首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several complexes of TPPMn-L, where TPP is the dianion of tetraphenylporphyrin and L is monoanion of 4-methylphenylcyanamide (4-Mepcyd) (1), 2,4-dimethylphenylcyanamide (2,4-Me2pcyd) (2), 3,5-dimethylphenylcyanamide (3,5-Me2pcyd) (3), 4-methoxyphenylcyanamide (4-MeOpcyd) (4), phenylcyanamide (pcyd) (5), 2-chlorophenylcyanamide (2-Clpcyd) (6), 2,5-dichlorophenylcyanamide (2,5-Cl2pcyd) (7), 2,6-dichlorophenylcyanamide (2,6-Cl2pcyd) (8), 4-bromophenylcyanamide (4-Brpcyd) (9), and 2,3,4,5-tetrachlorophenylcyanamide (2,3,4,5-Cl4pcyd) (10), have been prepared from the reaction of TPPMnCl and thallium salt of related phenylcyanamide. Each of the complexes has been characterized by IR, UV-Vis and 1H NMR spectroscopies.4-Methylphenylcyanamidotetraphenylporphyrin manganese(III) crystallized with one molecule of solvent CHCl3 in the triclinic crystal system and space group with the following unit cell parameters of: a = 11.596(6) Å; b = 11.768(9) Å; c = 17.81(2) Å; and α, β, γ are 88.91(9)°, 88.16(7)°, 67.90(5)°, respectively; V = 2251(3) Å3; Z = 2. A total of 4234 reflections with I > 2σ(I) were used to refine the structure to R = 0.0680 and Rw = 0.2297. The Mn(III) shows slightly distorted square pyramidal coordination with the 4-methylphenylcyanamide in the axial position, coordinated from nitrile nitrogen. The reduction of each of the TPPMn-L complexes was also examined in dichloromethane and spectroelectrochemical behavior of (1) was investigated and compared to TPPMnCl.  相似文献   

2.
The molecular structure of praseodymium (III) complex with 1,10-phenanthroline (phen), [Pr(phen)2Cl3·OH2] (1) was determined by single-crystal X-ray diffraction. Crystal data: crystal system, triclinic, space group P and Z = 2, a = 7.1110(7) ?, b = 10.1716(10) ?, c = 17.2367(18) ?, α = 80.922(5)°, β = 78.759(5)°, γ = 70.151(5)°, R1 = 0.036; wR2 = 0.076 for all data. Treatment of aqueous solution of [Pr(phen)2Cl3·OH2] (1) with thallium phenylcyanamide salts yield [Pr(phen)2(L)3] (L = pcyd (2), 2-Clpcyd (3), 2,3,5-Cl3pcyd (4), 2,3,4,5-Cl4pcyd (5)). Four new praseodymium (III) complexes have been characterized by IR, UV-Vis and 1H NMR spectroscopy as well as elemental analysis. The 1H NMR spectra of these complexes show broadening of ligand protons attributed to coordination of paramagnetic center.  相似文献   

3.
Treatment of [Cp*RuCl2]x (Cp* = η5-C5Me5) with K[N(Ph2PS)2] afforded [Cp*Ru{N(Ph2PS)2}Cl] (1). Reduction of 1 with Li[BEt3H] gave the 16-electron half-sandwich Ru(II) complex [Cp*Ru{N(Ph2PS)2}] (2). Complexes 1 and 2 have been characterized by X-ray crystallography. The Ru-Cp*(centroid) and average Ru-S distances in 1 are 1.827 and 2.3833(5) Å, respectively. The corresponding bond distances in 2 are 1.739 and 2.379(1) Å. Treatment of 2 with 2-electron ligands L afforded the adducts [Cp*Ru{N(Ph2PS)2}L] (L = CO (3), 2,6-Me2C6H4NC (4), MeCO2CCCO2Me (5)). Oxidation of 2 with tetramethylthiuram disulfide gave the Ru(IV) complex [Cp*Ru{S2CNMe2}2][N(Ph2PS)2] (6). The Ru-Cp*(centroid) and average Ru-S distances in 6 are 1.897 and 2.387(1) Å, respectively.  相似文献   

4.
Dimethyl platinum(II) complexes [PtMe2(NN)] {NN = bu2bpy (4,4′-di-tert-butyl-2,2′-bipyridine) (1a), bpy (2,2′-bipyridine) (1b), phen (1,10-phenanthroline) (1c)} reacted with commercial 3-bromo-1-propanol in the presence of 1,3-propylene oxide to afford cis, trans- [PtBrMe2{(CH2)3OH}(NN)] (NN = bu2bpy (2a), bpy (2b), phen (2c)). On the other hand, [PtMe2(NN)] (1a)-(1b) reacted with the trace of HBr in commercial 3-bromo-1-propanol to give [PtBr2(NN)] (NN = bu2bpy (3a), bpy (3b)). The reaction pathways were monitored by 1H NMR at various temperatures. Treatment of 1a-1b with a large excess of 3-bromo-1-propanol at −80 °C gave the corresponding methyl(hydrido)platinum(IV) complexes [PtBr(H)Me2(NN)] (NN = bu2bpy (4a), bpy (4b)) via the oxidative addition of dimethyl platinum(II) complexes with HBr. The complexes [PtBr(H)Me2(NN)] decomposed by reductive elimination of methane above −20 °C for bu2bpy and from −20 to 0 °C for bpy analogue to give methane and platinum(II) complexes [PtBrMe(NN)] (5a)-(5b) and then decomposed at about 0 °C to yield [PtBr2(NN)] and methane. When the reactions were performed at a molar ratio of Pt:RX/1:10, the corresponding complexes [PtBrMe(NN)] (5a)-(5b) were also obtained. The crystal structure of the complex 3b shows that platinum adopts square planar geometry with a twofold axis through the platinum atom. The Pt…Pt distance (5.164 Å) is considerably larger than the interplanar spacing (3.400 Å) and there is no platinum-platinum interaction.  相似文献   

5.
A series of nickel(II) salen complexes containing 4-substituted alkoxy chains of aromatic rings, [Ni((4-CnH2n + 1O)2salen)] (n = 3 (1), 4 (2), 6 (3), 8 (4), 10 (5), 12 (6), 14 (7), 16 (8), 18 (9), and 20 (10)), and their parent complex, [Ni((4-HO)2salen)] (11) (salen = N,N′-ethylenebis(salicylideneiminato)), have been prepared and mesomorphic properties have been investigated. An X-ray crystallographic analysis revealed that complex 11 · 2DMF has one-dimensional stacking structure supported by the π-π interaction between the six-membered chelate and aromatic rings with the NiNi distances of alternatively 3.3957 and 3.7224 Å and that complex 3 is formed by one-dimensional stacking by weak CH?O type hydrogen bonded interaction between the five-membered chelate ring and phenoxo atoms of the dramatically distorted salen moieties with the NiNi distance of 5.994 Å. Complexes 1-6 did not exhibit any mesophases. On the other hand, complexes 7-10 with longer alkoxy chains of n = 14-20 showed an unusual metallomesogen of a lamello-columnar mesophase within the smectic layers with an interlamellar distance of 31.1 Å (7), 33.6 Å (8), 37.1 Å (9), and 39.5 Å (10) and nearly constant stacking distance of 6.19-6.24 Å between the inter-dimers, irrespective of the variation of the alkoxy chain lengths by the X-ray diffraction measurements of the liquid crystal. The relationship between molecular assemblies and mesomorphic properties is discussed.  相似文献   

6.
The crystal structures of two 1:1 ligand-silver(I) cyanide complexes, [Ag(CN)(en)] (en = ethane-1,2-diamine) (1) and [Ag(CN)(pn)] (pn = propane-1,2-diamine) (2), and of two 2:1 ligand-silver(I) cyanide compounds, [(AgCN)2 · tn] (tn = propane-1,3-diamine) (3) and [(AgCN)2 · bn] (bn = butane-1,4-diamine) (4), were determined from single-crystal X-ray diffraction data, collected at 173 K. In 1 and 2, mononuclear AgCN complexes are formed, in which silver(I) is coordinated by one cyanide and one chelating alkanediamine donor ligand. However, in the dinuclear adducts of 3 and 4, two AgCN units are connected by one alkane-1,n-diamine bridging ligand (n = 3, 4). The resulting molecules of 1-4 are cross-linked via N-H?N hydrogen bonds. Apart from these intermolecular contacts, comparatively short Ag(I)-Ag(I) distances of 3.182(1) Å (in 1), 3.267(1) Å (in 2), 3.023(2) Å (in 3) and 3.050(2) Å (in 4) occur.  相似文献   

7.
The reaction of 2-benzoylpyridine-N(4)-cyclohexylthiosemicarbazone [HBPCT, (1)] ligand with organotin(IV) chloride(s) lead to the formation of three new organotin(IV) complexes: [MeSnCl2(BPCT)] (2), [PhSnCl2(BPCT)] (3) and [Ph2SnCl(BPCT)] (4). The ligand (1) and its organotin(IV) complexes (2-4) have been synthesized and characterized by CHN analyses, molar conductivity, UV-Vis, FT-IR and 1H NMR spectral studies. The single crystal X-ray diffraction studies indicated that [PhSnCl2(BPCT)] (3) is six coordinated and adopts strongly a distorted octahedral configuration with the coordination through pyridine-N, azomethine-N and thiolato-S atoms of the ligand. The crystal system of [PhSnCl2(BPCT)] (3) is orthorhombic with space group P2ac2n and the unit cell dimensions: a = 28.1363(5) Å, b = 9.5970(2) Å, c = 9.4353(2) Å.  相似文献   

8.
Two novel bolaamphiphile based dicarboxylic ligands L1H2 and L2H2 are synthesized by desymmetrizing aromatic anhydrides. The corresponding Cu(II) complexes [Cu(L1) · EtOH]2 (1), [Cu(L2) · (CH3CN)]2 (2) are synthesized and characterized. The crystal structure obtained for (1) and (2) indicates that they are new class of tetralactone type macrocyclic Cu(II) chelate complexes with paddle wheel Cu2-acetate cage structure. The 1:1, Cu(II) and ligand ratio leads into formation of a novel binuclear Cu(II) tetracarboxylate complexes. The macrocyclic chelate ring size in compounds 1 and 2 was altered from [15] membered to [19] membered by introducing phthalyl and diphenyl head groups as discussed in detail. The single crystal X-ray structure shows the Cu(II)?Cu(II) distance 2.613(13) Å for 1 and 2.626(13) Å for 2, the corresponding room temperature EPR spectra recorded for powdered polycrystalline samples indicate the existence of Cu(II)?Cu(II) dimeric system.  相似文献   

9.
The crystalline compounds [LnCl2(L)(thf)2] [Ln = Ce (1), Tb (2), Yb (3)], [NdI2(L)(thf)2] (4), [LnCl(L′)2] [Ln = Tb (5), Yb (6) (a known compound)] and [YbCl(L′′)(μ-Cl)2Li(OEt2)2] (7) have been prepared [L = {N(C6H3Pri2-2,6)C(H)}2CPh, L′ = {N(SiMe3)C(Ph)}2CH, L′′ = {N(SiMe3)C(C6H4Ph-4)}2CH]. The X-ray molecular structures of 2-7 have been established; in each, the monoanionic ligand L, L′ or L′′ is N,N′-chelating and essentially π-delocalised. Each of 1-7 was prepared from the appropriate LnCl3, or for 4 [NdI3(thf)2], and an equivalent portion of the appropriate alkali metal [Li for 7, Na for 2, 3 and 5, or K for 1, 4 and 6] β-diiminate in thf; the isolation of exclusively 5 and 6 (rather than the L′ analogues of 2 or 3) is noteworthy, as is the structure of 7 which has no precedent in Group 3 or 4f metal β-diiminato chemistry.  相似文献   

10.
A series of mononuclear acetonitrile complexes of the type [Ru(CH3CN)(L)(terpy)]2+ {L = phen (1), dpbpy (3), and bpm (5)}, and their reference complexes [RuCl(L)(terpy)]+ {L = phen (2), dpbpy (4), and dpphen (6)} were prepared and characterized by electrospray ionization mass spectrometry, UV-vis spectroscopy, and cyclic voltammograms (CV). Abbreviations of the ligands (Ls) are phen = 1,10-phenanthroline, dpbpy = 4,4′-diphenyl-2,2′-bipyridine, bpm = 2,2′-bipyrimidine, dpphen = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, and terpy = 2,2′:6′,2″-terpyridine. The X-ray structures of the two complexes 2 and 3 were newly obtained. The metal-to-ligand charge transfer (MLCT) bands in the visible region for 1, 3, and 5 in acetonitrile were blue shifted relative to those of the reference complexes [RuCl(L)(terpy)]+. CV for all the [Ru(CH3CN)(L)(terpy)]2+ complexes showed the first oxidation wave at around 0.95 V, being more positive than those of [RuCl(L)(terpy)]+. The time-dependent-density-functional-theory approach (TDDFT) was used to interpret the absorption spectra of 1 and 2. Good agreement between computed and experimental absorption spectra was obtained. The DFT approach also revealed the orbital interactions between Ru(phen)(terpy) and CH3CN or Cl. It is demonstrated that the HOMO-LUMO energy gap of the acetonitrile ligand is larger than that of the Cl one.  相似文献   

11.
The distorted square-planar complexes [Pd(PNHP)Cl]Cl (1) (PNHP = bis[2-(diphenylphosphino)ethyl]amine), [M(P3)Cl]Cl [P3 = bis[2-(diphenylphosphino)ethyl]phenylphosphine; M = Pd (2), Pt (3)] and [Pt(NP3)Cl]Cl (5) (NP3 = tris[2-(diphenylphosphino)ethyl]amine), coexisting in the later case with a square-pyramidal arrangement, react with one equivalent of CuCl to give the mononuclear heteroionic systems [M(L)Cl](CuCl2) [L = PNHP, M = Pd (1a); L = P3, M = Pd (2a), Pt (3a); L = NP3, M = Pt (5a)]. The crystal structure of 3a confirms that Pt(II) retains the distorted square-planar geometry of 3 in the cation with P3 acting as tridentate chelating ligand, the central P atom being trans to one chloride. The counter anion is a nearly linear dichlorocuprate(I) ion. However, the five-coordinate complexes [Pd(NP3)Cl]Cl (4), [M(PP3)Cl]Cl (M = Pd (6), Pt (7); PP3 = tris[2-(diphenylphosphino)ethyl] phosphine) containing three fused five-membered chelate rings undergo a ring-opening by interaction with one (4, 6, 7) and two (6, 7) equivalents of CuCl with formation of neutral MCu(L)Cl3 [L = NP3, M = Pd (4a); L = PP3, M = Pd (6a), Pt (7a)] and ionic [MCu(PP3)Cl2](CuCl2) [M = Pd (6b), Pt (7b)] compounds, respectively. The heteronuclear systems were shown by 31P NMR to have structures where the phosphines are acting as tridentate chelating ligands to M(II) and monodentate bridging to Cu(I). Further additions of CuCl to the neutral species 6a and 7a in a 1:1 ratio resulted in the achievement of the ionic complexes 6b and 7b with ions as counter anions. It was demonstrated that the formation of heterobimetallic or just mononuclear mixed salt complexes was clearly influenced by the polyphosphine arrangement with the tripodal ligands giving the former compounds. However, complexes [M(NP3)Cl]Cl constitute one exception and the type of reaction undergone versus CuCl is a function of the d8 metal centre.  相似文献   

12.
Several five coordinate complexes of [(TPP)FeIII(L)] in which TPP is the dianion of tetraphenylporphyrin and L is the monoanion of phenylcyanamide (pcyd) (1), 2,5-dichlorophenylcyanamide (2,5-Cl2pcyd) (2), 2,6-dichlorophenylcyanamide (2,6-Cl2pcyd) (3), and 2,3,4,6-tetrachlorophenylcyanamide (2,3,4,6-Cl4pcyd) (4) have been prepared by the reaction of [(TPP)FeIIICl] with appropriate thallium salt of phenylcyanamide. Each of the complexes has been characterized by IR, UV-Vis and 1H NMR spectroscopic data. Dark red-brown needles of [(TPP)FeIII(2,6-Cl2pcyd)] (C51H31Cl2FeN6 · CHCl3) crystallize in the triclinic system. The crystal structure of Fe(III) compound shows a slight distortion from square pyramidal coordination with the 2,6-dichlorophenylcyanamide anion in the axial position through nitrile nitrogen atom. Iron atom is 0.47(1) Å out of plane of the porphyrin toward phenylcyanamide ligand. In non-coordinating solvents, such as benzene or chloroform, these complexes exhibit 1H NMR spectra that are characteristic of high-spin (S = 5/2) species. The X-ray crystal structure parameters are also consistent with high-spin iron(III) complexes. The iron(III) phenylcyanamide complexes are not reactive toward molecular oxygen; however, these complexes react with HCl and produce TPPFeIIICl.  相似文献   

13.
A series of pyrazolyl palladium(II), platinum(II) and gold(III) complexes, [PdCl2(3,5-R2bpza)] {R = H (1), R = Me (2), bpza = bis-pyrazolyl acetic acid}, [PtCl2(3,5-R2bpza)] {R = H (3a), R = Me (4)}, [AuCl2(3,5-R2bpza)]Cl {R = H (5a), R = Me (6a)} and [PdCl2(3,5-R2bpzate)] {R = Me (7)} have been synthesised and structurally characterised. Single crystal X-ray crystallography showed that the pyrazolyl ligands exhibit N^N-coordination with the metals. Anticancer activities of six complexes 1-6a were investigated against CHO cells and were found to have low activities. Substitution reactions of selected complexes 1, 2, 3a and 5a with l-cysteine show that the low anticancer activities compounds and that the rate of substitution with sulfur-containing compounds is not the cause of the low anticancer activities.  相似文献   

14.
Treatment of [Os3(μ-H)2(CO)10] with the chiral diphosphines BINAP, tolBINAP [(R)-2,2′-bis(di-4-tolylphosphino)-1,1′-binaphthyl], DIOP [(4R,5R)-(−)-O-isopropenylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane] affords [Os3(μ-H)2(CO)8(μ-L)] (L = BINAP (1), tolBINAP (2), DIOP (4)) in high yield. The X-ray structures for 1, 2 and 4 are reported, and structural and spectroscopic comparisons are made between these clusters and [Os3(μ-H)2(CO)8(μ-L)] (L = dppm (5), dppe (6), dppp (7)) which were synthesised similarly. Compounds 5 to 7 were previously synthesised by hydrogenation of 1,2-[Os3(CO)10(μ-L)] but the route from [Os3(μ-H)2(CO)10] is preferable. The H-bridged Os?Os distances are similar in 1, 2 and 4 indicating that these species are formally unsaturated 46-electron clusters. The P?P distances vary from 4.24 to 4.30 Å in 1 and 2, respectively, to 4.53 Å in 4 and there are related changes in the angles associated with the ligand set around the H-bridged osmium atoms. Introduction of the diphosphine ligands completely suppresses the ability to add CO, to insert acetylene to form a μ-η12-vinyl compound, and to exchange hydride ligands with styrene-d8, which are reactions characteristic of [Os3(μ-H)2(CO)10]. Clusters 2 and 5-7 were also used to examine the potential of natural abundance 187Os NMR spectroscopy through techniques based on inverse detection by HMQC, HSQC and HMBC spectroscopy.  相似文献   

15.
The dinuclear nickel(II) complex [Ni2L(Cl)]+ (1), where (L)2− represents a 24-membered binucleating hexamine-dithiophenolate ligand, reacts readily with primary and secondary amines RR′NH in the presence of CO2 (1 bar) to give dinuclear monoalkyl- and dialkylcarbamate complexes [Ni2L(O2CNRR′)]+ (R = H, R′ = CH2Ph (2), R = H, R′ = n-Bu (3), R = H, R′ = n-Oct (4), R = H, R′ = CH2CH2OH (5), R = R′ = Et (6), and R = R′ = CH2CH2OH (7)). Complexes 2-7 can also be prepared by the reaction of 1 with CO2(air)/amine. The carbamate complexes are hydrolyzed in methanolic solution to give the known alkylcarbonate complex [Ni2L(O2COMe)]+ (8). These conversions are less rapid than the transesterification reactions of 8, due to a less electron-demanding carboxyl C(carbamate) atom. All new complexes were either isolated as perchlorate or tetraphenylborate salts and fully characterized by elemental analysis, UV/Vis, and IR spectroscopy. The structures of 2[BPh4] and 7[BPh4] have also been determined by X-ray crystallography. They confirm the presence of μ1,3-bridging alkylcarbamate units in the products.  相似文献   

16.
Four new fluconazole-bridged zinc(II) and cadmium(II) complexes with dicarboxylate co-ligands, namely [Zn(HFlu)(TPA)]n (1), {[Cd(HFlu)2(TPA)]·2CH3OH}n (2), [Zn(HFlu)2(Suc)(H2O)2]·H2O (3), and [Cd(HFlu)2(Suc)(H2O)2]·H2O (4), have been synthesized and characterized by elemental analysis, IR, TG, and single-crystal X-ray diffraction (HFlu = 2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1-yl)-propan-2-ol, H2TPA = terephthalic acid, and H2Suc = succinic acid). Complex 1 displays a 2-D corrugated network with common (4,4) topology, in which two types of grids constructed by two bridging TPA dianions and two HFlu ligands are found. Complex 2 shows an unusual (3,6) coordination layer consisting of alternative PMPM Cd-HFlu helical chains in which the Cd(II) nodes are also fixed by terephthalate dianions in a cis fashion. The isostructural complexes 3 and 4 have 20-membered dimeric macrocyclic motifs with the Zn···Zn and Cd···Cd distances of 11.258(2) and 11.528(2) Å, respectively. The fluorescence and thermal stability of complexes 1-4 have also been investigated.  相似文献   

17.
[Pt(L)2(ox)] (1), [Pt(2-OMeL)2(ox)] (2), [Pt(3-OMeL)2(ox)] (3), [Pt(2,3-diOMeL)2(ox)] (4), [Pt(2,4-diOMeL)2(ox)] (5), [Pt(3,4-diOMeL)2(ox)] (6) and [Pt(3,5-diOMeL)2(ox)]·4H2O (7) platinum(II) oxalato (ox) complexes were synthesized using the reaction of potassium bis(oxalato)platinate(II) dihydrate with 2-chloro-N6-(benzyl)-9-isopropyladenine or its benzyl-substituted analogues (nL). The complexes 1-7, which represent the first platinum(II) oxalato complexes involving adenine-based ligands, were fully characterized by various physical methods including multinuclear and two dimensional NMR spectroscopy. A single-crystal X-ray analysis of [Pt(2,4-diOMeL)2(ox)]·2DMF (5·2DMF; DMF = N,N′-dimethylformamide), proved the slightly distorted square-planar geometry in the vicinity of the Pt(II) ion with one bidentate-coordinated oxalate dianion and two adenine derivatives (nL) coordinated to the Pt(II) centre through the N7 atom of an adenine moiety, thereby giving a PtN2O2 donor set. In vitro cytotoxicity of the prepared complexes was tested by an MTT assay against osteosarcoma (HOS) and breast adenocarcinoma (MCF7) human cancer cell lines. The best results were achieved for the complexes 2 and 5 in the case of both cell lines, whose IC50 values equalled 3.6 ± 1.0, and 4.3 ± 2.1 μM (for 2), and 5.4 ± 3.8, and 3.6 ± 2.1 μM (for 5), respectively. The IC50 equals 9.2 ± 1.5 μM against MCF7 cells in the case of 1. The in vitro cytotoxicity of the mentioned complexes significantly exceeded commercially used platinum-based anticancer drugs cisplatin (34.2 ± 6.4 μM and 19.6 ± 4.3 μM) and oxaliplatin (> 50.0 μM for both cancer cell lines).  相似文献   

18.
Schiff bases of 2-hydroxybenzophenone (HBP) (C6H5)(2-HOC6H4)CN(CH2)nEAr (L1/L2: E = S, Ar = Ph, n = 2/3; L3/L4: E = Se, Ar = Ph, n = 2/3; L5/L6: E = Te, Ar = 4-MeOC6H4, n = 2/3) and their complexes [PdCl(L-H)] (L = L1L6; 1, 2, 3, 5, 7, 11), [PtCl(L3-H/L5-H)] (4/8), [PtCl2(L4/L6)2] (6/12), [(p-cymene)RuCl(L5/L6)]Cl (9/13) and [HgBr2(L5/L6)2] (10/14) have been synthesized and characterized by proton, carbon-13, selenium-77 and tellurium-125 NMR, IR and mass spectra. Single crystal structures of L1, 1, 3, 4, 5 and 7 were solved. The Pd-E bond distances (Å): 2.2563(6) (E = S), 2.3575(6)−2.392(2) (E = Se); 2.5117(5)−2.5198(5) (E = Te) are near the lower end of the bond length range known for them. The Pt-Se bond length, 2.3470(8) Å, is also closer to the short values reported so far. The Heck and Suzuki reaction were carried out using complexes 1, 3, 5 and 7 as catalysts under aerobic condition. The percentage yields for trans product in Heck reaction were found upto 85%.  相似文献   

19.
Four new polymeric frameworks, [Co(bbbi)(L1)] (1), [Cu(bbbi)(L1)] (2), [Co(bbbi)(L2)] (3) and [Ni(bbbi)(L2)] (4), (bbbi = 1,1-(1,4-butanediyl)bis-1H-benzimidazole, H2L1 = 5-nitroisophthalic acid and H2L2 = itaconic acid) have been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Complexes 1 and 2 are isomorphous, and they can be described as CsCl-type net utilizing bimetal cores as eight-connected nodes, the bridging bbbi ligands and L1 serve as spacers to yield a unique eight-connected net with 42464 topology. Complexes 3 and 4 are isomorphous. It is interesting that 3D frameworks containing meso-helical chains (left- and right helical chains) have been observed in 3 and 4, in which meso-helical chains are alternately linked by bbbi ligands coordinating to Co1(Ni1) cations with the zigzag shaped conformation to generate a 3D binodal (4,4)-connected net with {53·6·82}{52·64} topology structure. The bbbi ligands adopt three conformations, namely, the completely “M” shaped conformation in 1 and 2, the zigzag shaped conformation and “Ω” shaped conformation in 3 and 4. The influence of carboxylate anions with different flexibility on the construction of different network topology in the self-assembly process has been discussed. Moreover, the thermal stabilities and the voltammetric behavior of complexes 1-4 have been reported.  相似文献   

20.
Coordinating abilities of 4R-1,2,4-triazole derivatives (R = glycine ethyl ester (L1), glycine (L2), diethylamino malonate (L3), methionine (L4) and diethyl aminomethylphosphonate (L5)) towards ZnII ions have been studied in solution, in solid state and versus three zinc-β-lactamases. The crystal structure of [Zn3(L4)6(H2O)6] (6) is described; it is the first crystal structure involving a 1,2,4-triazole functionalized methionine. It forms a trinuclear complex with central zinc octahedrally coordinated by only L4, whereas terminal zinc ions coordination sphere is completed by three water molecules. L4 exhibits a dual functionality of a bridging bidentate ligand as well as an anion. A dense hydrogen bonding network connects these trinuclear entity into a 3D supramolecular network. The ZnII ions in 6 are held at equidistance (3.848 Å) which coincidently matches with the corresponding Zn?Zn distance in the binuclear zinc enzyme from Bacillus cereus (3.848 and 4.365 Å). Among L1-L5 screened for β-lactamase assay, L4 shows modest inhibition for BcII enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号