首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The 32P-labeled DNA cleavage experiments showed that the biological activity of the bleomycin(BLM)-Fe(III)OH? complex is evidently induced by addition of H2O2 and KO2, or by irradiation of UV light. Hydrogen peroxide contributes to the conversion from the inactive BLM-Fe(III)OH? complex to the active BLM-Fe(III)O2H? complex, and UV light to the reduction of the BLM-Fe(III)OH? complex to the BLM-Fe(II) complex. The proposed hypothetical mechanism for cyclic function of BLM-iron complex is similar to that of certain heme-oxygenases and heme-oxidases.  相似文献   

2.
The interaction between DNA and a benzothiazole-quinoline cyanine dye with a trimethine bridge (TO-PRO-3) results in the formation of three noncovalent complexes. Unbound TO-PRO-3 has an absorption maximum (λmax) of 632 nm, while the bound dyes (with calf thymus DNA) have electronic transitions with λmax = 514nm (complex I), 584nm (complex II) and 642 nm (complex III). The blue shifts in the electronic transitions and the bisignate shape of the circular dichroism bands indicate that TO-PRO-3 aggregates with DNA. Complex I has a high dye:base pair stoichiometry, which does not depend on base sequence or base modifications. The bound dyes exhibit strong interdye coupling, based on studies with a short oligonucleotide and on enhanced resonance scattering. From thermal dissociation studies, the complex is weakly associated with DNA. Studies with poly(dGdC)2 and poly(dIdC)2 and competitive binding with distamycin demonstrate that complex II is bound in the minor groove. This complex stabilizes the helix against dissociation. For complex III, the slightly red-shifted electronic transition and the stoichiometry are most consistent with intercalation. Using poly(dAdT)2, the complexes have the following dye mole fractions (Xdye): Xdye = 0.65 (complex I), 0.425 (complex II) and 0.34 (complex III).  相似文献   

3.
Hiroshi Ishikita 《BBA》2007,1767(11):1300-1309
In bacterial photosynthetic reaction centers (bRC), the electron is transferred from the special pair (P) via accessory bacteriochlorophyll (BA), bacteriopheopytin (HA), the primary quinone (QA) to the secondary quinone (QB). Although the non-heme iron complex (Fe complex) is located between QA and QB, it was generally supposed not to be redox-active. Involvement of the Fe complex in electron transfer (ET) was proposed in recent FTIR studies [A. Remy and K. Gerwert, Coupling of light-induced electron transfer to proton uptake in photosynthesis, Nat. Struct. Biol. 10 (2003) 637-644]. However, other FTIR studies resulted in opposite results [J. Breton, Steady-state FTIR spectra of the photoreduction of QA and QB in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones, Biochemistry 46 (2007) 4459-4465]. In this study, we calculated redox potentials of QA/B (Em(QA/B)) and the Fe complex (Em(Fe)) based on crystal structure of the wild-type bRC (WT-bRC), and we investigated the energetics of the system where the Fe complex is assumed to be involved in the ET. Em(Fe) in WT-bRC is much less pH-dependent than that in PSII. In WT-bRC, we observed significant coupling of ET with Glu-L212 protonation upon oxidation of the Fe complex and a dramatic Em(Fe) downshift by 230 mV upon formation of QA (but not QB) due to the absence of proton uptake of Glu-L212. Changes in net charges of the His ligands of the Fe complex appear to be the nature of the redox event if we assume the involvement of the Fe complex in the ET.  相似文献   

4.
The interaction between saccharose and manganese in different oxidation states was studied in alkaline media by polarographic, potentiometric, ESR spectroscopic and UV-Vis spectrophotometric methods. The results showed that stable manganese(II) and manganese(III) complexes and a complex of manganese(II,III) in a mixed oxidation state were formed with the composition [MnIIL(OH)2], [Mn2IIIL2(OH)8]2− and [MnIIMnIIIL2(OH)6], respectively. The manganese(II)-saccharose complex was shown to dimerize in alkaline media. The stability constants of the Mn(II,III) and Mn(III) complexes were determined. The oxidation of the manganese(II)-saccharose complex by a stoichiometric amount of K3 [FeCN]6 resulted in the formation of the manganese(III) and manganese(IV) complexes. However, oxidation by molecular oxygen only yielded the manganese(III) complex which reduced spontaneously in inert atmosphere to the mixed valence Mn(II,III) complex. The latter was able to be oxidized again by oxygen to the Mn(III) complex. This process proved to be reversible and could be repeated several times.  相似文献   

5.
Doxorubicin has a high affinity for inorganic iron, Fe(III), and has potential to form doxorubicin-Fe(III) complexes in biological systems. Indirect involvement of iron has been substantiated in the oxidative mutagenicity of doxorubicin. In this study, however, direct involvement of Fe(III) was evaluated in mutagenicity studies with the doxorubicin-Fe(III) complex. The Salmonella mutagenicity assay with strain TA102 was used with a pre-incubation step. The highest mutagenicity of doxorubicin-Fe(III) complex was observed at the dose of 2.5 nmol/plate of the complex. The S9-mix decreased this highest mutagenicity but increased the number of revertants at a higher dose of 10 nmol/plate of the complex. On the other hand, the mutagenicity of the doxorubicin-Fe(III) complex at the doses of 0.25, 0.5, 1 and 2 nmol/plate was enhanced about twice by the addition of glutathione plus H2O2. This enhanced mutagenicity as well as of the complex itself, the complex plus glutathione, and the complex plus H2O2 were reduced by the addition of ADR-529, an Fe(III) chelator, and potassium iodide, a hydroxyl radical scavenger. These results indicate that doxorubicin-Fe(III) complex exert the mutagenicity through oxidative DNA damage and that Fe(III) is a required element in the mutagenesis of doxorubicin.  相似文献   

6.
Only a portion of human plasma α1 proteinase inhibitor (α1PI) forms a 1:1 complex with porcine elastase; the other portion is inactivated via proteolysis. High temperature (37°) and high salt (2 M) enhance complex formation. The complex is unstable, but no significant liberation of active elastase could be demonstrated. Probably the same two major products of ~50,000 and ~4,000 daltons are formed from α1PI via proteolysis and via disintegration of the complex. Iodination of α1PI or oxidation with chloramine-T prevents complex formation with elastase but not with trypsin. Iodinated elastase, however, forms a complex with α1PI.  相似文献   

7.
Abstract

The objectives of this study were to develop a robust protocol to measure the rate of hydrogen peroxide (H2O2) production in isolated perfused rat lungs, as an index of oxidative stress, and to determine the cellular sources of the measured H2O2 using the extracellular probe Amplex red (AR). AR was added to the recirculating perfusate in an isolated perfused rat lung. AR’s highly fluorescent oxidation product resorufin was measured in the perfusate. Experiments were carried out without and with rotenone (complex I inhibitor), thenoyltrifluoroacetone (complex II inhibitor), antimycin A (complex III inhibitor), potassium cyanide (complex IV inhibitor), or diohenylene iodonium (inhibitor of flavin-containing enzymes, e.g. NAD(P)H oxidase or NOX) added to the perfusate. We also evaluated the effect of acute changes in oxygen (O2) concentration of ventilation gas on lung rate of H2O2 release into the perfusate. Baseline lung rate of H2O2 release was 8.45?±?0.31 (SEM) nmol/min/g dry wt. Inhibiting mitochondrial complex II reduced this rate by 76%, and inhibiting flavin-containing enzymes reduced it by another 23%. Inhibiting complex I had a small (13%) effect on the rate, whereas inhibiting complex III had no effect. Inhibiting complex IV increased this rate by 310%. Increasing %O2 in the ventilation gas mixture from 15 to 95% had a small (27%) effect on this rate, and this O2-dependent increase was mostly nonmitochondrial. Results suggest complex II as a potentially important source and/or regulator of mitochondrial H2O2, and that most of acute hyperoxia-enhanced lung rate of H2O2 release is from nonmitochondrial rather than mitochondrial sources.  相似文献   

8.
Copper(II) forms a complex with sodium 1,4-dihydroxy-9,10-anthraquinone-2-sulphonate (sodium quinizarin-2-sulphonate, NaQSH2), an analogue of the core unit of anthracycline antibiotics used in the treatment of cancer. The 1:2 metal-ligand complex is formed in aqueous solution at neutral and acidic pH while in alkaline pH both 1:1 and 1:2 species are formed. The effective stability constant of the 1:2 metal-ligand complex is 9.64 × 1016 while that of the 1:1 metal-ligand complex is 9.4 × 109. The 1:2 complex Cu(NaQSH)2(H2O)2 was synthesized and characterized by different techniques in solid state and in solution. The complex Cu(NaQSH)2(H2O)2 interacts with calf thymus DNA which was studied by fluorescence spectroscopy. The binding constant and site size for the interaction with DNA were determined.  相似文献   

9.
Reaction of [Rh(CO)2](μ-Cl)]2 with bis-1,2-(di{4-dimethylaminophenyl)phosphino-ethane (L) gives the monomeric Rh(I) complex of type cis-[RhCl(L)(CO)] that was separated from a side product of type [Rh(L)2]Cl, and characterised by X-ray crystallography. This complex reacts with methyl iodide at high temperature to give the Rh(III) acetyl complex, [Rh(I)2(C(O)Me)(L)], which was also structurally characterised by X-ray crystallography. There is no sign of quaternisation of the dimethylamino groups under these conditions. This complex is soluble in organic solvent and insoluble in the polar media used in methanol carbonylation (AcOH/H2O/MeOH). However, in the presence of HI, this complex is readily soluble in AcOH/H2O/MeOH, in contrast to [Rh(I)2(C(O)Me)(dppe)] and most other Rh-acetyl complexes of diphosphine ligands.  相似文献   

10.
The interaction of SnMe2Cl2(bu2bpy)complex with calf thymus DNA (ct-DNA) has been explored following, using spectroscopic methods, viscosity measurements, Atomic force microscopy, Thermal denaturation and Molecular docking. It was found that Sn(IV) complex could bind with DNA via intercalation mode as evidenced by hyperchromism and bathochromic in UV–Vis spectrum; these spectral characteristics suggest that the Sn(IV) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. In addition, the fluorescence emission spectra of intercalated methylene blue (MB) with increasing concentrations of SnMe2Cl2(bu2bpy) represented a significant increase of MB intensity as to release MB from MB-DNA system. Positive values of ΔH and ΔS imply that the complex is bound to ct-DNA mainly via the hydrophobic attraction. Large complexes contain the DNA chains with an average size of 859?nm were observed by using AFM for Sn(IV) Complex–DNA. The Fourier transform infrared study showed a major interaction of Sn(IV) complex with G-C and A-T base pairs and a minor perturbation of the backbone PO2 group. Addition of the Sn(IV)complex results in a noticeable rise in the Tm of DNA. In addition, the results of viscosity measurements suggest that SnMe2Cl2(bu2bpy) complex may bind with the classical intercalative mode. From spectroscopic and hydrodynamic studies, it has been found that Sn(IV)complex interacts with DNA by intercalation mode. Optimized docked model of DNA–complex mixture confirmed the experimental results.  相似文献   

11.
The heme-based oxygen-sensor phosphodiesterase from Escherichia coli (Ec DOS), is composed of an N-terminal heme-bound oxygen sensing domain and a C-terminal catalytic domain. Oxygen (O2) binding to the heme Fe(II) complex in Ec DOS substantially enhances catalysis. Addition of hydrogen sulfide (H2S) to the heme Fe(III) complex in Ec DOS also remarkably stimulates catalysis in part due to the heme Fe(III)–SH and heme Fe(II)–O2 complexes formed by H2S. In this study, we examined the roles of the heme distal amino acids, M95 (the axial ligand of the heme Fe(II) complex) and R97 (the O2 binding site in the heme Fe(II)–O2 complex) of the isolated heme-binding domain of Ec DOS (Ec DOS-PAS) in the binding of H2S under aerobic conditions. Interestingly, R97A and R97I mutant proteins formed an oxygen-incorporated modified heme, verdoheme, following addition of H2S combined with H2O2 generated by the reactions. Time-dependent mass spectroscopic data corroborated the findings. In contrast, H2S did not interact with the heme Fe(III) complex of M95H and R97E mutants. Thus, M95 and/or R97 on the heme distal side in Ec DOS-PAS significantly contribute to the interaction of H2S with the Fe(III) heme complex and also to the modification of the heme Fe(III) complex with reactive oxygen species. Importantly, mutations of the O2 binding site of the heme protein converted its function from oxygen sensor to that of a heme oxygenase. This study establishes the novel role of H2S in modifying the heme iron complex to form verdoheme with the aid of reactive oxygen species.  相似文献   

12.
Treatment of a benzene solution of (tmeda)PdMe2 or (dppe)PdMe2 with carbon dioxide gives the corresponding methyl bicarbonate complex, (L-L)PdMe(O2COH). These were characterised by NMR spectroscopy and elemental analysis. Under strictly dry conditions no reaction was observed. Recrystallisation of the tmeda bicarbonate complex from acetone yields the corresponding η2-carbonate complex, which was characterised by X-ray crystallography. The reaction probably proceeds through attack by free carbonic acid on the dimethyl complex.  相似文献   

13.
In this study, we have characterized the cellular source and mechanism for the enhanced generation of reactive oxygen species (ROS) in the myocardium during Trypanosoma cruzi infection. Cardiac mitochondria of infected mice, as compared to normal controls, exhibited 63.3% and 30.8% increase in ROS-specific fluorescence of dihydroethidium (detects O2 •−) and amplex red (detects H2O2), respectively. This increase in ROS level in cardiac mitochondria of infected mice was associated with a 59% and 114% increase in the rate of glutamate/malate- (complex I substrates) and succinate- (complex II substrate) supported ROS release, respectively, and up to a 74.9% increase in the rate of electron leakage from the respiratory chain when compared to normal controls. Inhibition studies with normal cardiac mitochondria showed that rotenone induced ROS generation at the QNf-ubisemiquinone site in complex I. In complex III, myxothiazol induced ROS generation from a site located at the Qo center that was different from the Qi center of O2 •− generation by antimycin. In cardiac mitochondria of infected mice, the rate of electron leakage at complex I during forward (complex I-to-complex III) and reverse (complex II-to-complex I) electron flow was not enhanced, and complex I was not the main site of increased ROS production in infected myocardium. Instead, defects of complex III proximal to the Qo site resulted in enhanced electron leakage and ROS formation in cardiac mitochondria of infected mice. Treatment of infected mice with phenyl-α-tert-butyl-nitrone (PBN) improved the respiratory chain function, and, subsequently, decreased the extent of electron leakage and ROS release. In conclusion, we show that impairment of the Qo site of complex III resulted in increased electron leakage and O2 •− formation in infected myocardium, and was controlled by PBN.  相似文献   

14.
A novel mixed-ligand nickel(II) complex that contains 1-methylimidazole and thiocyanate, Ni(NCS)2(Mim)4 (Mim = 1-methylimidazole), was synthesized and its structure was determined by X-ray crystallography, IR spectrum and elemental analysis, etc. Its DNA-binding properties were studied by electronic absorption spectral, viscositive and electrochemical measurements. The absorption spectral and viscositive results suggest that the nickel(II) complex binds to DNA via partial intercalation. The addition of DNA results in the decrease of the peak current of the nickel(II) complex proved their interaction. The slight differences of peak profiles and electrochemical parameters between free and DNA-bound Ni(NCS)2(Mim)4 showed the formation of an electrochemical inactive complex between Ni(NCS)2(Mim)4 and DNA. The binding site and binding constant of the complex to DNA were determined by electrochemical titration method.  相似文献   

15.
The 16-electron, coordinatively unsaturated, dicationic ruthenium complex [Ru(P(OH)2(OMe))(dppe)2][OTf]2 (1a) brings about the heterolysis of the C-H bond in phenylacetylene to afford the phenylacetylide complex trans-[Ru(CCPh)(P(OH)2(OMe))(dppe)2][OTf] (2). The phenylacetylide complex undergoes hydrogenation to give a ruthenium hydride complex trans-[Ru(H)(P(OH)2(OMe))(dppe)2][OTf] (3) and phenylacetylene via the addition of H2 across the Ru-C bond. The 16-electron complex also reacts with HSiCl3 quite vigorously to yield a chloride complex trans-[Ru(Cl)(P(OH)2(OMe))(dppe)2][OTf] (4). On the other hand, the other coordinatively unsaturated ruthenium complex [Ru(P(OH)3)(dppe)2][OTf]2 (1b) reacts with a base N-benzylideneaniline to afford a phosphonate complex [Ru(P(O)(OH)2)(dppe)2][OTf] (5) via the abstraction of one of the protons of the P(OH)3 ligand by the base. The phenylacetylide, chloride, and the phosphonate complexes have been structurally characterized. The phosphonate complex reacts with H2 to afford the corresponding dihydrogen complex trans-[Ru(η2-H2)(P(O)(OH)2)(dppe)2][OTf] (5-H2). The intact nature of the H-H bond in this species was established using variable temperature 1H spin-lattice relaxation time measurements and the observation of a significant J(H,D) coupling in the HD isotopomer trans-[Ru(η2-HD)(P(O)(OH)2)(dppe)2][OTf] (5-HD).  相似文献   

16.
Iron complexes of two ligands, HphoxCOOH and HphoxiPr, have been synthesized and characterized by crystal structure analyses. The complexes (HNEt3)2[Fe(phoxCOO)2](ClO4) and [Fe(phoxiPr)3] are reported. Reactions of the ligands rac-HphoxCOOH and rac-HphoxiPr with iron(II) or iron(III) perchlorate result in the formation of iron(III) complexes with pseudo-octahedral geometry around the metal center. The iron complex obtained from rac-HphoxCOOH crystallized in the centrosymmetric space group Cmca. The two ligands are bound in a tridentate manner generating a meridional coordination with both dianionic ligands on a metal center having the same chirality; due to the center of symmetry the complex with opposite chirality is also present. The complex (HNEt3)2[Fe(phoxCOO)2](ClO4) is the first accurate structural model of the iron complex of a siderophore analog commonly observed in mycobactins. The three didentate ligands in the complex [Fe(phoxiPr)3] are bound with like atoms in a meridional manner to the metal center. The metal ion is surrounded by two ligands of the same chirality and one ligand of opposite chirality (ie. RRS or SSR); due to the presence of a center of symmetry both isomers are present in the crystal structure. The complex (HNEt3)2[Fe(phoxCOO)2](ClO4) shows promising activity in the oxidation of alkanes, such as toluene, ethylbenzene and cumene, while the complex [Fe(phoxiPr)3] does not show any catalytic activity in alkane oxidations under the conditions tested. The complex (HNEt3)2[Fe(phoxCOO)2](ClO4) is reasonably efficient in the conversion of H2O2 to oxidation products.  相似文献   

17.
Abstract

A novel palladium(II) complex has been synthesized with hexyldithiocarbamate (Hex-dtc) and 1,10-phenanthroline (phen) by the reaction of [Pd(phen)(H2O)2](NO3)2 with sodium salt of hexyldithiocarbamate and a complex of type [Pd(Hex-dtc) (phen)]NO3 has been obtained. The complex has been characterized by elemental analysis, molar conductance, 1H NMR, IR and electronic spectroscopic studies. The dithiocarbamate ligand acts in bidentate fashion. This water-soluble complex was screened against chronic myelogenous leukemia cell line, K562, for cytotoxic effects and showed significant antitumor activity much lower than that of cisplatin. The interaction of this complex with calf thymus DNA (ctDNA) was extensively investigated by a variety of spectroscopic techniques. Absorbance titration experiments imply the interaction of 4 Pd(II) complex molecules per 1000 nucleotides on DNA with positive cooperativity in the binding process and the complex denature the DNA at very low concentration (~14.3 μM). Fluorescence titration spectra and fluorescence Scatchard plots suggest that the Pd(II) complex intercalate in DNA. The gel chromatograms obtained from Sephadex G-25 column experiments showed that the binding of metal complex with DNA is so strong that it does not readily break. Furthermore, some thermodynamic and binding parameters found in the process of UV-Visible studies are described. They may provide specificity of the compound with ctDNA.  相似文献   

18.
Herein, a Mn(II) complex of the N,N′-dipyridoxyl(1,4-butanediamine) (═H2L) Schiff base has been newly synthesized. The synthesized complex was characterized by several experimental methods. In addition, the density functional theory approaches were used for theoretical identification of the complex. A good agreement between the computed and experimental infrared frequencies demonstrates validity of the optimized geometry for the synthesized complex. In a N2O2 manner, two azomethine nitrogens and two phenolate oxygens of the L2− ligand are coordinated to the Mn2+ metal ion. The biological studies indicate an efficient apoptotic and antioxidant activities of the synthesized [MnL(CH3OH)2] complex on both of the HepG2 and MCF7 cancer cells. Since it has been suggested that the complex is an exclusive potent antitumor for treatment of the human breast and liver cancers.  相似文献   

19.
A novel Fe(III) Schiff base complex of the [FeL2(NO3)2]NO3 type where L = 2-((pyridin-4-yl)methyleneamino)-3-aminomaleonitrile was synthesized using the reflux and sonochemical methods and their antibacterial and antifungal activity were evaluated. The nanoparticles of iron oxide (Fe2O3) were obtained from the iron nano-structure complex as a precursor after calcination at 600 ˚C for 3 h. All the synthesized compounds were characterized by various spectroscopic techniques. The results of SEM showed that the morphology of iron nano-structure complex was rod-like while the morphology of the Fe2O3 nano powder was spherical. The results of the biological studies indicated that the iron nano-structure complex showed a stronger antibacterial and antifungal efficiency than its bulk complex. Finally, the empirical geometrical parameters of complexes revealed a good agreement with calculated ones at DFT-B3LYP level.  相似文献   

20.
The biological effects of ultraviolet radiation (UV), such as DNA damage, mutagenesis, cellular aging, and carcinogenesis, are in part mediated by reactive oxygen species (ROS). The major intracellular ROS intermediate is hydrogen peroxide, which is synthesized from superoxide anion (O2) and further metabolized into the highly reactive hydroxyl radical. In this study, we examined the involvement of mitochondria in the UV‐induced H2O2 accumulation in a keratinocyte cell line HaCaT. Respiratory chain blockers (cyanide‐p‐trifluoromethoxy‐phenylhydrazone and oligomycin) and the complex II inhibitor (theonyltrifluoroacetone) prevented H2O2 accumulation after UV. Antimycin A that inhibits electron flow from mitochondrial complex III to complex IV increased the UV‐induced H2O2 synthesis. The same effect was seen after incubation with rotenone, which blocks electron flow from NADH‐reductase (complex I) to ubiquinone. UV irradiation did not affect mitochondrial transmembrane potential (ΔΨm). These data indicate that UV‐induced ROS are produced at complex III via complex II (succinate‐Q‐reductase). J. Cell. Biochem. 80:216–222, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号