首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new lanthanoid 8-quinilinolates type structure was found for lanthanum complex La3(qMe)9(H)(NO3) (1) formed in the reaction of La(NO3)3 · 6H2O with 2-methyl-8-hydroxyquinoline (HqMe) and aqueous ammonia in methanol. The molecule of 1 contains three La atoms connected by six bridging quinolinolate ligands, two terminated η2-coordinated qMe ligands, one terminated η1-coordinated qMe ligand and one terminated NO3 group. The geometry and 1H NMR spectrum of the complex suggest that it is bearing −1 charge balanced by proton, which was localized objectively. The arrangement of the compound in crystalline state and in pyridine solution is discussed. Syntheses of water- and acid residual-free mononuclear lanthanoid quinolinolates La(qMe)3(py)2 (2) and Lnq3(py)2, (Ln = Y (3), La (4), Sm (5), Eu (6), Tb (7), Er (8), Tm (9); q = 8-quinolinolate, py = pyridine) by the reaction of appropriate amido complexes Ln[N(SMe3)2]3 with 3 equiv. of 2-methyl-8-hydroxyquinoline or 8-hydroxyquinoline in pyridine solution is also described. The complex Laq3(Ph3PO)2 (10) was prepared by treatment of 4 with triphenylphosphine oxide in pyridine solution. Lanthanum 2 complex revealed photoluminescence intensity ca. 3 × 103 times higher than that of the compound 1 prepared by the traditional way in water-alcohol medium. These data give a ground to consider the Lnq3(py)2 complexes as promising material for design of light-emitting devices.  相似文献   

2.
It has been established that small molecule model complexes have been useful in studying more complex biological systems of metalloproteins. Because many metalloproteins have active sites that contain multiple histidine residues bound to a metal center, a series of imidazole-containing scorpionate ligands and the associated Co and Ni complexes have been developed to investigate the bonding parameters of histidine containing active sites. The tris(2-imidazolyl) carbinol (2-TIC, 6) and tris[2-(N-methylimidazolyl)] carbinol (2-MeTIC, 7) complexes of Ni2+ and Co2+, namely [Co(2-MeTIC)2]Cl2 (8), [Co(2-MeTIC)2](NO3)2 (9), [Ni(2-MeTIC)2]Cl2 (10), [Ni(2-MeTIC)2](NO3)2 (11), [Co(2-TIC)2](NO3)2 (12), and [Ni(2-TIC)2](NO3)2 (13), have been prepared from the reaction of the appropriate ligand and appropriate metal salt in polar solvent. These complexes have been characterized by single crystal X-ray diffraction, spectroscopic techniques, and magnetic susceptibility. In each solid-state structure the metal center in the cation coordinates to three N atoms from two ligands and adopts a pseudo-octahedral coordination geometry. The X-ray characterization of tris[2-(N-methylimidazolyl)] carbinol is also reported.  相似文献   

3.
[VIVO(acac)2] reacts with the methanol solution of tridentate ONO donor hydrazone ligands (H2L1-4, general abbreviation H2L; are derived from the condensation of benzoyl hydrazine with 2-hydroxyacetophenone and its 5-substituted derivatives) in presence of neutral monodentate alkyl amine bases having stronger basicity than pyridine e.g., ethylamine, diethylamine, triethylamine and piperidine (general abbreviation B) to produce BH+[VO2L] (1-16) complexes. Five of these sixteen complexes are structurally characterized revealing that the vanadium is present in the anionic part of the molecule, [VO2L] in a distorted square pyramidal environment. The complexes 5, 6, 15 and 16 containing two H-atoms associated with the amine-N atom in their cationic part (e.g., diethylammonium and piperidinium ion) are involved in H-bonding with a neighboring molecule resulting in the formation of centrosymmetric dimers while the complex 12 (containing only one hydrogen atom in the cationic part) exhibits normal H-bonding. The nature of the H-bonds in each of the four centrosymmetric dimeric complexes is different. These complexes have potential catalytic activity in the aerial oxidation of l-ascorbic acid and are converted into the [VO(L)(hq)] complexes containing VO3+ motif on reaction with equimolar amount of 8-hydroxyquinoline (Hhq) in methanol.  相似文献   

4.
A series of new binuclear copper (II) and nickel (II) complexes of the macrocyclic ligands bis(1,4,7-triazacyclononan-1-yl)butane (Lbut) and bis(1,4,7-triazacyclononan-1-yl)-m-xylene (Lmx) have been synthesized: [Cu2LbutBr4] (1), [Cu2Lbut(imidazole)2Br2](ClO4)2 (2), [Cu2Lmx(μ-OH)(imidazole)2](ClO4)3 (3), [Cu2Lbut(imidazole)4](ClO4)4 · H2O (4), [Cu2Lmx(imidazole)4](ClO4)4 (5), [Ni2 Lbut(H2O)6](ClO4)4 · 2H2O (6), [Ni2Lbut(imidazole)6](ClO4)4 · 2H2O (7) and [Ni2Lmx (imidazole)4(H2O)2](ClO4)4 · 3H2O (8). Complexes 1, 2, 7 and 8 have been characterized by single crystal X-ray studies. In each of the complexes, the two tridentate 1,4,7-triazacyclononane rings of the ligand facially coordinate to separate metal centres. The distorted square-pyramidal coordination sphere of the copper (II) centres is completed by bromide anions in the case of 1 and/or monodentate imidazole ligands in complexes 2, 4 and 5. Complex 3 has been formulated as a monohydroxo-bridged complex featuring two terminal imidazole ligands. Complexes 6-8 feature distorted octahedral nickel (II) centres with water and/or monodentate imidazole ligands occupying the remaining coordination sites. Within the crystal structures, the ligands adopt trans conformations, with the two metal binding compartments widely separated, perhaps as a consequence of electrostatic repulsion between the cationic metal centres. The imidazole-bearing complexes may be viewed as simple models for the coordinative interaction of the binuclear complexes of bis (tacn) ligands with protein molecules bearing multiple surface-exposed histidine residues.  相似文献   

5.
Eight new dimethylgallium complexes bearing 4-alkyl-2,6-bis(aryliminomethylene)-phenol ligands of type Me2GaL [L = 4-methyl-2,6-bis-(phenyliminomethylene)-phenolato (3); L = 4-methyl-2,6-bis-(p-methylphenyliminomethylene)-phenolato (4); L = 4-methyl-2,6-bis-(1-naphthyliminomethylene)-phenolato (5); L = 4-methyl-2,6-bis-(2-chlorophenyliminomethylene)-phenolato (6); 4-tert-butyl-2,6-bis-(phenyliminomethylene)-phenolato (7); L = 4-tert-butyl-2,6-bis-(p-methylphenyliminomethylene)-phenolato (8); L = 4-tert-butyl-2,6-bis-(1-naphthyliminomethylene)-phenolato (9); and L = 4-tert-butyl-2,6-bis-(2-chlorophenyliminomethylene)-phenolato] (3) have been synthesized by the reaction of trimethylgallium with appropriate phenol. The complexes obtained have been characterized by elemental analysis, 1H NMR, IR and mass spectroscopy, respectively. The solid-state structures of dimethyl[4-methyl-2,6-bis-(p-methylphenyliminomethylene)-phenolato]gallium (4) have been determined by X-ray single crystal analysis. In the structure, Ga atom is coordinated by one nitrogen atom and the other nitrogen atom remains constant. The distorted tetrahedron geometry around gallium is presented.  相似文献   

6.
Neutral tris(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)3(L)] (Ln = Sc (1), Lu (2)) and cationic bis(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)2(L)(THF)]+[BPh4], (Ln = Sc (3), Lu (4)) that contain bis(2-methoxyethyl)(trimethylsilyl)amine (L = Me3SiN(CH2CH2OMe)2) as a neutral, tridentate ligand were synthesized and characterized by NMR spectroscopy. X-ray structural analysis was performed for the scandium complex 1 and exhibited a distorted octahedral coordination geometry with a facially arranged ligand at the neutral scandium center. NMR spectroscopy corroborated the coordination of the tertiary amine function of the ligand to the metal. Complexes 3 and 4 expand the still limited range of cationic rare-earth metal alkyl complexes with known neutral, multidentate ligands.  相似文献   

7.
A series of new iridium(III) complexes containing pentamethylcyclopentadienyl (Cp = η5-C5Me5) and 1,8-naphthyridine (napy) have been prepared. X-ray crystallography revealed that napy acted as a monodentate, a didentate chelating, and a bridging ligand in complexes of [CpIrCl2(napy)] (1), [CpIrCl(napy)]PF6 (2), and [(CpIrCl)2(H)(napy)]PF6 (4), respectively. The crystal structure of [CpIr(napy)2](PF6)2 (3) has also been determined; the dicationic complex bore both monodentate and chelating napy ligands. Dinuclear CpIrIII complex bridged by napy was only isolable if two IrIII centers were supported by a hydride (H) bridge. In complexes 2 and 3, the four-membered chelate rings formed by napy exhibited a large steric strain; in the rings the NIrN bond angles were only 60.5(2)-61.0(4)° and the IrNC angles were 94.7(8)-96.7(8)°. The bridging coordination of napy in complex 4 also afforded a large strain, i.e., the IrIII centers were displaced by 0.84(3) Å from the napy plane, due to the steric interaction between two CpIrCl moieties. The monodentate napy complex 1 in CDCl3 or CD2Cl2 at ambient temperature showed a rapid coordination-site exchange reaction, which gave two N sites of napy equivalent; at temperatures below −40 °C, the 1H NMR spectra corresponded to the molecular structure of [CpIrCl2(napy-κN)]. The analogous diazido complex of [CpIr(N3)2(napy)] (5) has also been prepared, and the crystal structure has been determined. In contrast to the dichloro complex 1, the diazido complex 5 exhibited a dissociation equilibrium of coordinated napy in solution.  相似文献   

8.
Three water-soluble zinc complexes, [Zn(Cbp)2Br2] (1) (Cbp = N-(4-carboxybenzyl)pyridinium), {[Zn(BCbpy)2(H2O)4]3Br6·2(BCbpy)·2(4,4′-bipy)} (2) (BCbpy = 1-(4-carboxybenzyl)-4,4′-bipyridinium) and {[Zn4(Bpybc)6(H2O)12](OH)8·9H2O}2n (3) (Bpybc = 1,1′-bis(4-carboxybenzyl)-4,4′-bipyridinium), were synthesized and characterized by IR, elemental analysis and single-crystal X-ray crystallography. In complex 1, the central Zn atom adopts a distorted tetrahedral coordination geometry that is formed from two unidentate Cbp ligands and two Br atoms. For complex 2, the Zn atom in [Zn(BCbpy)2(H2O)4]2+ is strongly coordinated by four water molecules and two N atoms from two BCbpy ligands, hence forming an octahedral geometry. In complex 3, each Bpybc ligand bridges two [Zn(H2O)3]2+ units through two terminal carboxylate groups in a monodentate coordination mode, thus forming a flowerlike two-dimensional network. Agarose gel electrophoresis (GE) and ethidium bromide (EB) displacement experiments indicated that complex 3 was capable of converting pBR322 DNA into open circular (OC) and linear forms, and exhibited high binding affinity toward calf-thymus DNA. MTT assay showed that complex 3 displayed inhibitory activities toward the proliferation of lung adenocarcinoma A549 and mouse sarcoma S-180 cells, with the IC50 values being 27.3 and 48.8 μM, respectively.  相似文献   

9.
The ligand hydrotris(1,4-dihydro-3-methyl-4-phenyl-5-thioxo-1,2,4-triazolyl)borato (TrPh,Me) was synthetized as natrium salt and the complexes [Zn(TrPh,Me)2] · 7.5H2O · 1.5CH3CN (2a), [Zn(TrPh,Me)2] · 8DMF (2b), [Co(TrPh,Me)2] · 8DMF (3a), [Ni(TrPh,Me)2] · H2O · 6DMSO (4a), [Bi(TrPh,Me)2]NO3 (5), have been isolated and structurally characterized by X-ray diffraction. In the zinc derivatives the ligand adopts different denticity and coordination modes, η2 and [S2] for 2a and η3 and [N3] for 2b, depending on the crystallization solvent, giving rise to tetrahedral and octahedral geometry, respectively. In the octahedral cobalt and nickel complexes the ligand is η3 and [N3] coordinated whereas in the bismuth complex the η3 and [S3] coordination is exhibited.  相似文献   

10.
Two benzoate complexes namely tetrakis(μ2-benzoato-O,O)-bis(μ2-benzoato-O,O)-bis(nicotinamide-N)-tri-zinc(II), [Zn3(benz)6(nia)2] (I) and bis(benzoato-O)-bis(methyl-3-pyridylcarbamate-N)-zinc(II), [Zn(benz)2(mpcm)2] (II) (benz=benzoate anion, nia=nicotinamide, mpcm=methyl-3-pyridylcarbamate) were prepared and characterised by elemental analysis, IR spectroscopy, thermal analysis and X-ray structure determination. The structure of the complex I is centrosymmetric, formed by a linear array of three zinc atoms. The central zinc atom shows octahedral coordination and is bridged to each of the terminal zinc atoms by three benzoate anions. Two of them act as bidentate, one as monodentate ligand. By additional coordination of the nia ligand, the terminal Zn atoms adopt tetrahedral surrounding. The structure of complex II contains two crystallographically independent [Zn(benz)2(mpcm)2] molecules. In each molecule, the zinc atom is tetrahedrally coordinated by two monodentate benzoate and two methyl-3-pyridylcarbamate ligands. Intermolecular hydrogen bonds of the N-H?O type connect molecules in the structures of complexes I and II to form a two-dimensional network. The three different types of carboxylate binding found in the complexes were distinguished also by values of carboxylate stretching vibrations in FT-IR spectra as well as by thermal decomposition of the complexes in nitrogen.  相似文献   

11.
The P,N-[3]ferrocenophane ligand 3 forms a (κP-ligand)AuCl complex (5) upon treatment with (Me2S)AuCl. The corresponding P,P-[3]ferrocenophane system 4 yields a binuclear (κPP-chelate ligand)(AuCl)2 complex (6) when reacted with 2 equivalents of the (Me2S)AuCl reagent. Complex 6 features an intramolecular aurophilic Au?Au interaction. Treatment of the P,P-[3]ferrocenophane 4 with 1.0 equiv. of (PPh3)AuCl gives the tetra-coordinated mono-gold(I) complex (P,P-ligand)(PPh3)AuCl (7), whereas the cationic [(P,P-ligand)2Au]+[Cl] system is obtained from 4 and 0.5 equivalents of (Me2S)AuCl. The [(P,P-ligand)2Au]+ system is obtained in different diastereoisomeric forms (8 and 9) depending on the stereochemistry of the pair of P,P-[3]ferrocenophane chelate ligand used. Examples of the complexes 5, 6, 7 and 8 were characterized by X-ray diffraction.  相似文献   

12.
Reactions of ligands 1-ethyl-5-methyl-3-phenyl-1H-pyrazole (L1) and 5-methyl-1-octyl-3-phenyl-1H-pyrazole (L2) with [PdCl2(CH3CN)2 and K2PtCl4 gave complexes trans-[MCl2(L)2] (L = L1, L2). The new complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H and 13C{1H} NMR spectroscopies and X-ray diffraction. The NMR study of the complex [PdCl2(L1)2], in CDCl3 solution, is consistent with a very slow rotation of ligands around the Pd-N bond, so that two conformational isomers can be observed in solution (syn and anti). Different behaviour is observed for complexes [PdCl2(L2)2] and [PtCl2(L)2] (L = L1, L2), which present an isomer in solution at room temperature (anti). The crystal structure of [PdCl2(L1)2] complex is described, where the Pd(II) presents a square planar geometry with the ligands coordinated in a trans disposition.  相似文献   

13.
1,2,4-Trimethyl-cyclohexadiene reacts with RuCl3 · nH2O in refluxing ethanol to afford quantitatively [RuCl2(1,2,4-C6H3Me3)]2 (1), the coordination of 1,2,4-trimethylbenzene to the ruthenium atom introducing planar chirality at the η6-arene ligand. The dinuclear complex 1 reacts with two equivalents of triphenylphosphine (PPh3) to give quantitatively, as a racemic mixture of enantiomers, [RuCl2(1,2,4-C6H3Me3)(PPh3)] (2), the structure of which has been determined by a single-crystal X-ray structure analysis of (rac)-2. Similarly, 1 reacts with two equivalents of the enantiopure phosphine (1S,2S,5R)-(+)-neomenthyldiphenylphosphine (nmdpp) to afford in good yield [RuCl2(1,2,4-C6H3Me3)(nmdpp)] (3) as a mixture of diastereoisomers, from which the isomer 3a was isolated by crystallisation. A single-crystal X-ray structure analysis of 3a allowed the determination of the absolute configuration at the planar chiral η6-arene moiety. Finally, complex 1 reacts with one equivalent of the diphosphine ligand 1,1-bis(diphenylphosphino)ferrocene (dppfc) to give the heteronuclear complex [RuCl2(1,2,4-C6H3Me3) (dppfc)RuCl2(1,2,4-C6H3Me3)] (4). All complexes were fully characterised by elemental analysis, mass spectrometry, NMR and IR spectroscopies.  相似文献   

14.
The reaction of 1-methyl-3-(2-propenyl)imidazolium bromide (1) or 1,3-bis(2-propenyl)-imidazolium bromide (2) with [Ir(μ-OMe)(cod)]2 afforded the five coordinated iridium(I) carbene complexes [IrBr(L)(cod)] (3) (L=1-methyl-3-(2-propenyl)imidazolin-2-ylidene) and (4) (L=1,3-bis(2-propenyl)imidazolin-2-ylidene). The reaction proceeds via an in situ deprotonation of the imidazolium salt. Molecular structure determinations on 3 and 4 confirmed the coordination of the carbene ligands via the carbene carbon atom and one allyl group in both complexes. Treatment of complex 3 with an excess of AgBF4 gave the dinuclear bromo bridged complex [(Ir(μ-Br)(L)(cod)]2BF4 (5) (L=1-methyl-3-(2-propenyl)imidazolin-2-ylidene). The reaction of complex 4 with an excess of AgBF4 led to the mononuclear complex [Ir(L)(cod)]BF4 (6) (L=1,3-bis(2-propenyl)imidazolin-2-ylidene) where both N-allyl substituents are coordinated to the iridium(I) center.  相似文献   

15.
Mononuclear [2.2]paracyclophane complexes of Rh and Ir, [M(η6-pcp)(η5-C5Me5)](BF4)2 (M=Rh (1) and Ir (2); pcp=[2.2]paracyclophane) were crystallized and their structures were first characterized crystallographically. On both pcp complexes the metal atom is bonded to the benzene ring on one side of the pcp ligand in the η6-coordination mode. The metal atom is also supported by the η5-C5Me5 ligand to afford a triple-decker sandwich structure. In Rh pcp complex 1 the average RhC(pcp) and RhC(C5Me5) distances are 2.284(2) and 2.161(2) Å, respectively. The average C(pcp)C(pcp) distance of 1.407(4) Å with the Rh atom is longer than that (1.388(4) Å) without a Rh atom. Similarly, the average IrC(pcp) and IrC(C5Me5) distances in Ir pcp complex 2 are 2.275(3) and 2.174(3) Å, respectively. The average C(pcp)C(pcp) distance of 1.410(4) Å with the Ir atom is longer than that (1.388(4) Å) without an Ir atom. It is interesting that the average interannular distances of 2.97 Å for 1 and 2 between two decks of the pcp ligand are shorter than that (3.09 Å) of the metal-free pcp ligand, indicative of the decrease of the repulsive π-interaction between benzene rings. The Rh pcp complex gave the well-resolved 1H NMR signals of [Rh(η6-pcp)(η5-C5Me5)]2+, whereas the Ir pcp complex exhibited two kinds of 1H NMR signals which were assigned as [Ir(η6-pcp)(η5-C5Me5)]2+ and [Ir26-pcp)(η5-C5Me5)2]4+ in (CD3)2CO at 23 °C.  相似文献   

16.
《Inorganica chimica acta》2004,357(10):3119-3123
Fused double-cluster [(η5-C5Me5)IrB18H18(PH2Ph)] (8), from syn-[(η5-C5Me5)IrB18H20] (1) and PH2Ph, retains the three-atoms-in-common cluster fusion intimacy of 1, in contrast to [(η5-C5Me5)HIrB18H19(PHPh2)] (6), from PHPh2 with 1, which exhibits an opening to a two atoms-in-common cluster fusion intimacy. Compound 8 forms via spontaneous dihydrogen loss from its precursor [(η5-C5Me5)HIrB18H19(PH2Ph)] (7), which has two-atoms-in-common cluster-fusion intimacy and is structurally analogous to 6.  相似文献   

17.
A number of complexes of the types [PtBr2Me2(N?N)] (N?N = 4,4′-di-Me-2,2′-bpy (1); 4,4′-di-t-Bu-2,2′-bpy (2); 2,2′-bpz (3); bpym (4)) and [PtBr2Me2(L)2] (L = H-pz (5); 4-Me-H-pz (6); H-idz (7); H-im (8); H-bim (9); quaz (10)) are reported. Characterization by NMR (1H, 13C and 195Pt), IR and EI-MS is given. In addition, crystal structures of several of these complexes are described. Furthermore, interactions within these structures including intramolecular hydrogen bonding and π-π stacking interactions are reported. The reactivity of selected mononuclear complexes was investigated and yielded two dinuclear complexes [PPh4][(PtBrMe2)2(μ-Br)(μ-pz)2] (11) and [(PtBr2Me2)2(μ-bpym)] (12), respectively. The latter complex is accompanied by a solid-state structure. Finally, the thermal stability of all complexes is reported.  相似文献   

18.
A series of four mononuclear manganese (II) complexes with the N-tridentate neutral ligands 2,2:6,2′′-terpyridine (terpy) and N,N-bis(2-pyridylmethyl)ethylamine (bpea) have been synthesized and crystallographically characterized. The complexes have five- to seven-coordinate manganese(II) ions depending on the additional ligands used. The [Mn(bpea)(Br)2] complex (1) has a five-coordinated manganese atom with a bipyramidal trigonal geometry, while [Mn(terpy)2](I)2 (2) is hexa-coordinated with a distorted octahedral geometry. Otherwise, the reactions of Mn(NO3)2 · 4H2O with terpy or bpea afforded novel seven-coordinate complexes [Mn(terpy)(NO3)2(H2O)] (3) and [Mn(bpea)(NO3)2] (4), respectively. 3 has a coordination polyhedron best described as a distorted pentagonal bipyramid geometry with one nitrate acting as a bidentate chelating ligand and the other nitrate as a monodentate one. 4 possesses a highly distorted polyhedron geometry with two bidentate chelating nitrate ligands. These complexes represent unusual examples of structurally characterized complexes with a coordination number seven for the Mn(II) ion and join a small family of nitrate complexes.  相似文献   

19.
Six antimony adducts with N-donor neutral ligands (1,10-phenanthroline, 4,4′-bipyridine) have been obtained following the reaction of antimony halides with phenanthroline and 4,4′-bipyridine. By changing the solvent and stoichiometry, we obtained six different complexes, Sb(phen)Cl3 (1), Sb(phen)Br3 (2), Sb2(phen)4Br8 (3) and Sb(bpy)Cl3 (4), Sb(bpy)2Cl3 (5), Sb(bpyH · bpyH2)Br6 (6) (where phen = 1,10-phenanthroline, bpy = 4,4′-bipyridine). All the complexes have been characterized via elemental analysis, FT-IR and NMR (1H, 13C) spectroscopy. The crystal structures of complexes 2, 3 and 6 have been determined by X-ray single crystal diffraction.The structural analysis show that the coordination sphere around antimony atom in complex 2 is a distorted square pyramid, coordinated by three bromine atoms and two nitrogen atoms from phen. In complex 3, the central antimony atom is six-coordinated through four bromine atoms and two nitrogen atoms forming a distorted octahedral geometry. Besides that, there are also uncoordinated 1,10-phenanthroline bonded by hydrogen bonds and π-π stacking interactions, which is rarely observed in previous reports. The crystal structure of complex 6 consists of bpyH · bpyH2 trications and hexabromoantimonate trianions. The antimony atom in the anion has a distorted octahedral environment. Additionally, all complexes present a 3D framework built up by N-H?Br, C-H?Br and C-H?Cl weak hydrogen bonds interactions.  相似文献   

20.
The synthesis and characterization of (TptBu,Me)Yb(BH4)(THF)n (n = 0, 3; n = 1, 4) complexes are reported. The compounds represent rare examples of lanthanide (II) tetrahydroborate complexes. The X-ray crystal structure of complex 4 has been determined and it shows a monomeric, formally seven coordinate ytterbium center, bearing one κ3 bonded TptBu,Me ligand, a tetrahydroborate ligand and a coordinated THF molecule. The tetrahydroborate ligand binds in a κ3 fashion, via three bridging hydrogen atoms. IR spectroscopy data are consistent with the solid-state structure and the corresponding BD4 analog of 4 shows the expected IR isotope shifts. The 1H NMR spectra of 3 and 4 shows one set of resonances each for the BH4 and the pyrazolylborate ligands indicating dynamic solution behavior. For complex 3, although X-ray quality crystals could not be obtained, the IR and NMR data are consistent with its formulation as the solvent-free analog of complex 4 with κ3-bonded BH4 ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号