首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six copper(I) complexes {[Cu2(L1)(PPh3)2I2] · 2CH2Cl2}n (1), {[Cu2(L2)(PPh3)2]BF4}n (2), [Cu2(L3)(PPh3)4I2] · 2CH2Cl2 (3), [Cu2(L4)(PPh3)4I2] (4), [Cu2(L5)(PPh3)2I2] (5) and [Cu2(L6)(PPh3)2I2] (6) have been prepared by reactions of bis(schiff base) ligands: pyridine-4-carbaldehyde azine (L1), 1,2-bis(4′-pyridylmethyleneamino)ethane (L2), pyridine-3-carbaldehyde azine (L3), 1,2-bis(3′-pyridylmethyleneamino)ethane (L4), pyridine-2-carbaldehyde azine (L5), 1,2-bis(2′-pyridylmethyleneamino)ethane (L6) with PPh3 and copper(I) salt, respectively. Ligand L1 or L2 links (PPh3)2Cu2(μ-I)2 units to form an infinite coordination polymer chain. Ligand 3 or 4 acts as a monodentate ligand to coordinate two copper(I) atoms yielding a dimer. Ligand 5 or 6 chelates two copper(I) atoms using pyridyl nitrogen and imine nitrogen to form a dimer. Complexes 1-4 exhibit photoluminescence in the solid state at room temperature. The emission has been attributed to be intraligand π-π* transition mixed with MLCT characters.  相似文献   

2.
Bis-bidentate Schiff base ligand L and its two mononuclear complexes [CuL(CH3CN)2]ClO4 (1) and [CuL(PPh3)2]ClO4 (2) have been prepared and thoroughly characterized by elemental analyses, IR, UV-Vis, NMR spectroscopy and X-ray diffraction analysis. In both the complexes the metal ion auxiliaries adopt tetrahedral coordination environment. Their reactivity, electrochemical and photophysical behavior have been studied. Complex 1 shows reversible CuII/I couple with potential 0.74 V versus Ag/AgCl in CH2Cl2. At room temperature L is weakly fluorescent in CH2Cl2, however in Cu(I) complexes 1 and 2 the emission in quenched.  相似文献   

3.
Heterocyclic thioamides, namely, imidazolidine-2-thione (imdzSH), 1-methyl-1, 3-imidazoline-2-thione (mimzSH), thiazolidine-2-thione (tzdSH) and 2,4-dithiouracil (dtucH2) with silver(I)/copper(I) salts in presence of triphenyl phosphine (PPh3) have yielded complexes of different nuclearity: mononuclear, [Ag(η1-S-HL)(PPh3)2Cl] (HL = imdzSH 1, mimzSH 2, tzdSH 3), dinuclear, [Ag21-S-tzdSH)2(μ-S-tzdSH)2(PPh3)2](NO3)24, and polynuclear, {Cu(μ-S,S-dtucH2)(PPh3)2X} (X = Cl 5, Br 6, I 7). All complexes have been characterized using analytical data, IR and multinuclear NMR spectroscopy (1H, 13C and 31P) and single crystal X-ray crystallography. The thio-ligands are bonded to the metal centers as neutral sulfur donors. The geometry around each metal center is distorted tetrahedral. Complexes 5-7 represent first examples of polymers of 2,4-dithiouracil in its coordination chemistry with metal salts. The hydrogen bonding interactions lead to the formation of 1D (2, 3, 7) and 2D (1, 4-6) sheet structures.  相似文献   

4.
Six new complexes, [Cu4I4(PPh2Cy)4]·2H2O (1), [CuI(PPhCy2)2] (2), [CuCl(PPhCy2)2] (3), and [CuBr(PPh3)3]·CH3CN (4), [Ag(PPhCy2)2(NO3)] (5), [Ag(PCy3)(NO3)]2 (6) [where Ph = phenyl, Cy = cyclohexyl], have been synthesized and structurally characterized by X-ray diffraction, IR absorption spectra and NMR spectroscopic studies (except complex 4). The X-ray diffraction analysis of complex (1), pseudo polymorph of complex [Cu4I4(PPh2Cy)4], reveals a stella quadrangula structure. The four corners of the cube are occupied by copper(I) atoms and four I atoms are present at the alternative corners of the cube, further more the copper(I) atoms are coordinated to a monodentate tertiary phosphine. Complexes (2) and (3) are isostructural with trigonal planar geometry around the copper(I) atom. The crystal structure of complex (4) is a pseudo polymorph of complex [CuBr(PPh3)3] and the geometrical environment around the copper(I) centre is distorted tetrahedral. In the AgI complexes (5) and (6), the central metal atoms have pseudo tetrahedral and trigonal planar geometry, respectively. Spectroscopic and microanalysis results are consistent with the single crystal X-ray diffraction studies.  相似文献   

5.
The reaction of 2-(methylthioethanol) with 1,8-dichloroanthraquinone and 1,5-dichloroanthraquinone in THF with base produces 1,8-bis(2-methylthioethoxy)anthraquinone (1) and 1,5-bis(2-methylthioethoxy)anthraquinone (2), respectively. Silver(I) complexes of 1 and 2 have been synthesized after combination with [Ag(CH3CN)4]BF4 in 1:1 M ratio to yield, [(1,8-bis(2-methylthioethoxy)anthraquinone)Ag]BF4, (3) and [(1,5-bis(2-methylthioethoxy)anthraquinone)Ag·CH3CN]BF4, (4). X-ray crystal structures of the free ligand (1) and the Ag(I) complexes (3 and 4) are reported. The intraannular carbonyl group forms a coordinate-covalent bond with Ag(I) and, in the solid state, both silver(I) complexes are found as coordination polymers.  相似文献   

6.
Seven copper complexes [Cu(L1)I2] (1), [Cu2(L1)2I2]2[Cu2(μ-I)2I2] (2), [Cu(L2)I2] (3), [Cu2(L2)(μ-I)I(PPh3)] (4), [Cu4(L2)2(μ-I)2I2] (5), {[Cu(L2)I]2[Cu2(μ-I)2I2]}n (6) and [Cu2(L2)(μ-I)2]n (7) have been prepared by reactions of ligands: 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine (L1) and 4′-(3-pyridyl)-2,2′:6′,2″-terpyridine (L2) with CuI in hydrothermal conditions, respectively. By alternating the oxidations states of the metal centers, increasing stoichiometric metal/ligand ratio and introducing a second ligand, the compounds, were successfully developed from mononuclear (1 and 3) to multinuclear (2, 4 and 5) and polymers (6 and 7). The synthesis of these compounds may provide an approach for the construction of coordination compounds of 4′-pyridyl terpyridine with different nuclearity.  相似文献   

7.
In the presence of PPh3 and Ph2PCH2CH2PPh2 (dppe); AgNO3 and 4,4′-bipyridine (bpy) react to form [Ag(PPh3)(bpy)1/2(ONO2)]n (1) and [Ag(dppe)1/2(bpy)1/2(ONO2)]n (2). The compositions of these complexes are supported by their elemental analysis. The structures are determined by spectroscopic (IR, 1H NMR, UV-Vis) and X-ray crystallographic data. A zig-zag ladder type structure observed in 1 changes into straight ladder type structure in 2 in which [Ag(dppe)1/2(ONO2)]n chains are bridged by bpy with Ag?Ag distance of 11.48 Å. However in 1, the two zig-zag chains are linked via π-π interactions at 3.82 Å between phenyl rings of terminal PPh3 ligands. Both complexes luminesce in DMSO solution. Photoluminescence of a representative complex 2 is also measured.  相似文献   

8.
Preparation and characterization of (triphenylphosphine)ruthenium complexes bearing N,O,N′-tridentate ligands, [(L1)RuCl(PPh3)2](BF4) (L1 = 2-[(2-pyridylmethoxy)methyl]pyridine), 1), [(L2)RuCl(PPh3)2](BF4) (L2 = 8-(2-pyridylmethoxy)quinoline, 2) and [(L3)RuCl2(PPh3)] (L3 = 2-[(2-pyridylmethoxy)methyl]quinoline, 3) are described. Complexes 1-3 have been characterized by NMR and elemental analyses. Molecular structures of 2 and 3 have been determined by X-ray crystallography. Both compounds exhibit the octahedral geometry. L2 adopts the facial configuration in 2 while L3 is in a mer-arrangement in 3. Complexes 1-3 have proven to be able to catalyze the transfer hydrogenation of several ketones to alcohols in the presence of KOH and 2-propanol at refluxing, among which complex 3 was found to be the most active.  相似文献   

9.
A tridentate NNO donor Schiff base ligand [(1Z,3E)-3-((pyridin-2-yl)methylimino)-1-phenylbut-1-en-1-ol = LH] in presence of azide ions coordinates with cobalt(II) and copper(II) ions giving rise to three new coordination complexes [Co2(L)21,1-N3)2(N3)2] (1), [Cu2(L)21,3-N3)]·ClO4 (2) and [(μ1,1-N3)2Cu5(μ-OL)21,1-N3)41,1,1-N3)2]n (3). The complexes have been characterized by elemental analysis, FT-IR, UV-Vis spectral studies, and single crystal X-ray diffraction studies. These complexes demonstrate that under different synthetic conditions the azide ions and the Schiff base ligand (LH) show different coordination modes with cobalt(II) and copper(II) ions, giving rise to unusual dinuclear and polynuclear species (1, 2 and 3) whose structural variations are discussed. Magneto-structural correlation for the very rare singly μ1,3-N3 bridged CuII-Schiff base dinuclear species (2) has been studied. In addition, the catalytic properties of 1 for alkene oxidation and the general catalase-like activity behavior of 2 have been discussed.  相似文献   

10.
In our continuing efforts to explore the effects of substituent groups of ligands in the formation of supramolecular coordination structures, seven new CuII complexes formulated as [Cu2(L1)4(DMF)2] (1), {[Cu2(L1)4(Hmta)](H2O)0.75} (2), [Cu2(L2)4(2,2′-bipy)2] (3), [Cu2(L3)4(H2O)2] (4), [Cu2(L3)4(Hmta)] (5), [Cu2(L3)4(Dabco)] (6) and [Cu2(L3)4(Pz)] (7) with three monocarboxylate ligands bearing different substituent groups HL1-HL3 (HL1 = phenanthrene-9-carboxylic acid, HL2 = 2-phenylquinoline-4-carboxylic acid, HL3 = adamantane-1-carboxylic acid, Hmta = hexamethylenetetramine, 2,2′-bipy = 2,2′-bipyridine, Dabco = 1,4-diazabicyclo[2.2.2] octane and Pz = pyrazine), have been prepared and characterized by X-ray diffraction. In 1, 2 and 4-7, each CuII ion is octahedrally coordinated, and carboxylate acid acts as a syn-syn bridging bidentate ligand. While each CuII ion in 3 is penta-coordinated in a distorted square-pyramidal geometry. 1 and 4 both show a dinuclear paddle-wheel block, while 2, 5, 6 and 7 all exhibit an alternated 1D chain structure between dinuclear paddle-wheel units of the tetracarboxylate type Cu2-(RCO2)4 and the bridging auxiliary ligands Hmta, Dabco and Pz. Furthermore, 3 has a carboxylic unidentate and μ1,1-oxo bridging dinuclear structure with the chelating auxiliary ligand 2,2′-bipy. Moreover, complexes 1-6 were characterized by electron paramagnetic resonance (EPR) spectroscopy.  相似文献   

11.
Reaction of [(p-cymene)RuCl2(PPh3)] (1) or [CpMCl2(PPh3)] (Cp = C5Me5) (3a: M = Rh; 4a: M = Ir) with 1-alkynes and PPh3 were carried out in the presence of KPF6, generating the corresponding alkenyl-phosphonio complexes, [(p-cymene)RuCl(PPh3){CHCR(PPh3)}](PF6) (2a: R = Ph; 2b: R = p-tolyl) or [CpMCl(PPh3){CHCPh(PPh3)}](PF6) (5: M = Rh; 6: M = Ir). Similar reactions of complexes [CpRhCl2(L1)] (3a: L1 = PPh3; 3c: L1 = P(OMe)3) with L2 (L2 = PPh3, PMePh2, P(OMe)3) gave [CpRhCl(L1)(L2)](PF6) (7bb: L1 = L2 = PMePh2; 7ca: L1 = P(OMe)3, L2 = PPh3; 7cc: L1 = L2 = P(OMe)3). Alkenyl-phosphonio complex 5 was treated with P(OMe)3 or 2,6-xylyl isocyanide, affording [CpRhCl(L){CHCPh(PPh3)}](PF6) (8a: L = P(OMe)3; 8b: L = 2,6-xylNC). X-ray structural analyses of 2a, 6 and 8a revealed that the phosphonium moiety bonded to the Cβ atom of the alkenyl group are E configuration.  相似文献   

12.
Addition of excess CF3CO2H (HTFA) to [Rh2Pt2(CO)7(PPh3)3], I, under nitrogen results in the formation of a salt (X2+ Y2−), which contains only the second example of a di-cationic carbonyl hydride tetra-nuclear cluster, [H2Rh2Pt2(CO)7(PPh3)3]2+, X2+, and a presently partially characterized polymetallic anion Y2−. The di-cation X2+ has been characterized by mass spectrometry and a variety of multinuclear NMR methods. Since there is no difference in the electron count for I and X2+, it is probable that both I and X2+ adopt similar butterfly metallic frameworks with a Rh-Rh hinge; in X2+, there are two bridging hydrides to the same wing-tip Pt but the phosphine site occupancies on the Rh2Pt2-framework in I and X2+ are different.  相似文献   

13.
In the presence of sodium nitrite, the reaction of methyl anthranilate and 2-aminopyridine or o-aminobenzoic acid gives two triazenes, 1-[(2-carboxymethyl)benzene]-3-[2-pyridine]triazene (HL) and 1-[(2-carboxymethyl)benzene]-3-[o-aminobenzoic acid]triazene (H2L′), respectively. In the presence of Et3N, the reaction of Pt(PPh3)2Cl2 and HL or H2L′ produces two triazenido platinum(II) complexes, Pt(PPh3)2(L)Cl (1) and Pt(PPh3)2(L′) (2), respectively, which have been characterized by X-ray crystallography, 31P NMR spectra, UV-Vis spectra, emission spectra and cyclic voltammetry. When excited at 310 nm, complexes 1 and 2 show luminescence at 432 and 442 nm, respectively, which is consistent with the trend of the lowest-energy absorption wavelengths of 1 (376 nm) and 2 (379 nm). Complexes 1 and 2 exhibit one or two redox waves and follow the order 1 (0.97 V) → 2 (0.89 and 0.07 V), which is also in accordance with the trend of the lowest-energy absorption spectra of 1 (376 nm) and 2 (379 nm).  相似文献   

14.
The mono- and dinuclear base-stabilized gold(I) pyrazolate complexes, (PPh3)Au(μ-3,5-Ph2pz)) (1), (TPA)Au(3,5-Ph2pz), TPA=1,3,5-triaza-7-phophaadamantane (2), [(PPh3)2Au(μ-3,5-Ph2pz)]NO3 (3) and [(dppp)Au(μ-3,5-Ph2pz)]NO3, dppp=bis(diphenylphosphino)propane (4), have been synthesized and structurally characterized. The mononuclear gold(I) complexes 1 and 2 show intermolecular Au?Au interactions of 3.1540(6) and 3.092(6) Å, while the dinuclear gold(I) complexes 3 and 4 show an intramolecular Au?Au distances of 3.3519(7) and 3.109(2) Å, respectively, typical of an aurophilic attraction. Complexes 1-4 exhibit luminescence at 77 K when excited with ca. 333 nm UV light with an emission maximum at ca. 454 nm. The emission has been assigned to ligand-to-metal charge transfer, LMCT, based upon the vibronic structure that is observed.  相似文献   

15.
Five new complexes [Cu2(L1)I2] (1), [Cu(L2)I]2 (2), {[Cu2(L2)I2](CH3CN)3} (3), [Cu2(L3)I2] (4) and {[Cu(L3)I](CH3CN)}2 (5) have been obtained by reacting three structurally related ligands, 2,3-bis(n-propylthiomethyl)quinoxaline (L1), 2,3-bis(tert-butylthiomethyl)quinoxaline (L2) and 2,3-bis[(o-aminophenyl)thiomethyl]quinoxaline (L3) with CuI, respectively, at different temperatures. Single crystal X-ray analyses show that 1, 3, 4 possess 1D chain structures, while 2 and 5 are discrete dinuclear molecules. It is interesting that the reactions of CuI with L1 at room temperature and 0 °C, respectively, only afforded same structure of 1 (1a and 1b), while using L2 (or L3) instead, two different frameworks 2 and 3 (or 4 and 5) have been obtained. The structural changes mainly resulted from the different conformations that L2 or L3 adopted at different temperatures. Our research indicates that terminal groups of ligands take an essential role in the framework formation, and the reaction temperature also has important effect on the construction of such Cu(I) coordination architectures. Furthermore, the influence of hydrogen bonds on the conformation of ligands and the supramolecular structures of these complexes have also been explored. The luminescence properties of complexes 1, 2, and 4 have been studied in solid state at room temperature.  相似文献   

16.
The acid-base properties and Cu(II), Ni(II), Ag(I) and Hg(II) binding abilities of PAMAM dendrimer, L, and of the simple model compounds, the tetraamides of EDTA and PDTA, L1, were studied in solution by pH-metric methods and by 1H NMR and UV-Vis spectroscopy. PAMAM is hexabasic and six pKa values have been determined and assigned. PAMAM forms five identifiable complexes with copper(II), [CuLH4]6+, [CuLH2]4+, [CuLH]3+, [CuL]2+ and [CuLH-1]+ in the pH range 2-11 and three with nickel(II), [NiLH]3+, [NiL]2+ and [NiLH-1]+ in the pH range 7-11. The complex [CuLH4]6+, which contains two tertiary nitrogen and three amide oxygen atoms coordinated to the metal ion, is less stable than the analogous EDTA and PDTA tetraamide complexes [CuL1]2+, which contain two tertiary nitrogen and four amide oxygen atoms, due to ring size and charge effects. With increasing pH, [CuLH4]6+ undergoes deprotonation of two coordinated amide groups to give [CuLH2]4+ with a concomitant change from O-amide to N-amidate coordination. Surprisingly and in contrast to the tetraamide complexes [CuL1]2+, these two deprotonation steps could not be separated. As expected the nickel(II) complexes are less stable than their copper(II) analogues. The tetra-N-methylamides of EDTA, L1(b), and PDTA form mononuclear and binuclear complexes with Hg(II). In the case of L1(b) these have stoichiometries HgL1(b)Cl2, [HgL1(b)H−2Cl2]2−, [Hg2L1(b)Cl2]2+, Hg2L1(b)H−2Cl2 and [Hg2L1(b)H−5Cl2]3−. Based on 1H NMR and pH-metric data the proposed structure for HgL1(b)Cl2, the main tetraamide ligand containing species in the pH range <3-6.5, contains L1(b) coordinated to the metal ion through the two tertiary nitrogens and two amide oxygens while the structure of [HgL1(b)H−2Cl2]2−, the main tetraamide ligand species at pH 7.5-9.0, contains the ligand similarly coordinated but through two amidate nitrogen atoms instead of amide oxygens. The proposed structure of [Hg2L1(b)Cl2]2+, a minor species at pH 3-6.5, also based on 1H NMR and pH-metric data, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amide oxygens and a chloride ligand while that of [Hg2L1(b)H−5Cl2]3−, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amidate nitrogens, a chloride and a hydroxo ligand in the case of one of the Hg(II) ions. The parent EDTA and PDTA amides only form mononuclear complexes. PAMAM also forms dinuclear as well as mononuclear complexes with mercury(II) and silver(I). In the pH range 3-11 six complexes with Hg(II) i.e. [HgLH4Cl2]4+, [HgLH3Cl2]3+, [Hg2LCl2]2+, [Hg2LH−1Cl2]+, [HgLH−1Cl2] and [HgLH−2Cl2]2− were identified and only two with Ag(I), [AgLH3]4+ and [Ag2L]2+. Based on stoichiometries, stability constant comparisons and 1H NMR data, structures are proposed for these species. Hence [HgLH4Cl2]4+ is proposed to have a similar structure to [CuLH4]6+ while [Hg2LCl2]2+has a similar structure to [Hg2L1(b)H−5Cl2]3−.  相似文献   

17.
Three new o-thioetherphenol ligands have been synthesized: 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)ethane (H2bse), 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)benzene (H2bsb), and 4,6-di-tert-butyl-2-phenylsulfanylphenol (Hpsp). Their complexes with copper(II) were prepared and investigated by UV-Vis-, EPR-spectroscopy; their electro- and magnetochemistry have also been studied: [CuII(psp)2] (1), [CuII2(bse)2] (2), [CuII2(bsb)2] (3), [CuII(bsb)(py)2] (4). The crystal structures of the ligands H2bse, H2bsb, Hpsp and of the complexes 1, 2, 3, 4 have been determined by X-ray crystallography.  相似文献   

18.
The complexes [Ru2(CO)5(μ-FpyO)2]2 (1), [Ru2(CO)4(μ-ClpyO)2]2 (2), and [Ru2(CO)4(μ-BrpyO)2]2 (3) were prepared from Ru3(CO)12 and 6-fluoro-2-hydroxypyridine (FpyOH), 6-chloro-2-hydroxypyridine (ClpyOH) and 6-bromo-2-hydroxypyridine (BrpyOH), respectively, in hot toluene. Compounds 1-3 are coordination dimers with a cyclo-RuORuO motif. By carrying out the reaction in hot methanol, the dinuclear complexes [Ru2(CO)4(μ-ClpyO)2(CH3OH)] (4) and [Ru2(CO)4(μ-BrpyO)2(CH3OH)] (5), respectively, were obtained. Treatment of 2 and 3 with triphenylphosphane provided the complexes [Ru2(CO)4(μ-ClpyO)2(PPh3)] (6) and [Ru2(CO)4(μ-BrpyO)2(PPh3)] (7), respectively. The solid-state structures of complexes 1, 2, 4, 6, and 7 were determined by single crystal X-ray diffraction. In all cases, a head-head coordination of the two 6-halopyridinolate ligands at the core was found. In all chlorine- or bromine-containing complexes, the axial coordination site at the ruthenium atom neighbored by two Cl or Br atoms remains unoccupied due to steric shielding by the halogen atom. In the fluoropyridinolate complex 1, the same coordination site is occupied by a carbonyl ligand.  相似文献   

19.
Reaction of [(PPh2C5H4)Cp3Fe4(CO)4] (1) with (CO)4W(CH3CN)2 at ambient temperature affords [(CO)4W(PPh2C5H4)Cp3Fe4(CO)4] (2) as the major product, together with a small amount of [(CO)5W(PPh2C5H4)Cp3Fe4(CO)4] (3). Compound 3 can be obtained in good yield by treating (CO)5W(CH3CN) with equal molar of 1, and reaction of 3 with Me3NO in acetonitrile solvent produces 2 exclusively. The crystal structures of 2 and 3 have been determined by an X-ray diffraction study. Compound 2 contains an interesting μ4, η2-CO ligand, where two electrons donated by the carbon atom are involved to bridge a Fe3 face and two electrons from oxygen are donated to the tungsten(0) atom.  相似文献   

20.
The [ReOX3(AsPh3)(OAsPh3)] (X = Cl or Br) complexes react with two equivalents of 3,5-dimetylopyrazole (3,5-Me2pzH) in acetone at room temperature to give [{Re(O)X2(3,5- Me2pzH)2}2(μ-O)] (1 and 2). In the case of [ReOBr3(AsPh3)(OAsPh3)], a small quantity of the dinuclear rhenium complex [{Re(O)Br(3,5-Me2pzH)}2(μ-O)(μ-3,5-Me2pz)2] (3) has been isolated next to the main product 2. Treatment of [ReOX3(PPh3)2] compounds with two equivalents of 3,5-Me2pzH in acetone at room temperature leads to the isolation of symmetrically substituted dinuclear rhenium complexes [{Re(O)X(PPh3)}2(μ-O)(μ-3,5-Me2pz)2] (4 and 5). Refluxing of [ReO(OEt)X2(PPh3)2] complexes with 3,5-Me2pzH in ethanol affords unsymmetrically substituted dinuclear rhenium [{Re(O)X(PPh3)}(μ-O)(μ-3,5-Me2pz)2{Re(O)X(3,5- Me2pzH)}] complexes (6 and 7). The complexes obtained in these reactions have been characterised by IR, UV-Vis, 1H and 31P NMR. The crystal and molecular structures have been determined for 1, 2, 3, 4, 6 and 7 complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号