首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Compounds of the molecular formulae, [LH3](NO3)3 (1), [Fe(LH)2](PF6)4·5H2O (2), [Fe(L)2][Fe(L)(LH)](PF6)5·H2O (3), [Fe(L)2][Fe(L)(LH)](BF4)5·2H2O (4) and [Fe(L)2](Cr2O7)·6H2O (5) have been synthesized using 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine (L). The molecular structures of all the compounds were determined. The Fe(II) complexes are high spin in nature at room temperature and upon cooling a gradual spin-transition is observed. Among 1-5, hydrogen-bonding, π···π, and anion···π interactions as well as water tetramer and pentamer are present in the molecular packing.  相似文献   

2.
A facile route to the Fe2+-arene complex [(C6H6)FeCp][AlBr4] is the reaction of ferrocene with AlBr3 in benzene. The structure of the Fe2+-arene complex [(C6H6)FeCp][AlBr4] · C6H6 was found to be isomorphous with those of [FeCp2][ECl4] · C6H6 (E = Al, Ga). The crystal structures of the [FeCp2][AlCl4] · C6H6 (E = Al, Ga) presented here show structural features which are different from those of solvent-free ferrocenium salts [FeCp2][ECl4] (E = Al, Ga, Fe). However, the cell parameters of solvent-free ferrocenium tetrafluoroborate [FeCp2][BF4] are also quite different from those of solvent-free [FeCp2][ECl4] (E = Al, Ga, Fe). In contrast to the eclipsed conformation in solvent-free [FeCp2][ECl4] (E = Al, Ga, Fe) the cyclopentadiene rings in [FeCp2][BF4] and [FeCp2][ECl4] · C6H6 (E = Al, Ga) are in a staggered conformation.  相似文献   

3.
A new distorted square planar (two CuN2 planes making an angle of ∼43°) copper(II) complex [Cu(L4)] · 0.5EtOH · 0.5MeOH (1) of a deprotonated tetradentate pyridine amide ligand [H2L4 = N,N′-bis(2-pyridinecarboxamide)-2,2′-biphenyl] has been synthesized and structurally characterized. Absorption and EPR spectroscopic properties have also been studied. The E1/2 values (CuII/CuI redox process) of the title complex along with a selected group of structurally characterized CuN4 pyridine amide complexes with systematically varied structural, electronic/steric, and chelate-ring size effects, imposed by the coordinating ligands, have been determined and the observed trend has been rationalized.  相似文献   

4.
The reaction of [FeII(H2O)6](BF4)2 with tris(2-pyridylmethyl)amine (TPyA) and triethylamine in methanol under aerobic conditions forms [(TPyA)FFeIIIOFeIIIF(TPyA)](BF4)2 · 0.5MeOH (1), in which each Fe(III) ion is coordinated to a TPyA and an F ion as well as an oxo ion (O2−) linking two Fe(III) ions. 1 has offset face-to-face π-π interactions between the dimers, and possesses a supramolecular network structure. The magnetic susceptibility of 1 can be fit with g = 2.0, J/kB = − 153 K (106 cm−1), and θ = − 0.3 K [H = − 2JSa · Sb]. These indicate that very strong antiferromagnetic interactions occur via the oxo bridge within the Fe(III) dimer and weak antiferromagnetic interactions between the dimers.  相似文献   

5.
The reaction of CuCl2 · 2H2O with 2,6-bis(1-phenyliminoethyl)pyridine (referred hereafter as L) in 1:1 molar ratio in methanol or acetronitrile at room temperature afforded distorted trigonal-bipyramidal complex [Cu(κ3-L)Cl2]. On the other hand, the reaction of NiCl2 · 6H2O with 2 equivalents of L gave an octahedral complex [Ni(κ3-L)2]2+, which was isolated as [Ni(κ3-L)2][BF4]2 using NH4BF4. The complexes have been characterized by elemental analyses, FAB-MS, IR, EPR and electronic spectral studies. Molecular structures of both the [Cu(κ3-L)Cl2] (1) and [Ni(κ3-L)2](BF4)2 (2) have been determined by single crystal X-ray analyses. Weak interaction studies on 1 and 2 revealed stabilisation of the crystal packing by inter and intra-molecular C-H?X (X = F, Cl, π) interactions. In complex 2 ortho C-H bond from phenyl rings leads to unexpected C-H?π interaction with nickel α,α′-diimine chelate ring. This provides structural support for metalloaromaticity in the chelate ring of complex 2.  相似文献   

6.
Palladium [PdCl2(L)] complexes with N-alkylpyridylpyrazole derived ligands [2-(5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L1), 2-(1-ethyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L2), 2-(1-octyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L3), and 2-(3-pyridin-2-yl-5-trifluoromethyl-pyrazol-1-yl)ethanol (L4) were synthesised. The crystal and molecular structures of [PdCl2(L)] (L = L2, L3, L4) were resolved by X-ray diffraction, and consist of monomeric cis-[PdCl2(L)] molecules. The palladium centre has a typical square-planar geometry, with a slight tetrahedral distortion. The tetra-coordinate metal atom is bonded to one pyridinic nitrogen, one pyrazolic nitrogen and two chlorine ligands in cis disposition. Reaction of L (L2, L4) with [Pd(CH3CN)4](BF4)2, in the ratio 1M:2L, gave complexes [Pd(L)]2(BF4)2. Treatment of [PdCl2(L)] (L = L2, L4) with NaBF4 and pyridine (py) and treatment of the same complexes with AgBF4 and triphenylphosphine (PPh3) yielded [Pd(L)(py)2](BF4)2 and [Pd(L)(PPh3)2](BF4)2 complexes, respectively. Finally, reaction of [PdCl2(L4)] with 1 equiv of AgBF4 yields [PdCl(L4)](BF4).  相似文献   

7.
A series of 1-(tetrazol-1-yl)alkanes [ntz] with n = 1-4 were synthesised as ligands for iron(II) spin crossover complexes. Within this series 1-(tetrazol-1-yl)butane [4tz] was prepared for the first time, whereas 1-(tetrazol-1-yl)methane [1tz], 1-(tetrazol-1-yl)ethane [2tz], 1-(tetrazol-1-yl)propane [3tz] and the [hexakis(ntz)iron(II)]bis(tetrafluoroborate) complexes were prepared according to the literature. Aiming for a comparative study we characterized all four compounds by XRPD, magnetic susceptibility measurements, 57Fe-Moessbauer spectroscopy and IR spectroscopy. [Fe(4tz)6](BF4)2 yielded appropriate single crystals and an X-ray structure of the new compound [Fe(4tz)6](BF4)2 is presented. The magnetic and structural properties of all [Fe(ntz)6](BF4)2 are compared and discussed.  相似文献   

8.
A new compound of formula [Fe(qsal)2][Ni(dmit)2] (1) has been synthesised, structurally and magnetically characterised (qsalH = N-(8-quinolyl)salicylaldimine, dmit2− = 1,3-dithiol-2-thione-4,5-dithiolato). Its structural features and its magnetic behaviour were compared with those of [Fe(qsal)2]-based complexes, and more particularly [Fe(qsal)2][Ni(dmit)2] · 2CH3CN.  相似文献   

9.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

10.
The salts - yellow [Cr(NH3)6][Ag(CN)2]3 · 2H2O, red [Co(NH3)6][Ag(CN)2]3 · 2H2O, red [Co(NH3)6][Au(CN)2]3 · 2H2O, pale yellow [Ru(NH3)6][Ag(CN)2]3 · 2H2O, yellow K[Cr(NH3)6]2[Au(CN)2]7 · 4H2O, and colorless [(μ2-NH2)2Pt2(NH3)10][Au(CN)2]6 · 5.5{OS(CH3)2} · 0.5H2O - have been prepared by evaporation of aqueous solutions of potassium dicyanoargenate or potassium dicyanoaurate and salts of the appropriate cations. Hydrogen bonding between the cations and the cyano groups of the anions facilitates the formation of structures with strong metallophilic interactions between the anions. Thus, the [Au(CN)2] or [Ag(CN)2] ions self-associate into linear trimers in the isostructural set of crystals, [Cr(NH3)6][Ag(CN)2]3 · 2H2O (Ag?Ag distance; 3.1610(4) Å), [Co(NH3)6][Ag(CN)2]3 · 2H2O (Ag?Ag distance; 3.1557(2) Å), [Co(NH3)6][Au(CN)2]3 · 2H2O (Au?Au distance; 3.0939(4) Å), and [Ru(NH3)6][Ag(CN)2]3 · 2H2O (Ag?Ag distance; 3.1584(5) Å). Crystalline [(μ2-NH2)2Pt2(NH3)10][Au(CN)2]6 · 5.5{OS(CH3)2} · 0.5H2O also contains nearly linear trimers of the dicyanoaurate ion. Yellow crystals of K[Cr(NH3)6]2[Au(CN)2]7 · 4H2O contain a centrosymmetric, bent chain of seven dicyanoaurate ions with Au?Au separations of 3.1806(3), 3.2584(4), and 3.1294(4) Å.  相似文献   

11.
Four cobalt(III) complexes containing the polypyridine pentadentate ligands N,N-bis(2-pyridylmethyl)amine-N′-ethyl-2-pyridine-2-carboxamide (PaPy3H), N,N-bis(2-pyridylmethyl)amine-N′-[1-(2-pyridylethyl)acetamide (MePcPy3H), and N,N-bis(2-pyridylmethyl)amine-N′-(2-pyridylmethyl)acetamide (PcPy3H), have been synthesized. All three ligands bind the Co(III) center in the same fashion with the exception of loss of conjugation between the carboxamide moiety and the pyridine ring in the latter two. The structures of [(PaPy3)Co(OH)][(PaPy3)Co(H2O)](ClO4)3 · 3H2O (1), [(PaPy3)Co(NO2)](ClO4) · 2MeCN (2), [(MePcPy3)Co(MeCN)](ClO4)2 · 0.5MeCN (3), and [(PcPy3)Co(Cl)](ClO4) · 2MeCN (4) have been determined. These ligands with strong-field carboxamido N donor stabilize the +3 oxidation state of the Co center as demonstrated by the facile oxidation of the corresponding Co(II) complexes (prepared in situ) by H2O2, [Fe(Cp)2](BF4), or nitric oxide (NO). The Co-Namido bond distances of 1-4 lie in the narrow range of 1.853-1.898 Å. 1H NMR spectra of these complexes confirm the low-spin d6 ground states of the metal centers.  相似文献   

12.
A iron(II) complex of the linear hexadentate N6 ligand H2L2-3-2, [Fe(H2L2-3-2)](ClO4)2, was synthesized and the spin crossover properties were investigated, where H2L2-3-2 denotes bis[N-(2-methylimidazol-4-yl)methylidene-2-aminoethyl]propanediamine. The complex showed a gradual and reversible one-step spin crossover (SCO) between the high-spin (S = 2) and low-spin (S = 0) states at T1/2 = 208 K without hysteresis. The crystal structures were determined at 296 and 250 K (HS state), 230, 210, and 200 K (intermediate between the HS and LS states) and 150 and 110 K (LS state). The spin transition from 296 to 150 K accompanies with the conformation change of the chelate rings at the triamine moiety and the formation of the hydrogen bond network in the same space group of orthorhombic Pbcn (no. 60). However, in the LS state at 110 K, the space group changed from orthorhombic Pbcn at 150 K (Pcan when the same axial setting to 110 K was used) to monoclinic P21/a (no. 14) at 110 K, although no spin transition and no change of assembly structure between 150 and 110 K were observed. It give us an idea that the space group transformation is mainly related to the conformational thermodynamic stability of the chelate rings at the triamine moiety and is not directly correlated with the spin transition.  相似文献   

13.
The coordination capability of the octaaza 24-membered (L1) and the tetraoxotetraaza 28-membered (L2) macrocycle ligands - with different sizes, nature and number of the donor atoms - has been investigated with nitrate and perchlorate Cd(II) salts. The complexes were prepared in 1:1 and 2:1 Cd:L molar ratio. The characterization by elemental analysis, IR, LSI mass spectrometry, conductivity measurements and 1H NMR spectroscopy, together with the crystal structure of the complexes [CdL1](NO3)2 · 0.5H2O, [CdL1](ClO4)2 and [CdL2(CH3CN)2](ClO4)2 · CH3CN · H2O confirms the formation of mononuclear complexes in all cases. The [CdL1](NO3)2 · 0.5H2O and [CdL1](ClO4)2 present a mononuclear endomacrocyclic structure with the metal ion coordinated by the eight donor nitrogen atoms from the macrocyclic backbone in a square antiprism geometry. The complex [CdL2(CH3CN)2](ClO4)2 · CH3CN · H2O is also mononuclear, but the cadmium ion is in an octahedral environment coordinated by four amine nitrogen atoms from the macrocyclic framework and two nitrogen atoms from two acetonitrile molecules. The ether oxygen atoms from the ligand are not coordinated.  相似文献   

14.
Three new organic-inorganic hybrid materials with 4,4′-bipy ligands and copper cations as linkers, [CuII(H2O)(4,4′-bipy)2][CuII(H2O)(4,4′-bpy)2]2H[CuIIP8Mo12O62H12] · 5H2O (1), [CuI(4,4′-bipy)][CuII(4,4′-bipy)]2 (BW12O40) · (4,4′-bipy) · 2H2O (2) and [CuI (4,4′-bipy)]3 (PMo12O40) · (pip) · 2H2O (3) (pip = piperazine; 4,4′-bipy = 4,4′-bipyridine), have been hydrothermally synthesized. The single X-ray structural analysis reveals that the structure of 1 is constructed from [Cu(H2O)(4,4′-bipy)2] complexes into a novel, three-dimensional supermolecular network with 1-D channels in which Cu[P4Mo6]2 dimer clusters reside. To the best of our knowledge, compound 1 is the first complex in which the [P4Mo6] clusters have been used as a non-coordinating anionic template for the construction of a novel, three-dimensional supermolecular network. Compound 2 is constructed from the six-supported [BW12O40]5− polyoxoanions and [CuI(4,4′-bipy)] and [CuII(4,4′-bipy)] groups into a novel, 3-D network. Compound 3 exhibits unusual 3-D supramolecular frameworks, which are constructed from tetrasupporting [PMo12O40]3− clusters and [CuI (4,4′-bipy)n] coordination polymer chains. The electrochemical properties of 2 and 3 have been investigated in detail.  相似文献   

15.
The influence of coanion on self-assembly of CuSO4 and 4,4′-dipyridyl sulfide (dps) was studied in this paper. During the formation of Cu(II)/dps coordination polymers, coanions Cl, SCN and were added in the solution respectively. Three novel coordination polymers were obtained, {[Cu(dps)2 · (SO4)2][Cu(dps) · Cl · (H2O)2]2 · 12H2O}n (1 · 12H2O, a 3D network), {[Cu(SCN)2(dps)(CH3OH)2][Cu(dps)2 · SO4][Cu(dps)(CH3CH2OH)2 · SO4] · 5H2O}n (2 · 5H2O, a 3D network), and {[Cu(dps)2(H2O)2] · (PF6)2 · 3H2O}n (3 · 3H2O, a 2D lattice network). Different coanion shows different influence on framework construction. In 1 and 2, Cl and SCN act as terminal ligands and similar 3D frameworks were composed of [Cu(dps)] layer with larger cavity (ca. 400 Å) and sulfate bridge; in 3, replaces entirely and the 3D framework was broken due to the removal of bridging anions. However, a 2D [Cu(dps)]4 undulating grid was preserved in 3.  相似文献   

16.
One-dimensional {[Cu2(dppa)2(4,4′-bipy)(CH3CN)2](BF4)2 · 2CH3CN}n (1), two-dimensional {[Cu2(dppa)(4,4′-bipy)2(CH3CN)2](BF4)2 · 4CH2Cl2 · 4H2O}n (2) and three-dimensional {[Cu2(dppa)(4,4′-bipy)3](BF4)2 · 2CH2Cl2 · 3CH3CN · 3H2O}n (3) polymeric complexes have been prepared by self-assembly of [Cu(MeCN)4]BF4, Ph2PCCPPh2 (dppa) and 4,4′-bipyridine (4,4′-bipy) in a 2:2:1, 1:1:1 and 2:2:3 molar ratio, respectively. The structures of 1-3, determined by an X-ray diffraction study, reveal a linear spring-like architecture for 1, a planar honeycomb grid for 2 and an interlocked adamantoid network for 3.  相似文献   

17.
Synthesis and crystal structure of two coordination polymers of composition [MnII(H2bpbn)1.5][ClO4]2 · 2MeOH · 2H2O (1) and [CoII(H2bpbn)(H2O)2]Cl2 · H2O (2) [H2bpbn = N,N′-bis(2-pyridinecarboxamido)-1,4-butane], formed from the reaction between [Mn(H2O)6][ClO4]2/CoCl2 · 4H2O with H2bpbn in MeCN, are described. In 1 each MnII ion is surrounded by three pyridine amide units, providing three pyridine nitrogen and three amide oxygen donors. Each MnII center in 1 has distorted MnN3O3 coordination. In 2 each CoII ion is coordinated by two pyridine amide moieties in the equatorial plane and two water molecules provide coordination in the axial positions. Thus, the metal center in 2 has trans-octahedral geometry. In both 1 and 2, the existence of 1D zigzag network structure has been revealed. Owing to π-π stacking of pyridine rings from adjacent layers 1 forms 2D network; 2 forms 2D and 3D network assemblies via N-H?Cl and O-H?Cl secondary interactions. Both the metal centers are high-spin.  相似文献   

18.
Two new 1-(tetrazol-1-yl)cycloalkanes [Cntz] with n = 5 and 6 were synthesised as ligands for iron(II) spin crossover complexes. Just recently, the [Fe(C3tz)6](BF4)2 showed that the rigid cyclopropyl-substituent of the tetrazole yielded a rather abrupt and complete spin transition at T½ ≈ 190 K [1]. Aiming for a deeper insight into the factors governing the spin transition behavior such as abruptness and spin transition temperature we synthesized the two new homologous complexes [Fe(C5tz)6](BF4)2 and [Fe(C6tz)6](BF4)2 which were characterized by XRPD, magnetic susceptibility measurements, DSC, 57Fe-Mössbauer, UV-Vis-NIR and MIR spectroscopy. The magnetic and structural properties of both [Fe(Cntz)6](BF4)2 with n = 5 and 6 are also compared with the [Fe(C3tz)6](BF4)2 and its structural peculiarities are discussed.  相似文献   

19.
A series of mononuclear iron(III) complexes with containing phenolate donor of substituted-salicylaldimine based ligands [Fe(L1)(TCC)] · CH3OH (1), [Fe(L2)(TCC)] · CH3OH (2), [Fe(L3)(TCC)] (3), and [Fe(L4)(TCC)] (4) have been prepared and studied as functional models for catechol dioxygenases (H2TCC = tetrachlorocatechol, or HL1 = N′-(salicylaldimine)-N,N-diethyldiethylenetriamine, HL2 = N′-(5-Br-salicylaldimine)-N,N-diethyldiethylenetriamine, HL3 = N′-(4,6-dimethoxy-salycyl-aldimine)-N,N-diethyl-diethylenetriamine, HL4 = N′-(4-methoxy-salicylaldimine)-N,N-diethyl-diethylenetriamine). They are structural models for inhibitors of enzyme-substrate adducts from the reactions of catechol 1,2-dioxygenases. Complexes 1-4 were characterized by spectroscopic methods and X-ray crystal structural analysis. The coordination sphere of Fe(III) atom of 1-4 is distorted octahedral with N3O3 donor set from the ligand and the substrate TCC occupying cis position, and Fe(III) is in high-spin (S = 5/2) electronic ground state. The in situ prepared iron(III) complexes without TCC, [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)Cl2], and [Fe(L4)Cl2] are reactive towards intradiol cleavage of the 3,5-di-tert-butylcatechol (H2DBC) in the presence of O2 or air. The reaction rate of catechol 1,2-dioxygenase depends on the redox potential and acidity of iron(III) ions in complexes as well as the substituent effect of the ligands. We have identified the reaction products and proposed the mechanism of the reactions of these iron(III) complexes with H2DBC with O2.  相似文献   

20.
Dinuclear cobalt(II) complexes Co2(bpmp)(OAc)3 (1) and Co2(bpcp)(OAc)3 (2) have been synthesized by using acyclic ligands 2,6-bis((4-(pyridin-2-yl)pyrimidin-2-ylthio)methyl)-4-methylphenol [H(bpmp)] and 2,6-bis((4-(pyridin-2-yl)pyrimidin-2-ylthio)methyl)-4-chlorophenol [H(bpcp)] with versatile coordination sites. X-ray analysis uncovered that complex 1 · 3H2O contains a μ-phenoxo-μ-acetato-bis(η2-acetato) dicobalt(II, II) core. Magnetic susceptibility was measured for 1 over the temperature range 1.8-300 K, and the best theoretical fitting parameters were g = 2.12(6), J = −3.63(9) cm−1 and D = −12(4) cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号