首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are cases of development of a convulsive syndrome at influence of electromagnetic field (EMF) in physiotherapy practice, and in conditions of a professional work. There is a point of view that EMF can render medical effect at treatment of a epilepsy syndrome. Some publications specify on develop of epilepsy convulsions in experiment at EMF of various frequencies exposure. Four conditions which can promote development of convulsions at EMF exposure are considered.  相似文献   

2.
Reduced reproductive success of birds nesting near power lines has been documented but never directly attributed to electromagnetic fields (EMFs). Laboratory studies have identified EMF effects on embryonic development, but reproductive success of wild birds is dependent on additional factors, including fertility, egg size, hatching, and fledging success. We tested whether EMFs affect reproductive success of birds. Captive American kestrels (Falco sparverius) were bred for one season per year for 2 yr under either controlled or EMF conditions. EMF exposure was equivalent to that experienced by wild reproducing kestrels and was weakly associated with reduced egg laying in 1 yr only. In both years fertility was higher, but hatching success was lower in EMF pairs than control pairs. Fledging success was higher in EMF pairs than control pairs in 1995 only. Egg composition and embryonic development were examined in 1 yr only, but hatchlings were measured in both years. EMF eggs were larger, with more yolk, albumen, and water, but had thinner egg shells than control eggs. Late-term EMF embryos were larger and longer than control embryos, although hatchlings were similar in body mass and size. EMF exposure affected reproductive success of kestrels, increasing fertility, egg size, embryonic development, and fledging success but reducing hatching success.  相似文献   

3.
We evaluated the effects of 50 Hz pulsed electromagnetic fields (EMFs) with a peak magnetic field of 3 mT on human astrocytoma cells. Our results clearly demonstrate that, after the cells were exposed to EMFs for 24 h, the basal [Ca(2+)](i) levels increased significantly from 124+/-51 nM to 200+/-79 nM. Pretreatment of the cells with 1.2 microM substance P increased the [Ca(2+)](i) to 555+/-278 nM, while EMF exposure caused a significant drop in [Ca(2+)](i) to 327+/-146 nM. The overall effect of EMFs probably depends on the prevailing Ca(2+) conditions of the cells. After exposure, the proliferative responses of both normal and substance P-pretreated cells increased slightly from 1.03 to 1.07 and 1.04 to 1.06, respectively. U-373 MG cells spontaneously released about 10 pg/ml of interleukin-6 which was significantly increased after the addition of substance P. Moreover, immediately after EMF exposure and 24 h thereafter, the interleukin-6 levels were more elevated (about 40%) than in controls. On the whole, our data suggest that, by changing the properties of cell membranes, EMFs can influence Ca(2+) transport processes and hence Ca(2+) homeostasis. The increased levels of interleukin-6 after 24 h of EMF exposure may confirm the complex connection between Ca(2+) levels, substance P and the cytokine network.  相似文献   

4.
The hypothesis that exposure to a certain combination of static and alternating electromagnetic fields (EMFs) results in an increase in motility of the marine diatom Amphora coffeaeformis was tested. Diatom motility in three strains of A. coffeaeformis was positively correlated with extracellular calcium ion (Ca2+) concentration. The test apparatus consisted of two pairs of Helmholtz coils supported around the stage of a microscope linked to a video recorder and monitor. This system allowed real-time in vivo recordings of diatom speed under EMF and control exposures. The EMFs were calculated at calcium resonance values, previously found to cause enhanced motility. Computerised image analysis was used to calculate the distance moved by individual diatoms in 2-min periods before, during and after EMF or sham-EMF (control) exposure. The addition of EMF caused no significant increase in diatom motility. The results are discussed in relation to the use of diatom motility to measure EMF exposure effects.  相似文献   

5.
It has been recently established that low-frequency electromagnetic field (EMFs) exposure induces biological changes and could be associated with increased incidence of cancer, while the issue remains unresolved as to whether high-frequency EMFs can have hazardous effect on health. Epidemiological studies on association between childhood cancers, particularly leukemia and brain cancer, and exposure to low- and high-frequency EMF suggested an etiological role of EMFs in inducing adverse health effects. To investigate whether exposure to high-frequency EMFs could affect in vitro cell survival, we cultured acute T-lymphoblastoid leukemia cells (CCRF-CEM) in the presence of unmodulated 900 MHz EMF, generated by a transverse electromagnetic (TEM) cell, at various exposure times. We evaluated the effects of high-frequency EMF on cell growth rate and apoptosis induction, by cell viability (MTT) test, FACS analysis and DNA ladder, and we investigated pro-apoptotic and pro-survival signaling pathways possibly involved as a function of exposure time by Western blot analysis. At short exposure times (2-12 h), unmodulated 900 MHz EMF induced DNA breaks and early activation of both p53-dependent and -independent apoptotic pathways while longer continuous exposure (24-48 h) determined silencing of pro-apoptotic signals and activation of genes involved in both intracellular (Bcl-2) and extracellular (Ras and Akt1) pro-survival signaling. Overall our results indicate that exposure to 900 MHz continuous wave, after inducing an early self-defense response triggered by DNA damage, could confer to the survivor CCRF-CEM cells a further advantage to survive and proliferate.  相似文献   

6.
In our environment, we have numerous chances to be exposed to not only electromagnetic fields (EMFs) but also many chemicals containing mutagens. Therefore, the aim of this study was to estimate whether rat’s exposure to cadmium and/or EMFs could cause oxidative damage to molecular structure of proteins and whether and to what extent the effects of co-exposure differ from those observed under the treatment with each exposure alone. Thirty-two rats were divided into four groups. Group 1 was termed as control, group 2 was treated with cadmium (3.0?mg/Kg), group 3 was exposed to EMF (10?mT/h/day) and group 4 was treated with cadmium and exposed to EMF. Protein carbonyls (PCO) in the plasma as a marker of oxidative protein damage and total oxidant status (TOS), as well as electrical conductivity and SDS electrophoresis to estimate changes in molecular structure of protein, were determined. The exposure to Cd and/or EMF led to oxidative protein damage (increased PCO and TOS) accomplished by increased stress of electrical charges on the surface of the protein molecule (increased electrical conductivity) and changes in the molecular structure of protein. The effects were more pronounced after treatment with both Cd and EMF than at the treatment with each exposure alone. The serious damage to proteins at the co-exposure to Cd and EMF seems to be due to the interference of the EMF with the toxic activity of cadmium. This work concluded that combined exposure to Cd and EMFs might increase the risk of plasma damage via enhancing free radical generation and protein oxidation.  相似文献   

7.
The potential health risks of radiofrequency electromagnetic fields (EMFs) emitted by mobile phones are of considerable public interest. The present study investigated the hypothesis, based on the results of our previous study, that exposure to EMFs can increase sympathetic vasoconstrictor activity. Forty healthy young males and females underwent a single-blind, placebo-controlled protocol once on each of two different days. Each investigation included successive periods of placebo and EMF exposure, given in a randomized order. The exposure was implemented by a GSM-like signal (900 MHz, pulsed with 217 Hz, 2 W) using a mobile phone mounted on the right-hand side of the head in a typical telephoning position. Each period of placebo exposure and of EMF exposure consisted of 20 min of supine rest, 10 min of 70 degrees upright tilt on a tilt table, and another 20 min of supine rest. Blood pressure, heart rate and cutaneous capillary perfusion were measured continuously. In addition, serum levels of norepinephrine, epinephrine, cortisol and endothelin were analyzed in venous blood samples taken every 10 min. Similar to the previous study, systolic and diastolic blood pressure each showed slow, continuous, statistically significant increases of about 5 mmHg during the course of the protocol. All other parameters either decreased in parallel or remained constant. However, analysis of variance showed that the changes in blood pressure and in all other parameters were independent of the EMF exposure. These findings do not support the assumption of a nonthermal influence of EMFs emitted by mobile phones on the cardiovascular autonomic nervous system in healthy humans.  相似文献   

8.
Electromagnetic field (EMF) treatment has proven to be effective against mineral scaling in water systems. Therefore, it should be assessed for the treatment of other deposits such as biofilms. In this study, a commercial device producing low-frequency EMF (1–10 kHz) was applied to a reactor fed with natural water for 45 days. The treatment promoted the concentration of microorganisms in suspension and limited the amount of sessile microorganisms in the biofilm, as determined by the measurement of total DNA, qPCR and microscopy. The structure of the bacterial community was assessed by t-RFLP and pyrosequencing analysis. The results showed that EMF treatment affected both planktonic and sessile community composition. EMFs were responsible for a shift in classes of Proteobacteria during development of the biofilm. It may be speculated that the EMF treatment affected particle solubility and/or microorganism hydration. This study indicated that EMFs modulated biofilm formation in natural water.  相似文献   

9.
Reports dealing with the stimulus-response relationship between low-level, low-frequency electromagnetic fields (EMFs) and changes in brain electrical activity permit assessment of the hypothesis that EMFs are detected by the body via the process of sensory transduction. These reports, as well as those involving effects on brain activity observed after a fixed time of exposure, are critically reviewed here. A consistent stimulus-response relationship between EMFs and changes in brain activity has been demonstrated in animal and human subjects. The effects, which consisted of onset and offset evoked potentials, were observed under conditions permitting the inference that the fields were transduced like ordinary stimuli such as light and sound. However, unlike the changes in brain activity induced by these stimuli, the changes induced by EMFs were governed by nonlinear laws. The studies involving attempts to determine whether a period of EMF exposure caused a metabolic effect reflected in pre-exposure/post-exposure differences in brain activity were generally inconclusive.  相似文献   

10.
Anecdotal and clinical reports have suggested that radio-frequency electromagnetic fields (RF EMFs) may serve as a trigger for neuropathic pain. However, these reports have been widely disregarded, as the epidemiological effects of electromagnetic fields have not been systematically proven, and are highly controversial. Here, we demonstrate that anthropogenic RF EMFs elicit post-neurotomy pain in a tibial neuroma transposition model. Behavioral assays indicate a persistent and significant pain response to RF EMFs when compared to SHAM surgery groups. Laser thermometry revealed a transient skin temperature increase during stimulation. Furthermore, immunofluorescence revealed an increased expression of temperature sensitive cation channels (TRPV4) in the neuroma bulb, suggesting that RF EMF-induced pain may be due to cytokine-mediated channel dysregulation and hypersensitization, leading to thermal allodynia. Additional behavioral assays were performed using an infrared heating lamp in place of the RF stimulus. While thermally-induced pain responses were observed, the response frequency and progression did not recapitulate the RF EMF effects. In vitro calcium imaging experiments demonstrated that our RF EMF stimulus is sufficient to directly contribute to the depolarization of dissociated sensory neurons. Furthermore, the perfusion of inflammatory cytokine TNF-α resulted in a significantly higher percentage of active sensory neurons during RF EMF stimulation. These results substantiate patient reports of RF EMF-pain, in the case of peripheral nerve injury, while confirming the public and scientific consensus that anthropogenic RF EMFs engender no adverse sensory effects in the general population.  相似文献   

11.
12.
The original article to which this Erratum was published in J. Cell. Physiol. 198:324–332, 2004 It has been recently established that low‐frequency electromagnetic field (EMFs) exposure induces biological changes and could be associated with increased incidence of cancer, while the issue remains unresolved as to whether high‐frequency EMFs can have hazardous effect on health. Epidemiological studies on association between childhood cancers, particularly leukemia and brain cancer, and exposure to low‐ and high‐frequency EMF suggested an etiological role of EMFs in inducing adverse health effects. To investigate whether exposure to high‐frequency EMFs could affect in vitro cell survival, we cultured acute T‐lymphoblastoid leukemia cells (CCRF‐CEM) in the presence of unmodulated 900 MHz EMF, generated by a transverse electromagnetic (TEM) cell, at various exposure times. We evaluated the effects of high‐frequency EMF on cell growth rate and apoptosis induction, by cell viability (MTT) test, FACS analysis and DNA ladder, and we investigated pro‐apoptotic and pro‐survival signaling pathways possibly involved as a function of exposure time by Western blot analysis. At short exposure times (2–12 h), unmodulated 900 MHz EMF induced DNA breaks and early activation of both p53‐dependent and ‐independent apoptotic pathways while longer continuous exposure (24–48 h) determined silencing of pro‐apoptotic signals and activation of genes involved in both intracellular (Bcl‐2) and extracellular (Ras and Akt1) pro‐survival signaling. Overall our results indicate that exposure to 900 MHz continuous wave, after inducing an early self‐defense response triggered by DNA damage, could confer to the survivor CCRF‐CEM cells a further advantage to survive and proliferate. J. Cell. Physiol. 198: 324–332, 2004. © 2003 Wiley‐Liss, Inc.  相似文献   

13.
ABSTRACT

The clinical benefits of electromagnetic field (EMF) therapy in enhancing osteogenesis have been acknowledged for decades, but agreement regarding the underlying mechanisms continues to be sought. Studies have shown EMFs to promote osteoblast-like cell proliferation, or contrarily, to induce differentiation and enhance mineralization. Typically these disparities have been attributed to methodological differences. The present paper argues the possibility that the chosen osteoblast model impacts stimulation outcome. Phenotypically immature cells, particularly at low seeding densities, appear to be prone to EMF-amplified proliferation. Conversely, mature cells at higher densities seem to be predisposed to earlier onset differentiation and mineralization. This suggests that EMFs augment ongoing processes in cell populations. To test this hypothesis, mature SaOS-2 cells and immature MC3T3-E1 cells at various densities, with or without osteo-induction, were exposed to sinusoidal 50 Hz EMF. The exposure stimulated the proliferation of MC3T3-E1 and inhibited the proliferation of SaOS-2 cells. Baseline alkaline phosphatase (ALP) expression of SaOS-2 cells was high and rapidly further increased with EMF exposure, whereas ALP effects in MC3T3-E1 cells were not seen until the second week. Thus both cell types responded differently to EMF stimulation, corroborating the hypothesis that the phenotypic maturity and culture stage of cells influence stimulation outcome.  相似文献   

14.
The correlation between shape and concentration of silver nanoparticles (AgNPs), their cytotoxicity and formation of reactive oxygen species (ROS) in the presence of electromagnetic fields (EMFs) has been investigated. In addition, the bio-effects caused by the combination of EMFs and graphene nanoparticles (GrNPs) have been also assessed. The AgNPs of three shapes (triangular, spherical and colloidal) and GrNPs were added in high concentrations to the culture of human fibroblasts and exposed to EMF of three different frequencies: 900, 2400 and 7500 MHz. The results demonstrated the dependence of the EMF-induced cytotoxicity on the shape and concentration of AgNPs. The maximal cell killing effect was observed at 900 MHz frequency for NPs of all shapes and concentrations. The highest temperature elevation was observed for GrNPs solution irradiated by EMF of 900 MHz frequency. The exposure to EMF led to significant increase of ROS formation in triangular and colloidal AgNPs solutions. However, no impact of EMF on ROS production was detected for spherical AgNPs. GrNPs demonstrated ROS-protective activity that was dependent on their concentration. Our findings indicate the feasibility to control cytotoxicity of AgNPs by means of EMFs. The effect EMF on the biological activity of AgNPs and GrNPs is reported here for the first time.  相似文献   

15.
The European multicenter project named GUARD involved nine centers and aimed to assess potential changes in auditory function as a consequence of exposure to low-intensity electromagnetic fields (EMFs) produced by GSM cellular phones. Participants were healthy young adults without any evidence of hearing or ear disorders. Auditory function was assessed immediately before and after exposure to EMFs, and only the exposed ear was tested. The procedure was conducted twice in a double blinded design, once with a genuine EMF exposure and once with a sham exposure (at least 24 h apart). Tests for assessment of auditory function were hearing threshold level (HTL), transient otoacoustic emissions (TEOAE), distortion product otoacoustic emissions (DPOAE), and auditory brainstem response (ABR). The exposure consisted of speech at a typical conversational level delivered via an earphone to one ear, plus genuine or sham EMF exposure. The EMF exposure used the output of a software-controlled consumer cellular phone at full power for 10 min. A system of phone positioning that allowed participants to freely move their heads without affecting exposure was used. Analysis of the data showed there were no effects of exposure to GSM mobile phone signals on the main measures of the status of the auditory system.  相似文献   

16.
Synovial fibroblasts (SFs) contribute to the development of osteoarthritis (OA) by the secretion of a wide range of pro-inflammatory mediators, including cytokines and lipid mediators of inflammation. Previous studies suggest that electromagnetic fields (EMFs) may represent a potential therapeutic approach to limit cartilage degradation and control inflammation associated to OA, and that they may act through the adenosine pathway. Therefore, we investigated whether EMFs might modulate inflammatory activities of human SFs from OA patients (OASFs) treated with interleukin-1β (IL-1β), and the possible involvement of adenosine receptors (ARs) in mediating EMF effects. EMF exposure induced a selective increase in A(2A) and A(3) ARs. These increases were associated to changes in cAMP levels, indicating that ARs were functionally active also in EMF-exposed cells. Functional data obtained in the presence of selective A(2A) and A(3) adenosine agonists and antagonists showed that EMFs inhibit the release of prostaglandin E(2) (PGE(2)) and the proinflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8), while stimulating the release of interleukin-10 (IL-10), an antinflammatory cytokine. These effects seem to be mediated by the EMF-induced upregulation of A(2A) and A(3) ARs. No effects of EMFs or ARs have been observed on matrix degrading enzyme production. In conclusion, this study shows that EMFs display anti-inflammatory effects in human OASFs, and that these EMF-induced effects are in part mediated by the adenosine pathway, specifically by the A(2A) and A(3) AR activation. Taken together, these results open new clinical perspectives to the control of inflammation associated to joint diseases.  相似文献   

17.
The effects of electromagnetic fields (EMFs) on living organisms are recently a focus of scientific interest, as they may influence everyday life in several ways. Although the neural effects of EMFs have been subject to a considerable number of investigations, the results are difficult to compare since dissimilar exposure protocols have been applied on different preparations or animals. In the present series of experiments, whole rats or excised rat brain slices were exposed to a reference level‐intensity (250–500 µT, 50 Hz) EMF in order to examine the effects on the synaptic efficacy in the central nervous system. Electrophysiological investigation was carried out ex vivo, on neocortical and hippocampal slices; basic synaptic functions, short‐ and long‐term plasticity and seizure susceptibility were tested. The most pronounced effect was a decrease in basic synaptic activity in slices treated directly ex vivo observed as a diminution in amplitude of evoked potentials. On the other hand, following whole‐body exposure an enhanced short‐ and long‐term synaptic facilitation in hippocampal slices and increased seizure susceptibility in neocortical slices was also observed. However, these effects seem to be transient. We can conclude that ELF‐EMF exposure exerts significant effects on synaptic activity, but the overall changes may strongly depend on the synaptic structure and neuronal network of the affected region together with the specific spatial parameters and constancy of EMF. Bioelectromagnetics 30:631–640, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The possible harmful effects of radiofrequency electromagnetic fields (RF EMFs) are controversial. We have used human Mono Mac 6 cells to investigate the influence of RF EMFs in vitro on cell cycle alterations and BrdU uptake, as well as the induction of apoptosis and necrosis in human Mono Mac 6 cells, using flow cytometry after exposure to a 1,800 MHz, 2 W/kg specific absorption rate (SAR), GSM-DTX signal for 12 h. No statistically significant differences in the induction of apoptosis or necrosis, cell cycle kinetics, or BrdU uptake were detected after RF EMF exposure compared to sham or incubator controls. However, in the positive control cells treated with gliotoxin and PMA (phorbol 12 myristate-13 acetate), a significant increase in apoptotic and necrotic cells was seen. Cell cycle analysis or BrdU incorporation for 72 h showed no differences between RF EMF- or sham-exposed cells, whereas PMA treatment induced a significant accumulation of cells in G(0)/G(1)-phase and a reduction in S-phase cells. RF EMF radiation did not induce cell cycle alterations or changes in BrdU incorporation or induce apoptosis and necrosis in Mono Mac 6 cells under the exposure conditions used.  相似文献   

19.
A number of epidemiological studies have suggested that exposure to environmental and occupational electromagnetic fields (EMFs) contribute to the induction of brain tumors. The aim of this study was to investigate the mutagenetic effects of co-exposure to 50-Hz, 10-mT EMFs and bleomycin (BLM) using an ex vivo newborn rat astrocyte micronucleus assay. We also investigated whether the mutagenetic effects of EMFs were related to active oxygen species by using 4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl (tempol), a superoxide radical scavenger. Three-day-old male Sprague-Dawley rats were co-exposed to 50-Hz EMFs and BLM (5 or 10mg/kg body weight (BW)) in each group (n=6; total 6 group), and were co-exposed to 50-Hz EMFs and 10mg/kg BW BLM with administration of 200μmol/kg BW tempol in each group (total 4 group). Brain cells were dissociated into single cells, cultured for 96h, incubated with an antibody against glial fibrillary acidic protein, and stained with acridine orange. The frequency of micronucleated astrocytes was determined using a fluorescence microscope. The frequency of micronucleated astrocytes in the 10mg/kg BW bleomycin plus EMF exposure group (Mean±SD: 19.8±5.2‰) was 1.6 times higher than that in the 10mg/kg BW bleomycin plus sham-exposure group (Mean±SD: 12.7±3.3‰) (p<0.05). Analysis of the frequency of micronuclei in astrocytes after co-exposure to EMF and bleomycin for 72h and administration of tempol revealed that, in the EMF exposure group, the frequency of micronuclei in rats administered with 10mg/kg BW bleomycin and treated with tempol (Mean±SD: 11.2±1.9‰) was 40% of that in rats administered with the same dose of bleomycin and physiological saline (Mean±SD: 28.0±15.0‰) (p<0.01). Results of the current study suggested that the mechanism responsible for the elevated frequency of micronuclei in astrocytes of rats co-exposed to BLM and EMFs is related to active oxygen species.  相似文献   

20.
The goal of this study was to investigate whether radiofrequency (RF) electromagnetic-field (EMF) exposure at 1800 MHz causes production of free radicals and/or expression of heat-shock proteins (HSP70) in human immune-relevant cell systems. Human Mono Mac 6 and K562 cells were used to examine free radical release after exposure to incubator control, sham, RF EMFs, PMA, LPS, heat (40 degrees C) or co-exposure conditions. Several signals were used: continuous-wave, several typical modulations of the Global System for Mobile Communications (GSM): GSM-non DTX (speaking only), GSM-DTX (hearing only), GSM-Talk (34% speaking and 66% hearing) at specific absorption rates (SARs) of 0.5, 1.0, 1.5 and 2.0 W/kg. Heat and PMA treatment induced a significant increase in superoxide radical anions and in ROS production in the Mono Mac 6 cells when compared to sham and/or incubator conditions. No significant differences in free radical production were detected after RF EMF exposure or in the respective controls, and no additional effects on superoxide radical anion production were detected after co-exposure to RF EMFs+PMA or RF EMFs+LPS. The GSM-DTX signal at 2 W/kg produced a significant difference in free radical production when the data were compared to sham because of the decreasing sham value. This difference disappeared when data were compared to the incubator controls. To determine the involvement of heat-shock proteins as a possible inhibitor of free radical production, we investigated the HSP70 expression level after different RF EMF exposures; no significant effects were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号