首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pH- and time-dependent reaction of cis-[PtCl2(NH3)2] with the methionine- and histidine-containing peptides H-Gly-Met-OH, H-Gly-Gly-Met-OH, Ac-His-Gly-Met-OH, and Ac-His-(Ala)3-Met-OH at 313 K has been investigated by ion-pairing reverse phase HPLC and NMR spectroscopy. For equimolar solutions (c=0.8 mM, pH approximately equals 3 or 8.8), initial formation of the kinetically favored S-bound complex is followed by relatively rapid metallation of the neighboring methionine amide nitrogen NM to afford a kappa2NM,S six-membered chelate. The strong trans effect of the methionine S then favors facile NH3 substitution, leading to generation of tridentate complexes such as [Pt(H-Gly-MetH(-1)-OH)-kappa3NG,NM,S)(NH3)]+ or [Pt(H-Ac-His-GlyH(-1)-MetH(-1)-OH-kappa3NG,NM,S)(NH3)]. In the case of H-Gly-Gly-Met-OH, this reaction is accompanied by loss of a second NH3 ligand in alkaline solution to generate the tetradentate kappa4NG1,NG2,NM,S species. In contrast, cleavage of the backbone C(O)-N bond to the second metallated amide nitrogen after t>100 h is common to the tridentate complexes of the tri- and pentapeptides at pH<5. Although an imidazole-coordinated kappa2N3H,S macrochelate is formed throughout the whole range 2.5 < or = pH < or = 10 for Ac-His-Gly-Met-OH, it slowly decays (t=10-1000 h) to the thermodynamically more stable tridentate kappa3NG,NM,S complex. All major final products were separated and fully characterized by NMR and MS.  相似文献   

2.
The pH- and time-dependent reactions of the anticancer drug cisplatin, cis-[PtCl(2)(NH(3))(2)], with the peptides Ac-Gly-Met-Gly-OH, Ac-Ser-Met-OH and Ac-Met-His-OH (Gly=glycyl, Met=methionyl, Ser=seryl, His=histidyl) at 313 K have been investigated by high-performance liquid chromatography, nuclear magnetic resonance and mass spectrometry. In the major equimolar reaction pathway for Ac-Gly-Met-Gly-OH, rapid anchoring at the methionine sulphur (kappaS) is followed by successive metalations of the methionine N(M) and glycyl N(G1) amide nitrogens in N-terminal direction to afford bidentate kappa(2)S,N(M) and tridentate kappa(3)S, N(M),N(G1) complexes. Cleavage of acetic acid at the second upstream amide bond is observed after 10 h leading to slow formation of [Pt(H-Gly-MetH(-1)-Gly-OH-kappa(3)S,N(M),N(G1))(NH(3))](+) at pH<6. [Pt(H-Ser-MetH(-1)-OH-kappa(3)S,N(M),N(S))(NH(3))](+) results from an analogous cisplatin-mediated regioselective hydrolytic cleavage reaction for Ac-Ser-Met-OH in moderately acid solution (pH<4). After passing through a minimum at pH 4.4, the concentration of the cleavage product in the reaction mixture after 500 h increases steadily on raising the pH and release of acetic acid is effectively quantitative for 7pH9.5. A competing mechanism involving nucleophilic attack of the serine side chain on the acetyl function can be inferred for pH>6 by the HPLC detection of a second intermediate kappa(3)S,N(M),N(S) species. In striking contrast, the reaction of cisplatin with Ac-Met-His-OH leads to release of acetylmethionine and formation of a final histidine product cis-[PtCl(H-His-OH-kappa(2)N3,N(H)) (NH(3))](+) at pH<6 by a kappaS-->kappa(2)S, N3-->kappa(3)S, N(H),N3-->kappa(2)N3,N(H)(H-His-OH) pathway.  相似文献   

3.
The reaction behavior of the antitumor active metallocene dihalide Cp2MoCl2 (Cp = η5-cyclopentadienyl) towards AcHis, AcHis(1-Me), AcHis(3-Me), His-Gly, AcHis-Gly-His, AcMet, Gly-Met-Gly and cyclo-Met-Met has been studied in solution at 2.5 ? pD ? 7.4 by using 1H NMR spectroscopy. The histidine-containing substrates were found to bind the Cp2Mo2+ unit through the terminal carboxylate group or through the N1 nitrogen of the imidazole ring, depending on the pD value. At physiological pH, coordination takes place exclusively at the imidazole ring with the percentage of Cp2Mo2+-His adducts in 1:1 mixtures being about 70%. By contrast, the thioether group in the side chain of methionine has a very low affinity for the Cp2Mo2+ group. Monodentate S-coordination could not be detected. For AcMet, binding through the carboxylate group was observed as the only coordination mode, while in the case of Gly-Met-Gly Mo-S interaction occurs in combination with carboxylate coordination leading to a S,O-macrochelate in low yield. Coordination to methionine peptides only takes place at pD ? 6, while at physiological pH interactions with the weak donor sites are not observed due to predominating dimerization of [Cp2Mo(H2O)(OH)]+ to [Cp2Mo(μ-OH)2MoCp2]2+. At c(Cl) = 100 mM competitive Cl coordination reduces the amount of carboxylate and S,O-coordination significantly, while imidazole coordination is not affected.  相似文献   

4.
The pH- and time-dependent reaction of the anticancer drug carboplatin, [Pt(cbdca-kappa(2)O,O')(NH(3))(2)] (cbdca=cyclobutane-1,1-dicarboxylate), with the tripeptides H-glyglymet-OH (glycylglycyl-L-methionine) and Ac-glyglymet-OH at 313 K was investigated by high-performance liquid chromatography, NMR and mass spectrometry. The relative stability of the initial ring-opened kappaS complex [Pt(cbdca-kappaO)(Ac-glyglymet-OH-kappaS)(NH(3))(2)] leads to increased formation of the kinetically favoured kappaS:kappaS' bis-adduct [Pt(Ac-glyglymet-OH-kappaS)(2)(NH(3))(2)](2+) in comparison with cisplatin. As a result a second 1:2 reaction pathway kappaS-->kappaS:kappaS'-->kappa(2)N(M), S:kappaS'-->kappa(3)N(G2),N(M), S:kappaS', where N(M) and N(G2) represent, respectively, metallated methionine and glycine nitrogen atoms, competes with the 1:1 route kappaS-->kappa(2)N(M), S-->kappa(3)N(G2),N(M), S also observed for cisplatin. Cleavage of N-acetylglycine at the backbone C(O)-N bond to the second gly residue (G2) is observed after 100 h for the respective tridentate complexes [Pt(Ac-glyglyH(-1)metH(-1)-OH-kappa(3)N(G2),N(M), S) (Ac-glyglymet-OH-kappaS)] and [Pt(Ac-glyglyH(-1)metH(-1)-OH-kappa(3)N(G2),N(M), S)(NH(3))] at pH <5.2. The longevity of the initial kappaS complex leads to about an eight-fold increase in the rate of formation of the kappaN7:kappaN7' bis-adduct [Pt(5'-GMP-kappaN7)(2)(NH(3))(2)](2-) for the reaction of carboplatin with 5'-GMP(2-) at pH 7 in the presence of Ac-glyglymet-OH. A mixed-ligand kappaS:kappaN7 species [Pt(5'-GMP-kappaN7)(Ac-glyglymet-OH-kappaS)(NH(3))(2)] provides the major precursor for this 1:2 nucleotide complex and kappaN7 coordination of 5'-GMP(2-) is also observed in the kappa(2)N(M),S:kappaN7 complex [Pt(5'-GMP-kappaN7)(Ac-glyglymetH(-1)-OH-kappa(2)N(M),S)(NH(3))(2)](-) formed by substitution of the ammine ligand trans to the methionine sulphur. As the intermediate kappaS:kappaN7 species is formed rapidly within the first 10 h of reaction, these results suggest that the transfer reaction pathway kappaS-->kappaS:kappaN7-->kappaN7:kappaN7' involving kappaS platinated peptides could play an important role in accelerating the rate of DNA binding for carboplatin.  相似文献   

5.
The reactivity of [Cu2+·Lys-Gly-His-Lys-NH2]2+ and [Cu2+·Lys-Gly-His-Lys]+ toward tRNAPhe has been evaluated. The amidated and carboxylate forms of the copper peptides display complex binding behavior with strong and weak sites evident (, for the amide form; and , for the carboxylate form), while Cu2+(aq) yielded and . The time-dependence of the reaction of [Cu2+·Lys-Gly-His-Lys]+ and [Cu2+·Lys-Gly-His-Lys-NH2]2+ with tRNAPhe yielded kobs ∼ 0.075 h−1 for both complexes. HPLC analysis of the reaction products demonstrated guanine as the sole base product. Mass spectrometric data shows a limited number of cleavage fragments with product peak masses consistent with chemistry occurring at a discrete site defined by the structurally contiguous D and TΨC loops, and in a domain where high affinity magnesium centers have previously been observed to promote hydrolysis of the tRNAPhe backbone. This cleavage pattern is more selective than that previously observed by Long and coworkers for nickel complexes of a series of C-terminally amidated peptides (Gly-Gly-His, Lys-Gly-His, and Arg-Gly-His), and may reflect variations in structural recognition and a distinct reaction path by the nickel derivatives. The data emphasizes the optimal positioning of the metal-associated reactive oxygen species, relative to scissile bonds, as a major criterion for development of efficient catalytic nucleases or therapeutics.  相似文献   

6.
Four copper(II) complexes [Cu2(1,3-tpbd)Cl4]·EtOH (1), {[Cu2(1,3-tpbd)(μ-Cl)2](ClO4)2(H2O)4.5 (NaClO4)} (2), [Cu2(1,3-tpbd)(1,10-phen)2(H2O)2](ClO4)4 (3) and [Cu2(1,3-tpbd)(2,2′-bpy)2(H2O)2](ClO4)4 (4) (1,3-tpbd = N,N,N′,N′-tetrakis(2-pyridylmethyl)benzene-1,3-diamine) have been synthesized and characterized by X-ray single crystal structure analysis. Variable-temperature magnetic susceptibility studies (2-300 K) indicate the existence of antiferromagnetic coupling between the copper(II) ions in complexes 2 and 3. The interactions of the four complexes with calf thymus DNA (CT-DNA) have been investigated by UV absorption, fluorescent spectroscopy, circular dichroism spectroscopy, viscosity and cyclic voltammetry, and the modes of CT-DNA binding to the complexes have been proposed. Furthermore, DNA cleavage activities by the four complexes were performed in the presence and absence of external agents, the results indicate that their cleavage activities have been promoted in the presence of external agents. Mechanism investigation shows that the four complexes could cleave DNA through both oxidative and hydrolytic processes. In the four copper(II) complexes, complex 2 showed highest cleavage activity with the pseudo-Michaelis-Menten kinetic paraments kcat = 5.16 h−1 and Km = 3.6 × 10−5 M.  相似文献   

7.
Post-translational processing of host defense cathelicidin peptide LL-37 in human sweat and skin generates new antimicrobial peptides. To understand structure and mechanism of action of these LL-37 derivatives, this article presents the cloning and expression of SK-29, KR-20, LL-29, and LL-23. We also provide a two-step chromatographic purification protocol of general use. First, resin-bound fusion proteins were directly subject to efficient upstream thrombin cleavage to release peptide-containing fragments. The resin, resin-bound carrier, and residual uncut fusion proteins were subsequently removed by centrifugation. Second, the peptide-containing fragments were digested with formic acid to release the required peptides followed by reverse-phase HPLC purification. We obtained 1.7 mg of recombinant SK-29, 0.7 mg KR-20, 2.1mg LL-29, and 5.4 mg LL-23, each from one liter of rich medium culture. Analytical HPLC, MS, and NMR indicated high quality of all the purified peptides. Antibacterial assays revealed the minimum inhibitory concentrations (MIC) for SK-29, KR-20, LL-29, and LL-23 are 80, 60, 40, and >150 microM, respectively. The poorest toxicity of LL-23 to Escherichia coli K12 correlates with its higher level of bacterial expression, reduced aggregation tendency, and loss of binding to a yet-to-be-characterized molecular target. Thus, on-resin protein cleavage facilitates the evaluation of peptide aggregation ability and may allow the identification of potential new bacterial targets of antimicrobial peptides. On-resin cleavage may be applied to the release of membrane proteins expressed as fusions.  相似文献   

8.
9.
Euglena gracilis Klebs (strain Z) was maintained in division synchronized autotrophic culture, receiving either air (low CO2) or 5% CO2 in  相似文献   

10.
Cell-penetrating peptides can translocate across the plasma membrane of living cells and thus are potentially useful agents in drug delivery applications. Disulfide-rich cyclic peptides also have promise in drug design because of their exceptional stability, but to date only one cyclic peptide has been reported to penetrate cells, the Momordica cochinchinensis trypsin inhibitor II (MCoTI-II). MCoTI-II belongs to the cyclotide family of plant-derived cyclic peptides that are characterized by a cyclic cystine knot motif. Previous studies in fixed cells showed that MCoTI-II could penetrate cells but kalata B1, a prototypic cyclotide from a separate subfamily of cyclotides, was bound to the plasma membrane and did not translocate into cells. Here, we show by live cell imaging that both MCoTI-II and kalata B1 can enter cells. Kalata B1 has the same cyclic cystine knot structural motif as MCoTI-II but differs significantly in sequence, and the mechanism by which these two peptides enter cells also differs. MCoTI-II appears to enter via macropinocytosis, presumably mediated by interaction of positively charged residues with phosphoinositides in the cell membrane, whereas kalata B1 interacts directly with the membrane by targeting phosphatidylethanolamine phospholipids, probably leading to membrane bending and vesicle formation. We also show that another plant-derived cyclic peptide, SFTI-1, can penetrate cells. SFTI-1 includes just 14 amino acids and, with the exception of its cyclic backbone, is structurally very different from the cyclotides, which are twice the size. Intriguingly, SFTI-1 does not interact with any of the phospholipids tested, and its mechanism of penetration appears to be distinct from MCoTI-II and kalata B1. The ability of diverse disulfide-rich cyclic peptides to penetrate cells enhances their potential in drug design, and we propose a new classification for them, i.e. cyclic cell-penetrating peptides.  相似文献   

11.
A comparative study of various procedures for tryptophanyl peptide bond cleavage by BNPS-skatole [2-(2-nitrophenyl)-3-methyl-3-bromoindolenine] was carried out on native and on reduced and alkylated bovine -lactoglobulin (BLG). The reaction yield and the composition of the derived products were studied in acetic acid, trifluoroacetic acid (TFA), and ethanol/TFA. For BNPS-skatole removal, extraction by water or ethyl ether was compared with dialysis and gel filtration. The three expected peptides (1–19, 20–61, 62–162) and incomplete cleaved fragments (1–61, 20–162) were separated and characterized by electrophoresis, reverse-phase high-performance liquid chromatography, and mass spectrometry. The highest hydrolysis yield (67.4%) occurred with native BLG cleaved in 88% acetic acid at 47°C for 60 min. Subsequent water extraction and gel filtration led to total recovery of the material, but reagent elimination was only quantitative after gel filtration. Cleavage specificity was ensured by mass spectrometry and the amino acid composition of peptides 1–19 and 62–162. The chemical side reactions identified are discussed.  相似文献   

12.
The chaperone protein CopC from Pseudomonas syringae features high-affinity binding sites (K D ~ 10−13 M) for both CuI (Met-rich) and CuII (His-rich). When presented with these sites in the apoprotein, electrospray ionisation mass spectrometry confirmed that cis-Pt(NH3)2Cl2 (cisplatin) and the fragments [PtIIL]2+ (L is 1,2-diaminoethane, 2,2′-bipyridine) occupied the CuI site specifically in the 1:1 Pt–CopC adducts (purified by cation-exchange chromatography). The cis-Pt(NH3)2 fragment was not present in these adducts (the dominant product for cisplatin was Pt–CopC in which all original ligands were displaced), while bidentate ligands L were retained in LPt–CopC adducts. In the context of the Met-rich CuI pump Ctr1 as a significant entry point for cisplatin into mammalian cells, the present work confirms the ability of Met-rich sites in proteins to remove all ligands from cisplatin. It focuses attention on the potential of proteins that are part of the natural copper transport pathways to sequester the drug. These pathways are worthy of further study at the molecular level. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Camel milk (CM) has good nutritive value, in addition to its antigenotoxic and anticytotoxic effects. Therefore the aim of this investigation was to evaluate the capacity of CM to inhibit the micronucleated polychromatic erythrocytes (MnPCEs) in the bone marrow and improve the mitotic activity produced by cisplatin. Cisplatin is one of the most widely used antineoplastic drugs in the treatment of cancer. The 70 adult male Swiss albino mice were divided into seven groups:
  • Gr. I: treated with distilled water and considered as a control group.
  • Gr. II: treated with camel milk (33 ml/kg, b.w).
  • Gr. III: treated previously with cisplatin (0.5 mg/kg, b.w).
  • Gr. IV: treated with camel milk and followed after 2 h. with cisplatin (33 ml/kg → 0.5 mg/kg, b.w).
  • Gr. V: treated with camel milk and cisplatin at the same time (33 ml/kg + 0.5 mg/kg, b.w).
  • Gr. VI: treated with an acute single dose of cisplatin (2.5 mg/kg, b.w).
  • Gr. VII: treated with camel milk prior and followed with an acute single dose of cisplatin (33 ml/kg → 2.5 mg /kg, b.w). The animals were sacrificed 24 h after cisplatin injection. The pretreatment with CM dose caused a significant decrease (P < 0.001) in the frequency of MnPCEs and increase (P < 0.001) in the mitotic index (MI) induced by cisplatin when compared with the groups treated with cisplatin alone. The possible explanation for the antigenotoxic and anticytotoxic effects observed in the pretreatment with CM is ascribed to its contents. In conclusion, from the findings we suggest that this milk has some antioxidant effect, and the antigenotoxic mechanism of this milk needs to be explored further before their use during cisplatin chemotherapy.
  相似文献   

14.
Cathepsin D: cleavage of soluble collagen and crosslinked peptides   总被引:1,自引:0,他引:1  
  相似文献   

15.
Members of the double-stranded RNA (dsRNA) specific RNase III family are known to use a conserved dsRNA-binding domain (dsRBD) to distinguish RNA A-form helices from DNA B-form ones, however, the basis of this selectivity and its effect on cleavage specificity remain unknown. Here, we directly examine the molecular requirements for dsRNA recognition and cleavage by the budding yeast RNase III (Rnt1p), and compare it to both bacterial RNase III and fission yeast RNase III (Pac1). We synthesized substrates with either chemically modified nucleotides near the cleavage sites, or with different DNA/RNA combinations, and investigated their binding and cleavage by Rnt1p. Substitution for the ribonucleotide vicinal to the scissile phosphodiester linkage with 2'-deoxy-2'-fluoro-beta-d-ribose (2' F-RNA), a deoxyribonucleotide, or a 2'-O-methylribonucleotide permitted cleavage by Rnt1p, while the introduction of a 2', 5'-phosphodiester linkage permitted binding, but not cleavage. This indicates that the position of the phosphodiester link with respect to the nuclease domain, and not the 2'-OH group, is critical for cleavage by Rnt1p. Surprisingly, Rnt1p bound to a DNA helix capped with an NGNN tetraribonucleotide loop indicating that the binding of at least one member of the RNase III family is not restricted to RNA. The results also suggest that the dsRBD may accommodate B-form DNA duplexes. Interestingly, Rnt1p, but not Pac1 nor bacterial RNase III, cleaved the DNA strand of a DNA/RNA hybrid, indicating that A-form RNA helix is not essential for cleavage by Rnt1p. In contrast, RNA/DNA hybrids bound to, but were not cleaved by Rnt1p, underscoring the critical role for the nucleotide located at 3' end of the tetraloop and suggesting an asymmetrical mode of substrate recognition. In cell extracts, the native enzyme effectively cleaved the DNA/RNA hybrid, indicating much broader Rnt1p substrate specificity than previously thought. The discovery of this novel RNA-dependent deoxyribonuclease activity has potential implications in devising new antiviral strategies that target actively transcribed DNA.  相似文献   

16.
The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability.  相似文献   

17.
Stress-activated protein (SAP) kinases and the mitochondrial pro-apoptotic Bcl-2 protein Bak are important regulators of apoptosis. Reduced expression of Bak increases cellular resistance to the anticancer agent cisplatin, and we report here that mouse embryo fibroblasts deficient in the SAP kinase jnk1 are highly resistant to apoptosis induced by cisplatin. When human melanoma cells were treated with cisplatin, Bak function was found to be regulated in two distinct steps by two SAP kinases, MEKK1 and JNK1. The first of these steps involves MEKK1-controlled conformational activation of Bak. The second step leads to formation of 80-170 kDa Bak complexes correlating with apoptosis, and is controlled by JNK1. Inhibition of MEKK1 blocked the initial Bak conformational activation but did not block JNK1 activation, and deficiency in, or inhibition of, JNK1 did not prevent conformational activation of Bak. Furthermore, inducible expression of a constitutively active form of MEKK1 led to Bak conformational activation, but not to 80-170 kDa complexes. Consequently, apoptosis was delayed unless JNK was exogenously stimulated, indicating that Bak conformational activation is not necessarily an apoptotic marker. The two-step regulation of Bak revealed here may be important for tight control of mitochondrial factor release and apoptosis.  相似文献   

18.
Tridentate pyrazole-containing ligands of the Schiff base type, SalPz — HL1, Cl2SalPz — HL2 and I2SalPz — HL3, were used to prepare a series of new Cu(II) complexes (CuSalPz — 1, CuCl2SalPz — 2 and CuI2SalPz — 3). These new complexes have been studied by different analytical techniques (electrospray ionization mass spectrometry (ESI-MS), elemental analysis, FT-IR and EPR). The spectroscopic properties of 1-3 are consistent with the formation of Cu(II) complexes coordinated by monoanionic and tridentate (N,N,O)-chelators, behaving as monomeric species in aqueous solution, as shown by EPR studies. Crystals of 2 and 3, obtained by slow concentration of methanolic solutions of the compounds, were also analyzed by X-ray diffraction analysis. The X-ray structural study has shown that 2 crystallized as a dinuclear compound, [Cu2(μ-Cl)2(Cl2SalPz)2], while the solid state structure determined for 3 is best described by monomeric units of [CuCl(I2SalPz)] displaying short Cu···Cl intermolecular contacts. The in vitro evaluation of 1-3 comprised the study of their DNA-cleaving ability using plasmid DNA and the assessment of their cytotoxic activity against several human cancer cell lines (PC-3 prostate, MCF-7 breast and A2780 and A2780cisR-ovary). The studies with plasmid DNA have shown that 2 and 3 induce extensive DNA cleavage in the presence of different additives. The cytotoxic activity of 2 and 3 is comparable to the one presented by cisplatin, with the exception of the A2780 cell line where cisplatin is more active. It has been found that the introduction of halogen substituents in the phenolate rings of the chelators enhanced the cytotoxicity of the respective Cu(II) complexes.  相似文献   

19.
Rabbit myelin basic protein (BP) was subjected to partial cleavage with plasmin, and 15 cleavage products were isolated by a combination of gel filtration and ion-exchange chromatography. Their identification was achieved by amino acid analysis and tryptic peptide mapping, supplemented in some instances by carboxy-terminal analyses with carboxypeptidases A, B, and Y and amino-terminal analyses with dipeptidyl aminopeptidase I. The results showed that major plasmic cleavage sites included the Lys89-Asn90, Lys133-Ser134, and Lys153-Leu154 bonds. Cleavages also occurred at the Arg31-His32, Lys53-Arg54, and Arg25-His26 bonds, but these appeared to be less extensive. A large number of additional peptides were produced in relatively low yield. The smaller of these were isolated from heterogeneous fractions by high-voltage electrophoresis-TLC. Amino acid analysis of these peptides showed that minor cleavage sites included the Arg9-His10, Lys13-Tyr14, Lys103-Gly104, Lys137-Gly138, Lys140-Gly141, and Arg160-Ser161 bonds. In spite of a lower selectivity toward peptide bonds in BP as compared with pepsin, cathepsin D, and thrombin, plasmin has the advantage over the former proteinases in that it does not cleave at or near the Phe44-Phe45 bond. Instead it cleaves at the Arg31-His32 and Lys53-Arg54 bonds, thus preserving the entire hydrophobic sequence Ile-Leu-Asp-Ser-Ile-Gly-Arg-Phe-Phe as well as short sequences to either side.  相似文献   

20.
Jahani-Asl A  Basak A  Tsang BK 《FEBS letters》2007,581(16):2883-2888
Here, we show for the first time that Akt1 is cleaved in vitro at the caspase-3 consensus site DQDD(456) downward arrow SM. Our data suggest QEEE(116) downward arrow E(117) downward arrow MD, EEMD(119) downward arrow, TPPD(453) downward arrow QD and DAKE(398) downward arrow IM as novel non-consensus caspase-3 cleavage sites. More importantly, we demonstrate that phosphorylation of Akt1 modulates its cleavage in a site-specific manner: Resistance to cleavage at site DAKE(398) (within the kinase domain) in response to phosphorylation suggests a possible mechanism by which the anti-apoptotic role of Akt1 is regulated. Our result is important in biological models which rely on Akt1 for cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号