首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of an aqueous solution of Mn(ClO4)2 · 6H2O with 5-fluoro-2-hydroxypyrimidine (HFpymo) and NaOH in 1:2:1 ratio affords a species analysing as Mn(Fpymo)2(H2O)2 (1) in 70% yield. Single crystal X-ray analysis reveals that 1 consists of [Mn2(μ-Fpymo-N1,O2)2(Fpymo-O2)2(H2O)4] dinuclear units, in which each Mn(II) ion shows a slightly distorted trigonal bipyramidal stereochemistry. Thermal treatment of 1 above 150 °C gives an anhydrous, amorphous material analysing as Mn(Fpymo)2 (2a). Further heating of this compound above 250 °C results in the formation of the microcrystalline Mn(Fpymo)2 species (2b). The thermal dependence of the magnetic susceptibility χ has been studied for species 1 and 2b in the 2-300 K temperature range at 100, 300 and 5000 Oe field strengths. The fitting of the χ values of 1 to the Curie-Weiss equation gives values of C = 2.450(2) and θ = 1.0(2) K, which is indicative of an almost negligible magnetic interaction between the Mn(II) centres. At variance, 2b shows a significant antiferromagnetic behaviour, with a decrease of the μeff values upon cooling. The fitting of the χ values of 2b to the Curie-Weiss equation gives the respective C and θ values of 4.26(1) and −14.8(3) K, which agrees with an efficient coupling of the magnetic Mn(II) centres, possibly through bridges of the Fpymo-N1,N3 kind, within a polymeric network. The N2 and CO2 gas adsorption measurements at 77 K and 293 K, respectively, show that the 2b phase is not microporous, which is reflected in its low BET surface (19 m2 g−1) and its BJH pore size distribution.  相似文献   

2.
The reactions of Zr(C5H5)(6,6-dmch)(PMe3)2 and Zr(6,6-dmch)2(PMe3)2 (dmch=dimethylcyclohexadienyl) with CO lead to the selective replacement of one PMe3 ligand by CO. Both carbonyl complexes have been structurally characterized. Additionally, the reaction of the latter complex with PhC2SiMe3 leads to a similar replacement of one PMe3 ligand, involving simple coordination of the alkyne, rather than any coupling to the dmch ligand.  相似文献   

3.
Complexes of the type [Pt(amine)4]I2 were synthesized and characterized mainly by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The compounds were prepared with different primary amines, but not with bulky amines, due to steric hindrance. In 195Pt NMR, the signals were observed between −2715 and −2769 ppm in D2O. The coupling constant 3J(195Pt-1H) for the MeNH2 complex is 42 Hz. In 13C NMR, the average values of the coupling constants 2J(195Pt-13C) and 3J(195Pt-13C) are 18 and 30 Hz, respectively. The crystal structure of [Pt(EtNH2)4]I2 was determined by X-ray diffraction methods. The Pt atom is located on an inversion center. The structure is stabilized by H-bonding between the amines and the iodide ions. The compound with n-BuNH2 was found by crystallographic methods to be [Pt(n-BuNH2)4]2I3(n-BuNHCOO). The crystal contains two independent [Pt(CH3NH2)4]2+ cations, three iodide ions and a carbamate ion formed from the reaction of butylamine with CO2 from the air. When the compound [Pt(CH3NH2)4]I2 was dissolved in acetone, crystals identified as trans-[Pt(CH3NH2)2(H3CNC(CH3)2)2]I2 were isolated and characterized by crystallographic methods. Two trans bonded MeNH2 ligands had reacted with acetone to produce the two N-bonded Schiff base Pt(II) compound.  相似文献   

4.
Pressure-tuning infrared spectra (up to ca. 40 kbar) are reported for Magnus’ Green salt, [Pt(NH3)4][PtCl4] and two of its derivatives, [Pt(ND3)4][PtCl4] and [Pt(NH3)4][PtBr4]. The spectroscopic data indicate that there is restricted rotation of the coordinated ammonia groups about the Pt-N bonds in the complexes. It is possible that this restricted rotation is due to the presence of weak hydrogen bonding to the halogens, i.e., N-H?X (X = Cl, Br) interactions.  相似文献   

5.
Two new rhenium(IV) mononuclear compounds of formula NBu4[ReBr4(OCN)(DMF)] (1) and (NBu4)2[ReBr(OCN)2(NCO)3] (2) (NBu4 = tetrabutylammonium cation, OCN = O-bonded cyanate anion, NCO = N-bonded cyanate anion and DMF = N,N-dimethylformamide) have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. 1 crystallizes in the monoclinic system with the space group P21/n, whereas 2 crystallizes in the triclinic one with as space group. In both complexes the rhenium atom is six-coordinated, in 1 by four Br atoms in the equatorial plane, and two trans-oxygen atoms, one of a DMF molecule and another one from a cyanato group, while in 2 by one bromide anion and five cyanate ligands, two of which are O-bonded and three N-bonded, forming a somewhat distorted octahedral surrounding. Magnetic susceptibility measurements on polycrystalline samples of 1 and 2 in the temperature range 1.9-300 K are interpreted in terms of magnetically isolated spin quartets with large values of the zero-field splitting (|2D| is ca. 41.6 and 39.2 cm−1 for 1 and 2, respectively).  相似文献   

6.
An oxalato-bridged binuclear iron(III) compound, Fe2(C2O4)Cl4(DMF)4 (DMF = dimethylformamide), was obtained by electrocrystallization for three weeks at 3.4 V and it displays a strong antiferromagnetic interaction of J = −6.74(4) cm−1.  相似文献   

7.
A new CoII/CoIII hexanuclear complex, [Co4IICo2III(dea)2(Hdea)4)(piv)4](ClO4)2·H2O 1, has been obtained by reacting cobalt(II) perchlorate, diethanolamine, and pivalic acid (H2dea = diethanolamine and piv = pivalato anion). The cobalt ions are held together by four μ3 and four μ2 alkoxo bridges as well as by four syn-syn carboxylato groups. The hexanuclear motif contains four Co(II) and two Co(III) ions. The {CoII4CoIII22-O)43-O)4} core can be described as a four face-sharing monovacant and bivacant distorted heterocubane units. The cobalt(III) ions are hexacoordinated. Two of the cobalt(II) are hexacoordinated, while the two others are pentacoordinated with a bipyramidal stereochemistry. The magnetic properties of 1 have been investigated in the temperature range 1.9-300 K. Compound 1 exhibits an overall antiferromagnetic behaviour with a ground singlet spin state.  相似文献   

8.
Reaction of HSi(OEt)3 with IrCl(CO)(PPh3)2 (5:1 molar ratio) at room temperature for 1 h gives IrCl(H){Si(OEt)3}(CO)(PPh3)2 (1), which is observed by the 1H and 31P{1H} NMR spectra of the reaction mixture. The same reaction, but in 20:1 molar ratio at 50 °C for 24 h produces IrCl(H)2(CO)(PPh3)2 (2) rather than the expected product Ir(H)2{Si(OEt)3}(CO)(PPh3)2 (3) that was previously reported to be formed by this reaction. Accompanying formation of Si(OEt)4, (EtO)3SiOSi(OEt)3, and (EtO)2HSiOSi(OEt)3 is observed. On the other hand, trialkylhydrosilane HSiEt3 reacts with IrCl(CO)(PPh3)2 (10:1 molar ratio) at 80 °C for 84 h to give Ir(H)2(SiEt3)(CO)(PPh3)2 (4) in a high yield, accompanying with a release of ClSiEt3.  相似文献   

9.
Reaction of Mo(CO)4(NCCH3)2 and 7-aza-2-tosylnorbornadiene (7-azaNBD) yielded five air-stable Mo complexes. One is Mo(CO)44-7-azaNBD), in which the molybdenum atom is chelated by the two π-bonds of 7-azaNBD. The other four are isomers of Mo(CO)22-7-azaNBD)2, in which the molybdenum atoms are chelated by the nitrogen atom and one of the two double bonds of 7-azaNBD. In one pair of the isomers, the metal binds to C(2)C(3) of both 7-azaNBD ligands; whereas in the other pair of isomers the metal binds to C(2)C(3) of one 7-azaNBD ligand and C(5)C(6) of another ligand. All structures were fully characterized by NMR spectra. A single crystal of compound 4 was analyzed by X-ray diffraction analysis, which was found to be monoclinic with a = 8.4199, b = 23.984, c = 16.395 Å, and β = 99.99°.  相似文献   

10.
Refluxing WCl4(PMe3)3 under a nitrogen atmosphere in the presence of two equivalents of sodium amalgam leads to a reduction to the W(II) complex [cis,mer-WCl2(PMe3)3]2N2 (1), which can be converted to [mer,trans-WCl3(PMe3)2]2N2 (2) via appropriate oxidation/chlorination. Structural data have been obtained for both complexes, and demonstrate significantly increased steric crowding in 1 due to PMe3/PMe3 interactions. The N-N bond distances in the two compounds are similar, at 1.279(4) and 1.243(18) Å, respectively.  相似文献   

11.
The compounds W(CO)5P(C6H4-4-CH2CH2(CF2)7CF3)3 (1) and W(CO)5P(CH2CH2(CF2)5CF3)3 (2) were synthesized in order to probe the electronic and physical effects of ligation by perfluorocarbon substituted tertiary phosphine ligands in a W(CO)5L complex. The π-accepting ability of the fluorous phosphines was found to rank with non-fluorous comparators as P(CH2CH2(CF2)5CF3)3 > P(C6H4-4-CH2CH2(CF2)7CF3)3 > PPh3 > P(p-tolyl)3 > P(n-octyl)3. The X-ray crystal structure of W(CO)5P(C6H4-4-CH2CH2(CF2)7CF3)3 shows strong intermolecular association of fluorous components but confirms that the para fluorocarbon subtituents have an insignificant effect on the tungsten coordination environment. Partition coefficients (toluene/perfluoromethylcyclohexane) were measured for compounds 1 and 2.  相似文献   

12.
The perchlorate M(II) (M = Cu, Ni, Co) complexes with the diethyl (pyridin-4-ylmethyl)phosphate (4-pmOpe) ligand of the composition [M(4-pmOpe)2 (H2O)2](ClO4)2 (M = Ni, Co) and [Cu(4-pmOpe)2(ClO4)2] were prepared and studied. The ligand contains two donor atoms, i.e. pyridine nitrogen and phosphoryl oxygen atoms. In particular, the crystal structure of [Cu(4-pmOpe)2(ClO4)2] was determined by the X-ray method. Its structure consists of a one-dimensional polymeric chain in which copper(II) ions are N,O-bridged by two 4-pmOpe organic ligands in a trans arrangement. Two perchlorate ions occupy the fifth and the sixth coordination sites. The Cu?Cu distance is 9.180 Å. The crystal packing is determined by the weak intermolecular C-H?O hydrogen contacts. The coordination compounds were identified and characterized by elemental analysis, spectroscopic and magnetic studies. Spectroscopic and magnetic results of the copper(II) compound are presented in the light of the crystal structure. The magnetic data indicate very weak intra- and interchain magnetic exchange interactions (J = −0.43 and zJ = 0.29 cm−1, respectively). The spectroscopic and magnetic properties of the Co(II) and Ni(II) complexes indicate octahedral and polymeric structure of both compounds in which 4-pmOpe ligand also acts as N,O-bridge between metal ions.  相似文献   

13.
The thermal reaction of Ru3(CO)12 with various carboxylic acids (benzoic, 4-hydroxyphenylacetic, ferrocenic, stearic, oleic, 4-(octadecyloxy)benzoic) in refluxing tetrahydrofuran, followed by addition of 5-(4-pyridyl)-10,15,20-triphenylporphyrin (L), gives the dinuclear complexes Ru2(CO)4(OOCR)2L2 (1: R = -C6H5, 2: R = -CH2-p-C6H4OH, 3: R = -C5H4FeC5H5, 4: R = -(CH2)16CH3, 5: R = -(CH2)7CHCH(CH2)7CH3, 6: R = -p-C6H4O(CH2)17CH3). Complexes 1-6 were characterised by IR, NMR, and ESI-MS as well as by elemental analysis. The UV-Vis spectra show the Soret band centred at 417 nm and the Q bands at 515, 550, 590 and 645 nm, respectively.  相似文献   

14.
The 2-D K(I)-tetrazole metal-organic complex, [K2(4-TPA)2(H2O)2]n (1), which is constructed by the [K2O4N]n inorganic skeleton chains bridged by the 4-TPA linkers, has been synthesized and characterized by single crystal X-ray crystallography and temperature-dependence dielectric constant(ε) measurement under the alternating electric field, (4-TPA = 2-(4-(1H-tetrazol-5-yl)pyridinium-1-yl) acetate). The ε of temperature dependence remains unchanged almost within the measured temperature range of 90 K to 430 K at 1 M Hz, and the ε of frequency dependence shows a significant decline from 6.7 to 4.6 within the measured frequency range of 200-1 MHz at room temperature. And it is consistent with the low dielectric loss (ε2/ε1) behavior, which is attributed to the highly ordered polarization mechanism.  相似文献   

15.
Reaction of [Ru2(O2CMe)4]Cl and K2[Ni(CN)4] forms [Ru2(O2CMe)4]2[Ni(CN)4] with the targeted layered structure possessing Ru-NCNi linkages, albeit strained, with Ru-NC and Ni-CN angles in the range of 147-167°. The magnetic properties of [Ru2(O2CMe)4]2[Ni(CN)4] can be fit to a zero-field splitting model with D/kB = 95 K (66 cm−1).  相似文献   

16.
Neutral palladium(IV) complexes containing the bis(pyrazol-1-yl)borate ligand, PdMe3{(pz)2BH2}(L) [L=py-d5 (4), PMe2Ph (6)], are generated in solution by oxidative addition of iodomethane to [PdMe2{(pz)2BH2}] at −70 °C followed by addition of L; the Pd(IV) complexes reductively eliminate ethane above 0 °C. Stable Pt(IV) analogues of 4 and 6 have been isolated, and comparison of NMR spectra for Pd(IV) and Pt(IV) species support structural assignments for the unstable Pd(IV) complexes. The complex PtMe3{(pz)2BH2}(py) (1a) has been characterised by X-ray diffraction, together with Pt(mq)Me2{(pz)2BH2} (2) (mq=8-methylquinolinyl); both complexes show a fac-PtC3 configuration for Pt(IV), and for 2 the PtN distances are ∼0.03 Å shorter than in the isostructural Pd(IV) complex.  相似文献   

17.
A new complex of composition [Cu(2-NO2bz)2(nia)2(H2O)2] (1) (nia = nicotinamide, 2-NO2bz = 2-nitrobenzoate) has been prepared and its composition and stereochemistry as well as coordination mode have been determined by elemental analysis, electronic, infrared and EPR spectroscopy, magnetization measurements over the temperature range 1.8-300 K, and its structure has been solved, as well. The complex structure consists of the centrosymmetric molecules with Cu(II) atom monodentately coordinated by the pair of 2-nitrobenzoato anions and by the pair of nicotinamide molecules, forming nearly tetragonal basal plane, and by a pair of water molecules that complete tetragonal-bipyramidal coordination polyhedron about the copper atom. The complex 1 exhibits magnetic moment μeff = 1.86 B.M. at 300 K which decreases to μeff = 1.83 B.M. at 1.8 K. The magnetic susceptibility temperature dependence obeys Curie-Weiss law with Curie constant of 0.442 cm3 K mol−1 and with Weiss constant of −1.0 K. EPR spectra at room temperature as well as at 77 K are of axial type with g = 2.065 and g = 2.280 and exhibit clearly, but partially resolved parallel hyperfine splitting with AII = 160 G, that is consistent with the determined molecular structure of 1. In order to analyze the factors influencing the degree of tetragonal distortion of coordination polyhedron, the dataset of 72 structures similar to that of 1 was extracted from CCD and analyzed. A significant correlation between the average Cu-Oax bond length and tetragonality parameter τ which was found as a consequence of the Jahn-Teller effect.  相似文献   

18.
The reaction of [HRe3(CO)12]2− with an excess of Ph3PAuCl in CH2Cl2 yields [(Ph3PAu)4Re(CO)4]+ as the main product, which crystallizes as [(Ph3PAu)4Re(CO)4]PF6 · CH2Cl2 (1 · CH2Cl2) after the addition of KPF6.The crystal structure determination reveals a trigonal bipyramidal Au4Re cluster with the Re atom in equatorial position.If [(Ph3PAu)4Re(CO)4]+ is reacted with PPh4Cl, a cation [Ph3PAu]+ is eliminated as Ph3PAuCl, and the neutral cluster [(Ph3PAu)3Re(CO)4] (2) is formed.It combines with excess [(Ph3PAu)4Re(CO)4]+ to afford the cluster cation, [(Ph3PAu)6AuRe2(CO)8]+. It crystallizes from CH2Cl2 as[(Ph3PAu)6AuRe2(CO)8]PF6 · 4CH2Cl2 (3 · 4CH2Cl2). In [(Ph3PAu)3Re(CO)4] the metal atoms are arranged in form of a lozenge while in [(Ph3PAu)6AuRe2(CO)8]+ two Au4Re trigonal bipyramids are connected by a common axial Au atom.The treatment of [(Ph3PAu)4Re(CO)4]+ with KOH and Ph3PAuCl in methanol yields the cluster cation [(Ph3PAu)6Re(CO)3]+, which crystallizes with from CH2Cl2 as [(Ph3PAu)6Re(CO)3]PF6 · CH2Cl2 (4 · CH2Cl2). The metal atoms in this cluster form a pentagonal bipyramid with the Re atom in the axial position.  相似文献   

19.
The compound [ArZn(OH)]4 (Ar = 2,4,6-(CF3)3C6H2), formed by aggregation of the hydrolysis product of ArZnCl, has a cubane-like structure at 120 K; this is the first structurally characterised example of such a zinc(II) derivative with a simple aromatic group on Zn, and with the bridges formed by -OH rather than -OR groups. It crystallises as a hemisolvate in the triclinic system , with a single molecule in the asymmetric unit, together with one CHCl3 (or CDCl3) molecule per two molecules of the tetramer.  相似文献   

20.
Photolysis of cis-Fe(CO)4X2, where X = Br and I, results in low energy, facile rearrangement to the trans isomer with no evidence of CO-loss. In contrast, the isoelectronic cis-Mn(CO)4Br2 anion exhibits CO-loss upon photolysis with only weak evidence for the trans isomer. The photolysis of Mn(CO)5Br, Mn(CO)4Br(PBu3) and Mn(CO)3Br(PBu3)2 have also been examined in frozen matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号