with n-BuNH2 was found by crystallographic methods to be [Pt(n-BuNH2)4]2I3(n-BuNHCOO). The crystal contains two independent [Pt(CH3NH2)4]2+ cations, three iodide ions and a carbamate ion formed from the reaction of butylamine with CO2 from the air. When the compound [Pt(CH3NH2)4]I2 was dissolved in acetone, crystals identified as trans-[Pt(CH3NH2)2(H3CNC(CH3)2)2]I2 were isolated and characterized by crystallographic methods. Two trans bonded MeNH2 ligands had reacted with acetone to produce the two N-bonded Schiff base Pt(II) compound.  相似文献   

6.
The molecular structure of copper(II) chloride complex with acrylamide (AAmCH2CHCONH2), [Cu(AAm)4Cl2], was determined using X-ray diffraction analysis. The complex crystallizes in the cubic space group I-43d with a = 17. 8310(2) Å, β = 90°, and V = 5669.27(11) Å3 for Z = 12. The acrylamide molecules bind to the metal center via the carbonyl oxygen atom (Cu-O 1.996 Å). The coordination geometry of the metal center in the complex involves a tetragonally distorted octahedral structure with four O-donor atoms of acrylamide bonded in the equatorial positions and two chlorides in the apical positions. Comparison of crystal structure data of acrylamide and metal acrylamide complexes of those formed with divalent transition metal chlorides has been summarized.  相似文献   

7.
The crystal structures of [Cr(NO)(NH3)5](PF6)2 (red) and [Cr(NO)(NH3)5]Cl(PF6) (brown) have been determined. The [Cr(NO)(NH3)5]2+(A) complex cations in these compounds have a slightly distorted octahedral geometry with a strictly linear Cr-N-O arrangement (from symmetry). The short interatomic distances (2.399 Å × 4) between the O (nitrosyl) and H (ammonia in adjacent complex cations) atoms in A(PF6)2 indicate the existence of hydrogen bonds, while the interatomic distances (3.258 Å × 8) between those in ACl(PF6) are much longer, and the hydrogen bonds should be weak in spite of the presence of the smaller counter anion of chloride ion in ACl(PF6). Comparisons of the five crystal structures of A(PF6)2, ACl2, ACl(ClO4), ACl(PF6), and A(ClO4)2 have led to the conclusion that the existence of the strong hydrogen bonds gives red crystals of A(PF6)2, while the absence of hydrogen bonds results in the formation of green crystals of A(ClO4)2 (O ? H, 3.595 Å × 2). The color change of the crystals (from red to green) with the change of outer sphere anions is attributed to the change of the strength of the hydrogen bonding between the complex cations.  相似文献   

8.
A novel three-dimensional organically templated zincophosphite, [C6N2H18] · [Zn3(HPO3)4], was synthesized under milder hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction, differential thermal-thermogravimetric analysis, powder X-ray diffraction, 31P MAS NMR spectrum, and IR spectroscopy. It crystallizes in the monoclinic system, space group C2/c with cell parameters: a = 8.7820(4) Å, b = 14.9417(7) Å, c = 15.4943(5) Å, β = 92.940(2)°, and Z = 4. The structure consists of a network of strictly alternating ZnO4 tetrahedra and pseudo-pyramid, forming 4-membered ring chains. The structure has a 4.8.16-net and 8- and 16-membered ring channels where completely protonated N,N,N′,N′-tetramethylenediamine cations are encapsulated. The structure is stabilized by template-to-framework hydrogen bonding. In phosphites system, this compound possesses extra-large-pores.  相似文献   

9.
The binuclear mixed valence copper(I/II) compound [CuI(CN)3CuII(tn)2] (1) (tn = propane-1,3-diamine) and its acetonitrile adduct [CuI(CN)3CuII(tn)2] · 2MeCN (2) have been synthesized. Complex 1 crystallizes triclinic, space group , a = 8.117(2) Å, b = 8.389(2) Å, c = 11.920(2) Å, α = 108.728(3)°, β = 100.024(3)°, γ = 104.888(4)°, Z = 2, and compound 2 monoclinic, space group P21/m, a = 8.752(2) Å, b = 13.243(3) Å, c = 9.549(2) Å, β = 114.678(4)°, Z = 2. In both crystal structures, the binuclear [CuI(CN)3CuII(tn)2] complex with slightly different bonding geometries is formed. One of the three nitrogen atoms of a CuI(CN)3 moiety is coordinated to Cu(II) at the apex of a square-pyramid with two chelating ligands tn on its base. The shortest intramolecular CuII?CuII distance in 1 is 5.640(7) Å. The EPR behaviour of 1 has been investigated at room temperature and at 77 K. The magnetic properties were measured in the temperature range 1.8-300 K.  相似文献   

10.
Crystal structure of [ReO2(4-MeOpy)4][PF6] (4-MeOpy = 4-methoxypyridine) complex has been examined by the single crystal X-ray analytical method. This complex shows a trans-dioxo geometry (average Re-O bond length = 1.766(2) Å) and its equatorial plane is occupied by four 4-MeOpy molecules (average Re-N bond length = 2.156(4) Å). Electrochemical reaction of [ReO2(4-MeOpy)4]+ in CH3CN solution containing tetra-n-butylammonium perchlorate as a supporting electrolyte has been studied using cyclic voltammetry at 24 °C. Cyclic voltammograms show one redox couple around 0.65 V (Epa) and 0.58 V (Epc) [versus ferrocene/ferrocenium ion redox couple, (Fc/Fc+)]. Potential differences between two peaks (ΔEp) at scan rates in the range from 0.01 to 0.10 V s−1 are 65 mV, which is almost consistent with the theoretical ΔEp value (59 mV) for the reversible one electron transfer reaction at 24 °C. The ratio of anodic peak currents to cathodic ones is 1.04 ± 0.03 and the (Epa + Epc)/2 value is constant, 0.613 ± 0.001 V versus Fc/Fc+, regardless of the scan rate. Spectroelectrochemical experiments have also been carried out by applying potentials from 0.40 to 0.77 V versus Fc/Fc+ with an optically transparent thin layer electrode. It was found that the UV-visible absorption spectra show clear isosbestic points at 228, 276, and 384 nm, and that the electron stoichiometry is evaluated as 1.03 from the Nernstian plot. These results indicate that the [ReO2(4-MeOpy)4]+ complex is oxidized reversibly to the [ReO2(4-MeOpy)4]2+ complex. Furthermore, it was clarified that the [ReO2(4-MeOpy)4]2+ in CH3CN has the characteristic absorption bands at 236, 278, 330, 478, and 543 nm and their molar absorption coefficients are 4.3 × 104, 4.5 × 103, 1.0 × 104, and 6.1 × 103 M−1 cm−1 (M = mol dm−3), respectively.  相似文献   

11.
Reaction of tetrathiafulvalene carboxylic acid (TTFCO2H) with paddlewheel dirhodium complex Rh2(ButCO2)4 yielded TTFCO2-bridged complexes Rh2(ButCO2)3(TTFCO2) (1) and cis- and trans-Rh2(ButCO2)2(TTFCO2)2 (cis- and trans-2). Their triethylamine adducts [1(NEt3)2] and cis-[2(NEt3)2] were purified and isolated with chromatographic separation, and characterized with single crystal X-ray analysis. Trans-[2(NEt3)2] is not completely separated from a mixture of cis- and trans-[2(NEt3)2], but its single crystals were obtained from a solution of the mixture. A three-step quasi-reversible oxidation process was observed for 1 in MeCN. The first two steps correspond to the oxidation of the TTFCO2 moiety and the last one is the oxidation of the Rh2 core. The oxidation of cis-2 is observed as a two-step process with very similar E1/2 values to those of the first two processes for 1. Both 1+ and cis-22+ in MeCN at room temperature show isotropic ESR spectra with a g value of 2.008 and aH = 0.135 mT for two equivalent H atoms and aH = 0.068 mT for one H atom. The redox and ESR data of cis-2 suggest that the intramolecular interaction between the TTF moieties is very small.  相似文献   

12.
Crystal and molecular structure of silver magnesium mellitate, Ag2Mg2[C6(COO)6] · 8H2O, was synthesized hydrothermally and characterized by X-ray structure analysis. The complex crystallizes in the monoclinic system, space group P2/n, with unit cell dimensions of a=7.4347(2), b=9.9858(2), c=14.4248(3) Å, β=99.2429(5)°, V=1055.01(4) Å3, and Z=2. The structure was solved and refined to R=0.036 (Rw=0.045) for 1707 independent reflections [Io>2σ(Io)]. The Ag cations are coordinated by six carboxylic oxygen atoms of mellitate anions with composition of [C6(COO)6]6− on the (1 0 1) plane; each mellitate anion linking three neighboring Ag distorted trigonal prisms produces a two-dimensional layered structure parallel to (1 0 1). The Mg cations, which are coordinated by four water molecules and two carboxylic oxygen atoms, are intercalated between the two-dimensional layer stacks. The carboxylate group coordinated to Mg and Ag cations serve as a tridentate ligand in that structure. The number of water molecules incorporated into the mellitate compound is controlled mainly by ionic radii of metal cation in the structure. Furthermore, the ionic radii of metal cations in the mellitate compound play an essential role in arrangement of mellitate anions in the structure, whether as a one-dimensional infinite chain, a two-dimensional layered structure, or a three-dimensional framework structure.  相似文献   

13.
Pressure-tuning infrared spectra (up to ca. 40 kbar) are reported for Magnus’ Green salt, [Pt(NH3)4][PtCl4] and two of its derivatives, [Pt(ND3)4][PtCl4] and [Pt(NH3)4][PtBr4]. The spectroscopic data indicate that there is restricted rotation of the coordinated ammonia groups about the Pt-N bonds in the complexes. It is possible that this restricted rotation is due to the presence of weak hydrogen bonding to the halogens, i.e., N-H?X (X = Cl, Br) interactions.  相似文献   

14.
The compounds W(CO)5P(C6H4-4-CH2CH2(CF2)7CF3)3 (1) and W(CO)5P(CH2CH2(CF2)5CF3)3 (2) were synthesized in order to probe the electronic and physical effects of ligation by perfluorocarbon substituted tertiary phosphine ligands in a W(CO)5L complex. The π-accepting ability of the fluorous phosphines was found to rank with non-fluorous comparators as P(CH2CH2(CF2)5CF3)3 > P(C6H4-4-CH2CH2(CF2)7CF3)3 > PPh3 > P(p-tolyl)3 > P(n-octyl)3. The X-ray crystal structure of W(CO)5P(C6H4-4-CH2CH2(CF2)7CF3)3 shows strong intermolecular association of fluorous components but confirms that the para fluorocarbon subtituents have an insignificant effect on the tungsten coordination environment. Partition coefficients (toluene/perfluoromethylcyclohexane) were measured for compounds 1 and 2.  相似文献   

15.
Reaction of 4-amino-6-methyl-1,2,4-triazin-thione-5-one (AMTTO, 1) with 2-thiophenecarboxaldehyde and 2-furaldehyde led to the corresponding iminic compounds 6-methyl-4-[thiophene-2-yl-methylene-amino]-3-thioxo-[1,2,4]-triazin-3,4-dihydro(2H)-5-one (TAMTTO, 2) and 4-[furan-2-yl-methylene-amino]-6-methyl-3-thioxo-[1,2,4]-triazin-3,4-dihydro(2H)-5-one (FAMTTO, 3). Treatment of 2 with AgNO3 gave the complex [Ag2(TAMMTO)4](NO3)2 · 4MeOH (4) and of 2 and 3 with [Ag(PPh3)2]NO3 gave the complexes [Ag(TAMTTO)(PPh3)2]NO3 · 1.5THF (5) and [Ag(FAMTTO)(PPh3)2]NO3 (6), respectively. All the compounds have been characterized by elemental analyses, IR spectroscopy and mass spectrometry. Compound 2 and all the complexes have been characterized by X-ray diffraction studies, respectively. In addition, 5 and 6 have been characterized by 31P NMR spectroscopy. Crystal data for 2 at −80 °C: monoclinic, space group C2/c, a=2319.6(2), b=609.8(1), c=1673.6(2) pm, β=106.14(1)°, Z=8, R1=0.0523; for 4 at −80 °C: triclinic, space group , a=877.6(1), b=1085.2(1), c=1557.7(2) pm, α=77.14(1)°, β=80.87(1)°, γ=78.18(1)°, Z=1, R1=0.0407; for 5 at 20 °C: triclinic, space group , a=1151.1(2), b=1225.1(2), c=1887.4(3) pm, α=78.04(1)°, β=86.20(1)°, γ=76.03(1)°, Z=2, R1=0.0662; for 6 at −80 °C: triclinic, space group , a=1189.7(2), b=1387.8(2), c=1410.9(2) pm, α=94.74(2)°, β=95.12(2)°, γ=112.41(2)°, Z=2, R1=0.0511.  相似文献   

16.
Lei Yang 《Inorganica chimica acta》2005,358(15):4505-4510
An organically templated zinc-substituted gallium phosphite, [H3N(CH2)2NH3]1/2 · [GaZn(HPO3)3(H2O)2] was synthesized under mild hydrothermal conditions in the presence of ethylenediamine (en) as structure-directing agent and characterized by single-crystal X-ray diffraction analysis. It crystallizes in the orthorhombic space group Pbcn with unit cell parameters: a = 18.6146(10) Å, b = 11.0454(6) Å, c = 10.9074(4) Å, V = 2242.62(19) Å3 and Z = 8. This compound has a three-dimensional framework built up from secondary building units (SBU) of Ga(III) (or Zn(II)) and HPO3 pseudopyramid by sharing vertices. The structure displays a two-dimensional channel system running along the [0 0 1] and [0 1 0] direction with 5-, 8- and 10-membered rings. The diprotonated ethylenediamine template molecules are located in the channels. In this structure, some of the Ga(III) sites are occupied by Zn(II) atoms. The compound was also characterized by IR spectroscopy, inductively coupled plasma (ICP), X-ray photoelectron spectra (XPS), differential thermal and thermogravimetric analyses.  相似文献   

17.
The hydrothermal reaction of CuBr2 and tpyprz in the presence of NH4VO3 and HF for 72 h at 170 °C provided [(tpyprz)3Cu10Br10] (1) in 20% yield. The two-dimensional structure of 1 may be described as Cu(I)-tpyprz chains, linked through {Cu4Br5} clusters in the ac-plane and decorated with {Cu3Br5}2− clusters projecting from one face of the layer in the b-direction. The Cu(I) sites exhibit distorted trigonal coordination {CuBr3} and distorted tetrahedral geometries, {CuBr2N2} and {CuN4}. Crystal data for 1: monoclinic space group C2, a = 12.7561(8) Å, b = 19.359(1) Å, c = 15.860(1) Å, β = 97.178(1)°, V = 3885.8(4) Å3, Z = 2, Dcalc = 2.222 g cm−3, μ(Mo Kα) = 78.75 cm−1.  相似文献   

18.
The hydrothermal reaction of cobalt(II)oxalate di-hydrate, zinc oxide, and triethyl-orthophosphate, using 1,2-diaminoethane as structure directing template in water, produced two major crystal phases in almost equal amount: the purple crystals of [NH3-CH2CH2NH3][Co0.7Zn1.3(PO4)2] (1) and the red burgundy crystals of Co6.2(OH)4(PO4)4Zn1.80 (2), a new adamite type phase. The structure of [NH3-CH2CH2NH3] [Co0.7Zn1.3(PO4)2] (1) exhibits a 3D open framework built from PO4 and (Co/Zn)O4 tetrahedra, and (Co/Zn)O5 trigonal bipyramids, forming two major channels, an 8-membered ring channel and a 16-membered ring channel, that host the ethanediammonium ions. The Co6.2(OH)4(PO4)4Zn1.80 (2) is isomorphous with adamite-type M2(OH)XO4 structure, with a condensed vertex and edge sharing network of (Co/Zn)O5, and distorted CoO6, and PO4 subunits. The cobalt preference for higher coordination numbers is displayed in this structure, where the octahedral sites are wholly occupied by cobalt. Thermal analysis confirmed that these compounds display high thermal stability.  相似文献   

19.
It was found that the lanthanide diiodides LnI2 (1) (Ln = Nd, Sm, Eu, Dy, Tm, Yb) are dissolved in isopropylamine (IPA) without redox transformations. Stability of the formed solutions decreases in a row Eu ≈ Yb > Sm > Tm > Dy > Nd. Removing of a solvent in vacuum leaves complexes LnI2(IPA)x (2) (Nd, x = 5; Sm, Eu, Dy, Tm, Yb, x = 4) as crystalline colored solids. Stability of 2-Nd,Dy,Tm is higher than that of known THF or DME coordinated salts. Divalent state of metal in the products is confirmed by data of UV-Vis spectroscopy, magnetic measurements and their chemical behavior. Structure of 2-Eu and 2-Tm was established by X-ray diffraction analysis. Oxidation of 2-Nd,Dy in IPA affords amine-amides (PriNH)Ln(IPA)y (3) (Nd, y = 4; Dy, x = 3). n-Propylamine also dissolves the iodides 1-Sm,Eu,Dy,Tm,Yb but stability of the solutions is significantly lower. 1-Nd vigorously reacts with PrnNH2 even at −30 °C which hampers the formation of the solution.  相似文献   

20.
The aqueous solution behaviour of the equilibrium related cis-[PdCl2(PTA)2] and [PdCl(PTA)3]Cl complexes has been investigated in the presence of acid and iodide ions. Several of the resulting species were identified and a reaction scheme accounting for identified complexes is proposed. The crystal structures of trans-[PdI2(PTA-H)2][PdI3(PTA)]2 · 2H2O (1) (PTA-H+ = protonated form of PTA) and trans-[PdI2(PTA)2] (2) are reported. The geometry around the Pd(II) metal centre in 1 (for both the cation and anion) and 2 is distorted square planar. The PTA ligands occupy a trans orientation in the cation of 1 and in complex 2. Compound 1 represents a rare example of a Pd(II) system wherein the cation:anion pair, in a 1:2 ratio, are both coordination complexes. It is the first d8 Ni-triad square planar complex containing only one PTA ligand and only the second platinum group metal complex. For the cation in 1, the bond distances and angles are Pd(1)-P(1) = 2.2864(16) Å, Pd(1)-I(1) = 2.6216(7) Å, P(1)-Pd(1)-P(1)′ = 180.00(7)° and P(1)-Pd(1)-I(1) = 87.62(4)°, while in the anion the bond distances are Pd(2)-P(2) = 2.2377(15) Å, Pd(2)-I(4) = 2.5961(13) Å, Pd(2)-I(2) = 2.6328(13) Å, Pd(2)-I(3) = 2.6513(8) Å, while the angles are P(2)-Pd(2)-I(4) = 90.00(5)°, P(2)-Pd(2)-I(2) = 89.69(5)°, I(4)-Pd(2)-I(2) = 179.57(2)°, P(2)-Pd(2)-I(3) = 175.19(4)°, I(4)-Pd(2)-I(3) = 90.29(4)° and I(2)-Pd(2)-I(3) = 90.05(4)°. Bond distances and angles of the coordination polyhedron in 2 are Pd-P = 2.327(3) Å, Pd-I = 2.5916(10) Å, P-Pd-I = 89.13(7)° and P-Pd-P = 180.00(13)°. The average effective- and Tolman cone angles for the two ligands, calculated from the crystallographic data, are 115° and 117° for PTA and PTA-H, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号