首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Domain 5 (D5) is the central core of group II intron ribozymes. Many base and backbone substituents of this highly conserved hairpin participate in catalysis and are crucial for binding to other intron domains. We report the solution structures of the 34-nucleotide D5 hairpin from the group II intron ai5 gamma in the absence and presence of divalent metal ions. The bulge region of D5 adopts a novel fold, where G26 adopts a syn conformation and flips down into the major groove of helix 1, close to the major groove face of the catalytic AGC triad. The backbone near G26 is kinked, exposing the base plane of the adjacent A-U pair to the solvent and causing bases of the bulge to stack intercalatively. Metal ion titrations reveal strong Mg(2+) binding to a minor groove shelf in the D5 bulge. Another distinct metal ion-binding site is observed along the minor groove side of the catalytic triad, in a manner consistent with metal ion binding in the ribozyme active site.  相似文献   

2.
The X-ray crystal structure of an excised group II self-splicing intron was recently solved by the Pyle group. Here we review some of the notable features of this structure and what they may tell us about the catalytic active site of the group II ribozyme and potentially the spliceosome. The new structure validates the central role of domain V in both the structure and catalytic function of the ribozyme and resolves several outstanding puzzles raised by previous biochemical, genetic and structural studies. While lacking both exons as well as the cleavage sites and nucleophiles, the structure reveals how a network of tertiary interactions can position two divalent metal ions in a configuration that is ideal for catalysis.  相似文献   

3.
B B Konforti  Q Liu    A M Pyle 《The EMBO journal》1998,17(23):7105-7117
Group II introns are ribozymes with a complex tertiary architecture that is of great interest as a model for RNA folding. Domain 5 (D5) is a highly conserved region of the intron that is considered one of the most critical structures in the catalytic core. Despite its central importance, the means by which D5 interacts with other core elements is unclear. To obtain a map of potential interaction sites, dimethyl sulfate was used to footprint regions of the intron that are involved in D5 binding. These studies were complemented by measurements of D5 binding to a series of truncated intron derivatives. In this way, the minimal region of the intron required for strong D5 association was defined and the sites most likely to represent thermodynamically significant positions of tertiary contact were identified. These studies show that ground-state D5 binding is mediated by tertiary contacts to specific regions of D1, including a tetraloop receptor and an adjacent three-way junction. In contrast, D2 and D3 are not found to stabilize D5 association. These data highlight the significance of D1-D5 interactions and will facilitate the identification of specific tertiary contacts between them.  相似文献   

4.
RNA molecules have an inherent flexibility that enables recognition of other interacting partners through potential disorder-order transitions, yet studies to quantify such motional dynamics remain few. With an increasing database of three-dimensional structures of biologically important RNA molecules, quantifying such motions becomes important to link structural deformations with function. One such system studied intensely is domain 5 (D5) from the self-splicing group II introns, which is at the heart of its catalytic machinery. We report the dynamics of a 36 nucleotide D5 from the Pylaiella littoralis group II intron in the presence and absence of magnesium ions, and at a range of temperatures (298K-318 K). Using high-resolution NMR experiments of heteronuclear nuclear Overhauser enhancement (NOE), spin-lattice (R(1)), and spin-spin (R(2)) (13)C relaxation rates, we determined the rotational diffusion tensor of D5 using the ROTDIF program modified for RNA dynamic analysis (ROTDIF_RNA). The D5 rotational diffusion tensor has an axial symmetric ratio (D(||)/D(perpendicular)) of 1.7+/-0.3, consistent with an estimated overall rotational correlation time of tau(m)=(2D(||)+4D(perpendicular))(-1) of 6.1(+/-0.3) ns at 298 K and 4.1(+/-0.2) ns at 318 K. The measured relaxation data were analyzed with the reduced spectral density mapping formalism using assumed values of the chemical shift anisotropy of the (13)C spins. Both the relaxation data and the values of the spectral density function reveal that the functional groups in D5 implicated in magnesium ion binding and catalysis (catalytic triad, internal bulge, and tetraloop regions) exhibit thermally induced motion on a wide variety of timescales. Because these motions parallel those observed in the intramolecular stem-loop of the U6 element within the spliceosome, we hypothesize that such extensive dynamic disorder likely facilitates D5 engaging both binding and catalytic regions of the ribozyme, and these may be a conserved feature of the catalytic machinery essential for catalysis.  相似文献   

5.
6.
The wildtype Tetrahymena ribozyme cannot catalyze detectable levels of phosphotransfer activity in vitro on an exogenous RNA substrate oligonucleotide when calcium(II) is supplied as the only available divalent ion. Nevertheless, low-error mutants of this ribozyme have been acquired through directed evolution that do have activity in 10 mM CaCl2. The mechanisms for such Ca(II) accommodation are not known. Here, we assayed the entire molecule in an effort to identify the roles of the mutations in allowing catalytic activity in Ca(II). We used four biochemical probing techniques - native-gel electrophoresis, hydroxyl radical footprinting, terbium(III) cleavage footprinting, and phosphorothioate interference mapping - to compare the solution structure of the wildtype ribozyme with that of a Ca(II)-active five-site mutant. We compared the gross folding patterns and specific metal-binding sites in both MgCl2 and CaCl2 solutions. We detected no large-scale folding differences between the two RNAs in either metal. However, we did discover a limited number of local folding differences, involving regions of the RNA affected by positions 42, 188, and 270. These data support the notion that Ca(II) is accommodated by the Tetrahymena ribozyme by a slight breathing at the active site, but that alterations at, near to, and distal from the active site can all contribute to Ca(II)-based activity.  相似文献   

7.
Group II introns are ribozymes occurring in genes of plants, fungi, lower eukaryotes, and bacteria. These large RNA molecular machines, ranging in length from 400 to 2500 nucleotides, are able to catalyze their own excision from pre-mRNA, as well as to reinsert themselves into RNA or sometimes even DNA. The intronic domain 1 contains two sequences (exon binding sites 1 and 2, EBS1 and EBS2) that pair with their complementary regions at the 3′-end of the 5′-exon (intron binding sites 1 and 2, IBS1 and IBS2) such defining the 5′-splice site. The correct recognition of the 5′-splice site stands at the beginning of the two steps of splicing and is thus crucial for catalysis. It is known that metal ions play an important role in folding and catalysis of ribozymes in general. Here, we characterize the specific metal ion requirements for the formation of the 5′-splice site recognition complex from the mitochondrial yeast group II intron Sc.ai5γ. Circular dichroism studies reveal that the formation of the EBS1 · IBS1 duplex does not necessarily require divalent metal ions, as large amounts of monovalent metal ions also promote the duplex, albeit at a 5000 times higher concentration. Nevertheless, micromolar amounts of divalent metal ions, e.g. Mg2+ or Cd2+, strongly promote the formation of the 5′-splice site. These observations illustrate that a high charge density independent of the nature of the ion is needed for binding EBS1 to IBS1, but divalent metal ions are presumably the better players.  相似文献   

8.
Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such “off-pathway” species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2′- and 3′-deoxy (–H) and −amino (–NH2) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3′-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2′-OH making no interaction. Upon S binding, a rearrangement occurs that allows both –OH groups to contact a different active site metal ion, termed MC, to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA''s difficulty in specifying a unique conformation and highlighting Nature''s potential to use local transitions of RNA in complex function.  相似文献   

9.
Despite a growing literature on the folding of RNA, our understanding of tertiary folding in large RNAs derives from studies on a small set of molecular examples, with primary focus on group I introns and RNase P RNA. To broaden the scope of RNA folding models and to better understand group II intron function, we have examined the tertiary folding of a ribozyme (D135) that is derived from the self-splicing ai5gamma intron from yeast mitochondria. The D135 ribozyme folds homogeneously and cooperatively into a compact, well-defined tertiary structure that includes all regions critical for active-site organization and substrate recognition. When D135 was treated with increasing concentrations of Mg(2+) and then subjected to hydroxyl radical footprinting, similar Mg(2+) dependencies were seen for internalization of all regions of the molecule, suggesting a highly cooperative folding behavior. In this work, we show that global folding and compaction of the molecule have the same magnesium dependence as the local folding previously observed. Furthermore, urea denaturation studies indicate highly cooperative unfolding of the ribozyme that is governed by thermodynamic parameters similar to those for forward folding. In fact, D135 folds homogeneously and cooperatively from the unfolded state to its native, active structure, thereby demonstrating functional reversibility in RNA folding. Taken together, the data are consistent with two-state folding of the D135 ribozyme, which is surprising given the size and multi-domain structure of the RNA. The findings establish that the accumulation of stable intermediates prior to formation of the native state is not a universal feature of RNA folding and that there is an alternative paradigm in which the folding landscape is relatively smooth, lacking rugged features that obstruct folding to the native state.  相似文献   

10.
PABC is a phylogenetically conserved peptide-binding domain primarily found within the C terminus of poly(A)-binding proteins (PABPs). This domain recruits a series of translation factors including poly(A)-interacting proteins (Paip1 and Paip2) and release factor 3 (RF3/GSPT) to the initiation complex on mRNA. Here, we determine the solution structure of the Trypanosoma cruzi PABC domain (TcPABC), a representative of the vegetal class of PABP proteins. TcPABC is similar to human PABC (hPABC) and consists of five alpha-helices, in contrast to the four helices observed in PABC domains from yeast (yPABC) and hyper plastic disk proteins (hHYD). A mobile N-terminal helix is observed in TcPABC that does not pack against the core of the protein, as found in hPABC. Characteristic to all PABC domains, the last four helices of TcPABC fold into a right-handed super coil. TcPABC demonstrates high-affinity binding to PABP interacting motif-2 (PAM-2) and reveals a peptide-binding surface homologous to that of hPABC. Our results demonstrate the last four helices in TcPABC are sufficient for peptide recognition and we predict a similar binding mode in PABC domains. Furthermore, these results point to the presence of putative PAM-2 site-containing proteins in trypanosomes.  相似文献   

11.
Liu PP  Chen YC  Li C  Hsieh YH  Chen SW  Chen SH  Jeng WY  Chuang WJ 《Proteins》2002,49(4):543-553
Interleukin enhancer binding factor (ILF) binds to the interleukin-2 (IL-2) promoter and regulates IL-2 gene expression. In this study, the 3D structure of the DNA-binding domain of ILF was determined by multidimensional NMR spectroscopy. NMR structure analysis revealed that the DNA-binding domain of ILF is a new member of the winged helix/forkhead family, and that its wing 2 contains an extra alpha-helix. This is the first study to report the presence of a C-terminal alpha-helix in place of a typical wing 2 in a member of this family. This structural difference may be responsible for the different DNA-binding specificity of ILF compared to other winged helix/forkhead proteins. Our deletion studies of the fragments of ILF also suggest that the C-terminal region plays a regulatory role in DNA binding.  相似文献   

12.
A new fluorescence receptor calix[4]pyrrole‐N‐(quinoline‐8‐yl) acetamide (CAMQ) containing a pyrrolic ring connected via the meso‐position was synthesized, purified and characterized by elemental analysis, NMR and mass spectroscopy. This compound was examined for its fluorescence properties towards different metal ions e.g. Ag(I), Hg(II), Co(II), Ca(II), Ni(II), Zn(II), Cr(II), Ba(II), Fe(II), Cu(II), Pb(II)and Mg(II) ions by spectrophotometry and spectrofluorometry. It was concluded that the compound (CAMQ) possessed significantly enhanced selectivity for Pb(II) and Cu(II) ions in dimethyl sulfoxide (DMSO) even at very low concentrations (1 μM). It exhibit ‘turn‐on’ fluorescence when exposed to Pb(II) and Cu(II) and did so in preference to other metal ions. The binding constants, stoichiometry and quantum yields have been determined. The quenching mechanism was assessed using the Stern–Volmer equation and was also discussed.  相似文献   

13.
Leptospiral immunoglobulin‐like (Lig) proteins are surface proteins expressed in pathogenic strains of Leptospira. LigB, an outer membrane protein containing tandem repeats of bacterial Ig‐like (Big) domains and a no‐repeat tail, has been identified as a virulence factor involved in adhesion of pathogenic Leptospira interrogans to host cells. A Big domain of LigB, LigBCen2R, was reported previously to bind the GBD domain of fibronectin, suggesting its important role in leptospiral infections. In this study, we determined the solution structure of LigBCen2R by nuclear magnetic resonance (NMR) spectroscopy. LigBCen2R adopts a canonical immunoglobulin‐like fold which is comprised of a beta‐sandwich of ten strands in three sheets. We indicated that LigBCen2R is able to bind to Ca2+ with a high affinity by isothermal titration calorimetry assay. NMR perturbation experiment identified a number of residues responsible for Ca2+ binding. Structural comparison of it with other Big domains demonstrates that they share a similar fold pattern, but vary in some structural characters. Since Lig proteins play a vital role in the infection to host cells, our study will contribute a structural basis to understand the interactions between Leptospira and host cells. Proteins 2015; 83:195–200. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Burton AS  Lehman N 《Biochimie》2006,88(7):819-825
Group I intron ribozymes isolated from natural sources have a strict dependence on the divalent metal cations Mg(II) or Mn(II) for catalytic activity. However, mutant versions of the Tetrahymena ribozyme have been previously isolated in the laboratory that show demonstrable activity in 10 mM CaCl(2) as the only supplied salt. Here, we sought to discover similar variants of another group I intron that is likely more evolutionarily specialized. We used in vitro selection to isolate a Ca(II)-dependent variant of the naturally-occurring form of the Azoarcus ribozyme, which is half the size of the Tetrahymena ribozyme and possesses an extremely high G+C content of 71%. A mutation of G to A at position 118 was selected in multiple independent trials. Activity of the mutant is very poor in Ca(II) and can only be observed after RT-PCR, highlighting the power of in vitro selection to isolate molecules with rare and low-level activities. The mutation likely confers an alternate but rare folded conformation that permits accommodation of Ca(II) ions and catalysis. This work also serves to caution that although a selection may be successful, isolates may not be catalytically proficient enough to provide useful levels of activity.  相似文献   

15.
Angiosperm mitochondria encode approximately 20 group II introns, which interrupt genes involved in the biogenesis and function of the respiratory chain. Nucleus‐encoded splicing factors have been identified for approximately half of these introns. The splicing factors derive from several protein families defined by atypical RNA binding domains that function primarily in organelles. We show here that the Arabidopsis protein WTF9 is essential for the splicing of group II introns in two mitochondrial genes for which splicing factors had not previously been identified: rpl2 and ccmFC. WTF9 harbors a recently recognized RNA binding domain, the PORR domain, which was originally characterized in the chloroplast splicing factor WTF1. These findings show that the PORR domain family also functions in plant mitochondria, and highlight the parallels between the machineries for group II intron splicing in plant mitochondria and chloroplasts. In addition, we used the splicing defects in wtf9 mutants as a means to functionally characterize the mitochondrial rpl2 and ccmFC genes. Loss of ccmFC expression correlates with the loss of cytochromes c and c1, confirming a role for ccmFC in cytochrome biogenesis. By contrast, our results strongly suggest that splicing is not essential for the function of the mitochondrial rpl2 gene, and imply that the Rpl2 fragment encoded by rpl2 exon 1 functions in concert with a nuclear gene product that provides the remainder of this essential ribosomal protein in trans.  相似文献   

16.
Ubiquitin C-terminal hydrolases (UCHs) are one of five sub-families of de-ubiquitinating enzymes (DUBs) that hydrolyze the C-terminal peptide bond of ubiquitin. UCH37 (also called UCH-L5) is the only UCH family protease that interacts with the 19S proteasome regulatory complex and disassembles Lys48-linked poly-ubiquitin from the distal end of the chain. The structures of three UCHs, UCH-L1, UCH-L3, and YUH1, have been determined by X-ray crystallography. However, little is known about their physiological substrates. These enzymes do not hydrolyze large adducts of ubiquitin such as proteins. To identify and characterize the hydrolytic specificities of their substrates, the crystal structure of the UCH37 catalytic domain (UCH-domain) was determined and compared with that of the other UCHs. The overall folding patterns are similar in these UCHs. However, helix-3 is collapsed in UCH37 and the pattern of electrostatic potential on the surface of the putative substrate-binding site (P′-site) is different. Helix-3 comprises an edge of the P′-site. As a result, the P′-site is wider than that in other UCHs. These differences indicate that UCH37 can interact with larger adducts such as ubiquitin.  相似文献   

17.
The study on the binding ability of dehydro-tri- and tetrapeptides has shown that the ,β-double bond has a critical effect on the peptide coordination to metal ions. It may affect the binding of the vicinal amide nitrogens by the electronic effect and stabilize the complex due to steric effects. The (Z) isomer is the most effective in stabilizing of the complexes formed. The presence of large side chain in the dehydroamino acid residue may also be critical for the coordination mode in the metallopeptide systems.  相似文献   

18.
Two Cd(II) and Zn(II) coordination polymers based on 3,3′,5,5′-azobenzenetetracarboxylic acid (H4abtc): [Cd2(abtc)(H2O)6]·DMF·0.5H2O (1) and [Zn2(abtc)(bpy)(H2O)2]·DMF·H2O (2) are synthesized and structurally characterized. Both 1 and 2 are 2D polymers but interconnected by solvent molecules to generate 3D suprastructures. Solvent expulsion leads to rupture of both structures, but upon re-exposure to the solvent mixture they exhibit remarkable ability to regain the original structure reversibly from the almost amorphous solvent-expelled form. Compounds with such structural flexibility and reversibility are expected to have some useful functionality.  相似文献   

19.
The solution-state structure of 2′-O-(2-methoxyethly) substituted dodecamer r(*CG*CGAA*U*U*CG*C)d(G), 2′-MOE RNA, with all cytosines and uracils methylated at the C5-position has been determined by NMR spectroscopy. The chemical modifications were used to improve the oligonucleotide's drug-like properties. The 2′-MOE group drives pseudorotational equilibrium of the ribofuranose moiety to the N-type conformation and supposedly results in structural preorganization leading to high affinity of a modified oligonucleotide towards its complementary biological target, improved pharmacokinetic and toxicological properties. The high melting temperature of the antiparallel duplex structure adopted by 2′-MOE RNA was explained through the formation of a stable A-form RNA consistent with effective base-pairing and stacking interactions. The comparison of the solution-state structure with the crystal structure of a non-methylated analogue shows an increase in the stacking at the base pair steps for the C5-methylated 2′-MOE RNA duplex. The MOE substituents adopt a well-defined structure in the minor groove with the predominant gauche conformations around the ethylene bond.  相似文献   

20.
A metal-binding site consisting of two histidines positioned His-X3-His in an alpha-helix has been engineered into the surface of Saccharomyces cerevisiae iso-1-cytochrome c. The synthetic metal-binding cytochrome c retains its biological activity in vivo. Its ability to bind chelated Cu(II) has been characterized by partitioning in aqueous two-phase polymer systems containing a polymer-metal complex, Cu(II)IDA-PEG, and by metal-affinity chromatography. The stability constant for the complex formed between Cu(II)IDA-PEG and the cytochrome c His-X3-His site is 5.3 x 10(4) M-1, which corresponds to a chelate effect that contributes 1.5 kcal mol-1 to the binding energy. Incorporation of the His-X3-His site yields a synthetic metal-binding protein whose metal affinity is sensitive to environmental conditions that alter helix structure or flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号