首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermediate sitting-atop (i-SAT) complexes are metalloporphyrins in which the metal ion is bonded to fewer than four nitrogen atoms in the distorted porphyrin plane. The i-SAT complexes may be considered as models for the initial steps of the metallation of the macrocycles. The new ionic intermediate sitting-atop complexes of [PCl3(H2t(X)pp)]Cl2 containing phosphorus(V) was synthesized by reaction of PCl5 and meso-tetraarylporphyrins (H2t(X)pp) in solvent free conditions. The structure of the complexes was confirmed by (1H, 31P, 13C) NMR, FT-IR and UV-Vis spectroscopies, elemental analysis and electrical conductometry. These data proved that only two pyrrolenine nitrogen atoms of the porphyrin act as electron donors to one phosphorus(V) center and so two pyrrolic protons remained still on the macrocycle.  相似文献   

2.
The reaction of meso-tetraarylporphyrins with phosphorus oxychloride was studied. The reaction product is the so-called intermediate sitting-atop (i-SAT) complex where two pyrrolic nitrogen atoms of the porphyrin core coordinate to the phosphorus atom and two protons on the pyrrolic nitrogen atoms remain. Selection of solvent free conditions is caused that the reaction does not progress until deprotonation step of porphyrin and stopped in the intermediate step for formation of the sitting-atop complex, [POCl2(H2t(X)pp)]Cl. The sitting-atop complexes were characterized by (1H, 31P, 13C) NMR, FT-IR, UV-vis and photoluminescence spectroscopy (PL), elemental analysis and electrical conductometry. Photoluminescence study of the complexes indicates that their emission spectra are different from those of free base porphyrins.  相似文献   

3.
The reaction of free base para-substituted meso-tetraarylporphyrins (H2T(p-X)PP, X = H, OMe, Me, and Cl) with indium(III) chloride in CHCl3 and mild conditions produced intermediate sitting-atop (i-SAT) complexes, [InCl2(H2T(p-X)PP)]InCl4, as sole products. In the proposed structures of these complexes, four pyrrole rings are tilted alternatively up and down the porphyrin plane. This distortion makes suitable orientation of lone pairs of two pyrrolenine nitrogens for electron donation to an indium center of cation. The 1:2 (porphyrin:indium) formation constant of resulting i-SAT complexes were calculated by the computer fitting of the complexes absorbance versus mole ratio data based on appropriate equations. Thermodynamic parameters, ΔG0, ΔH0, and ΔS0, have been determined and the influence of electron donation of the para-substituted aryl groups in the free base porphyrins on the stability of the complexes is discussed.  相似文献   

4.
Four complexes - [(15C5)4Pc]M(Pc)M(Pc), (Pc2− - phthalocyaninato-dianion, [(15C5)4Pc]2− - 2,3,9,10,16,17,24,25-tetrakis(15-crown-5)phthalocyaninato-dianion, M = Sm, Dy, Tm, Y) were obtained via the reaction of M(Pc)2, H2[(15C5)4Pc] and M(acac)3. The influence of the stability of starting M(Pc)2 on the yields of target compounds was investigated. Increasing the stability of M(Pc)2 leads to higher yields of [(15C5)4Pc]M(Pc)M(Pc) and lower yields of scrambling products. All complexes were characterized by 1H NMR, UV-Vis and FT-IR spectroscopy as well as MALDI TOF mass-spectrometry. The analysis of 1H NMR spectra was performed in terms of lanthanide-induced shifts. Cation-induced dimerisation was studied by means of spectrophotometric titration. Supramolecular dimers {2[(15C5)4Pc]M(Pc)M(Pc) · 4K+} are the largest discrete cofacial supramolecular assemblies built of phthalocyanine building blocks reported up-to-date. The observed increase of the intermolecular excitonic interaction between building blocks with the increase of REE(III) size is tentatively explained in terms of metal-size dependent deformation of phthalocyanine ligands in sandwich complexes.  相似文献   

5.
The chelating behavior of 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone) (H2dapa) towards manganese(II), cadmium(II) and oxovanadium(IV) ions has been studied by elemental analyses, conductance measurements, magnetic properties and spectral (IR, 1H NMR, UV-Vis and EPR) studies. The IR spectral studies suggest the pentadentate nature of the ligand with pyridine nitrogen, two azomethine nitrogens and two carbonyl oxygen atoms as the ligating sites. Six coordinate structure for [VO(H2dapa)]SO4 · H2O and seven coordinate structures for [Mn(H2dapa)(Cl)(H2O)]Cl · 2H2O and [Cd(H2dapa)Cl2] · H2O complexes have been proposed. Pentagonal bipyramidal geometry for [Mn(H2dapa)(Cl)(H2O)]Cl · 2H2O and [Cd(H2dapa)(Cl2)] · H2O complexes was confirmed by single crystal analysis. The X-band EPR spectra of the oxovanadium(IV) and manganese(II) complexes in the polycrystalline state at room (300 K) and also at liquid nitrogen temperature (77 K) were recorded and their salient features are reported.  相似文献   

6.
New silver(I) complexes have been synthesised from the reaction of AgNO3, monodentate PR3 (PR3 = P(o-tolyl)3, P(m-tolyl)3, P(p-tolyl)3, P(p-C6H4F), SeP(C6H5)3) or bidentate tertiary (dppe = bis(diphenylphosphane)ethane, dppf = 1,1′-bis(diphenylphosphane)ferrocene) phosphanes and potassium dihydrobis(3-nitro-1,2,4-triazolyl)borate, K[H2B(tzNO2)2]. These compounds have been characterized by elemental analyses, FT-IR, ESI-MS and multinuclear (1H and 31P) NMR spectral data. The adduct {[H2B(tzNO2)2]Ag[P(m-tolyl)3]2} has been characterized by single crystal X-ray studies. In the former, the H2B(tzNO2)2 acts as a monodentate ligand utilizing the coordinating capability of only one of the additional (exo-) ring nitrogens to complete the coordination array about the silver atom.  相似文献   

7.
Two new porphyrins, meso-tris-3,4-dimethoxyphenyl-mono-(4-pyridyl)porphyrin (H2MPy3,4DMPP) and meso-tris-3-methoxy-4-hydroxyphenyl-mono-(4-pyridyl)porphyrin (H2MPy3M4HPP), and their ruthenium analogs obtained by coordination of [Ru(bpy)2Cl]+ groups (where bpy = 2,2′-bipyridine) to the pyridyl nitrogens have been synthesized and studied by electronic absorption spectroscopy, cyclic voltammetry and spectroelectrochemistry. These ruthenated porphyrins couple Ru chromophores to porphyrins containing electroactive meso-substituents. The highest energy electronic absorption for the ruthenated complexes is assigned as a bpy(π) → bpy(π*) intraligand charge transfer while the next lowest energy electronic absorption is assigned as Ru(dπ) → bpy(π*) metal-to-ligand charge transfer (MLCT) transition. The RuIII/II couples occur at approximately 0.95 V versus the SHE reference electrode in acetonitrile solutions. The first oxidation of the porphyrin is localized on the 3,4-dimethoxyphenyl and 3-methoxy-4-hydroxyphenyl substituents, respectively. Electroactive surfaces result from adsorption of these compounds onto glassy carbon electrodes followed by anodic cycling in acidic media.  相似文献   

8.
A series of hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(B)L n ] (n = 1–4; B = PPh3, AsPh3 or Py) have been synthesized by reacting dibasic quadridentate Schiff base ligands H2L n (n = 1–4) with starting complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py). The synthesized complexes were characterized using elemental and various spectral studies including UV–Vis, FT-IR, NMR (1H, 13C and 31P) and mass spectroscopy. An octahedral geometry was tentatively proposed for all the complexes based on the spectral data obtained. The experiments on antioxidant activity showed that the ruthenium(II) S-methylisothiosemicarbazone Schiff base complexes exhibited good scavenging activity against various free radicals (DPPH, OH and NO). The in vitro cytotoxicity of these complexes has been evaluated by MTT assay. The results demonstrate that the complexes have good anticancer activities against selected cancer cell line, human breast cancer cell line (MCF-7) and human skin carcinoma cell line (A431). The DNA cleavage studies showed that the complexes have better cleavage of pBR 322 DNA.  相似文献   

9.
New complexes based on a coordination interaction between a pyridyl-porphyrin (namely 5,10,15-tritolyl-20-(4-pyridyl)porphyrin, 5,10,15-tritolyl-20-(3-pyridyl)porphyrin or 5,10,15-triphenyl-20-(4-pyridyl)porphyrin) and a Keggin-type polyoxometalate (α-[MSiW11O39]6−, M = Co2+ or Ni2+) are formed in solution. The formation of these complexes is clearly evidenced by steady-state and time-resolved luminescence measurements. A strong quenching of the porphyrin fluorescence, accompanied by an important shortening of the fluorescence lifetime, is observed upon addition of the POM and formation of the complexes. Using a variant of the Job’s method from the luminescence spectra, the association constants of the complexes have been estimated to be around 106 L mol−1. Paramagnetic 1H NMR experiments confirm the formation of the complexes. Indeed, in addition to broadenings of the signals, the coordination binding of the POM to the porphyrin induces large high-frequency shifts for the protons of the pyridyl group coordinated to the paramagnetic metal, and low-frequency shifts for all the other resonances.  相似文献   

10.
Five dissymmetric tridentate Schiff base ligands, containing a mixed donor set of ONN and ONO were prepared by the reaction of benzhydrazide with the appropriate salicylaldehyde and pyridine-2-carbaldehyde and characterized by FT-IR, 1H and 13C NMR. The complexes of these ligands were synthesized by treating an ethanolic solution of the appropriate ligand and one equivalent Et3N with an equimolar amount of MnCl2 · 4H2O or alternatively by a more direct route in which an ethanolic solution of benzhydrazide was added to ethanolic solution of appropriate salicylaldehyde and MnCl2 · 4H2O solution to yield [MnCl(L1)(H2O)2], [Mn(L2)2(H2O)2], [MnCl(L3)], [MnCl(L4)] and [MnCl2(H2O)(L5)]. The hydrazone Schiff base ligands and their manganese complexes including HL1-4 and L5 (HL1 = benzoic acid (2-hydroxy-3-methoxy-benzylidene)-hydrazide, HL2 = benzoic acid (2,3-dihydroxy-benzylidene)-hydrazide, HL3 = benzoic acid (2-hydroxy-benzylidene)-hydrazide, HL4 = benzoic acid (5-bromo-2-hydroxy-benzylidene)-hydrazide, L5 = benzoic acid pyridine-2-yl methylene-hydrazide) were characterized on the basis of their FT-IR, 1H and 13C NMR, and molar conductivity. The crystal structures of HL1 and [MnCl2(H2O)L5] have been determined. The results suggest that the Schiff bases HL1, HL2, HL3, and HL4 coordinate as univalent anions with their tridentate O,N,O donors derived from the carbonyl and phenolic oxygen and azomethine nitrogen. L5 is a neutral tridentate Schiff base with N,N,O donors. ESI-MS for the complexes Mn-L2,3,5 provided evidence for the presence of multinuclear complexes in solution. Catalytic ability of Mn-L1-5 complexes were examined and found that highly selective epoxidation (>95%) of cyclohexene was performed by iodosylbenzene in the presence of these complexes and imidazole in acetonitrile.  相似文献   

11.
The spectroscopic and electrochemical properties of two isomeric forms of the supramolecular species [μ-(H2TPyP){Ru(bpy)2Cl}4]4+ (H2TPyP = 5,10,15,20-tetra(3- or 4-pyridyl)porphyrin, bpy = 2,2′-bipyridine) have been compared and consistently interpreted with the aid of molecular orbital calculations. In these complexes, the HOMO and LUMO levels are predominantly localized in the ruthenium complexes and porphyrin ring, respectively. There is an extensive mixing of the wave functions of both components in other MOs, however, and their contributions are reflected in the spectroelectrochemical and spectroscopic behavior. For example, the electronic mixing is enough to allow the energy-transfer from the peripheral complexes to the porphyrin ring, as well as the appearance of a RuII(dπ) → H4P(pπ*) charge-transfer band at 700 nm in the bis-protonated [μ-(H4TPyP){Ru(bpy)2Cl}4]4+ species, showing the strong stabilization of the porphyrin LUMO levels.  相似文献   

12.
Interactions between the porphyrin-bearing multidentate ligands and group II metal ions in aqueous solution were studied. Changes in the visible spectra of 5 × 10−5 M solution of the porphyrin in 0.01 M 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (pH 7.4) containing 0.1 M KCl were observed upon titration of Ca2+ at 25 °C. From the analyses of NMR and visible spectral data, we proposed that the spectral changes are due to the formation of an associate between the porphyrin and Ca2+ via the following three interactions: (i) formation of a complex between the attached NTA groups and Ca2+; (ii) hydrophobic interaction among porphyrin rings; and (iii) interaction between the pyrrole nitrogens and Ca2+.  相似文献   

13.
New copper(I) complexes have been synthesized from the reaction of CuCl with 4- or 2-(diphenylphosphane)benzoic acid and KH2B(btz)2, KHB(btz)3, NaTpMe, KpzTp, KpzTpMe and KH2B(im)2(dmac). The complexes obtained have been characterized by elemental analyses and FT-IR in the solid state, and by NMR (1H and 31P{1H}) and electrospray mass spectroscopy in solution.Chemiluminescence technique was used to evaluate the superoxide scavenging activity of these new copper complexes.  相似文献   

14.
The platinum(II) complexes of the formula [Pt(DCHEDA)X2], where DCHEDA is N,N′-dicyclohexylethylenediamine and X is CL, Br, I, 0.5C2O42− (oxalate), 0.5C3H2O42− (malonate), 0.5C9H4O62− (4-carboxyphthalate), 0.5S2O32− or 0.5SO42−, have been synthesized and characterized by UVVis, IR, and 1H NMR spectral techniques. All the above complexes are non-electrolytes in DMF/H2O, except the sulphate complex which becomes a 1:1 electrolyte after incubation for 24 h at 28 °C. The halide complexes were also studied by X-ray photoelectron spectroscopy and these data suggest that there is π-bonding from platinum to halide in these complexes. The oxalate, malonate and sulphate bind in their complexes as bidentate ligands to platinum through two oxygen atoms whereas the thiosulphate in its complex binds as a bidentate ligand to platinum through one oxygen atom and one sulphur atom.  相似文献   

15.
Two dimeric head-on complexes of yttrium containing silico- and germanotungstate were isolated from the one-pot reaction of Y(NO3)3·6H2O with the lacunary Na10[MW9O34]·16H2O (M = Si and Ge) building blocks in an acetate buffer at pH 4.5. Both polyanions were structurally characterized using various solid-state analytics, such as single-crystal X-ray diffraction, single-crystal X-ray analysis shows that both polyanions crystallize in the monoclinic crystal system (S.G. P21/c). FT-IR spectroscopy, or thermogravimetric analysis. The stability of the polyanion in aqueous solution was studied by multinuclear NMR spectroscopy (183W, 89Y, 29Si, 13C, and 1H). As expected, the 183W NMR spectra display six peaks in the intensity ratio of 4:4:2:4:4:4 which indicates that both polyanions exist as dimeric entities in aqueous solution.  相似文献   

16.
The synthesis of complexes of Li(I), K(I), Mg(II), Ca(II) and Ba(II) with guanosine in basic non aqueous solutions is described. The complexes were of two types: (1) complexes having the general formula, M(Guo)nXm·YH2O·ZC2H5OH, where M = Mg(II), Ca(II), Ba(II) and Li(I), n = 1,2,4, X = Cl?, Br?, NO3?, ClO4? and OH?, m = 1,2, Y = 0?6 and X = 0?2, and (2) complexes with the general formula, M(GuoH-1)(OH)n?1·YH2O, where M = K(I), Ca(Il) and Ba(II), GuoH-1 =Ionized guanosine at N1, n = 1,2 and Y = 1?3. The complexes are characterized by their proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT-IR) spectra. The FT-IR and 1H NMR data of the non ionized nucleoside complexes suggest that the metal binding is through the N7-site of guanine and that the anion (X) is hydrogen bonded to N1H and NH2 groups. In the N1-ionized guanosine complexes the metal binding is via the O6? of guanine. All the complexes formed exhibited a transition of the sugar conformation from C2-endo/anti in the free nucleoside to C3-endo/anti in the metal complexes.  相似文献   

17.
《Inorganica chimica acta》1986,121(2):113-117
1H and 2H NMR spectra of the title copper(II) complexes and its derivatives have been measured. In contrast with their 1H NMR spectra, 2H NMR spectra gave well resolved sharp signals, and demonstrated that two diastereomers attributable to two asymmetric ligand nitrogens are readily resolved. The remarkable linewidth-narrowing was found in the peripheral methyl groups, which make 2H NMR spectra very useful even for copper(II) complexes with a long electron spin relaxation time. By using 2H NMR spectra, meso-racemate equilibrium was pursued and examined in aqueous and acetonitrile solutions.  相似文献   

18.
《Inorganica chimica acta》1987,131(2):241-245
Complexes of 3-hydroxy-2-naphthaldehyde benzylhydrazone (H2nabh) and 3-hydroxy-2-naphthaldehyde salicyloylhydrazone (H3nash) of the empirical composition M(L2H)·nH2O [M = manganese(II), iron(II), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), mercury(II), L = H2nabh, H3nash and n = 0, 1, 2] were prepared and characterized by elemental analyses, magnetic susceptibility, electronic and infrared spectral data. Zinc(II) and cadmium(II) complexes were also studied by 13C, 1H NMR and the Cu(nabh)·H2O complex by transmission electron microscopy. The complexes are coloured and highly insoluble in common organic solvents. Absence of the original anion in the complexes indicates deprotonation of the ligands (H2nabh and H3nash) which bind the metal ions from the OH and the CN groups.  相似文献   

19.
《Inorganica chimica acta》1988,145(2):191-194
Monthioformate and dithioformate complexes of [HRu(η5-C5H5)(EPh3)(E′Ph3)] (E, E′  P, As, Sb) have been synthesized as a result of the insertion reactions of [HRu(η5-C5H5)(EPh3)(E′Ph3)] with carbonyl sulfide and carbon disulfide. The complexes were characterized by microanalytical, infra red, 1H NMR, 13C NMR spectral data, molecular weight determination along with other studies.  相似文献   

20.
Copper(I) complexes have been synthesized from the reaction of CuCl, monodentate tertiary phosphines PR3 (PR3 = P(C6H5)3; P(C6H5)2(4-C6H4COOH); P(C6H5)2(2-C6H4COOH); PTA, 1,3,5-triaza-7-phosphaadamantane; P(CH2OH)3, tris(hydroxymethyl)phosphine) and lithium bis(3,5-dimethylpyrazolyl)dithioacetate, Li[LCS2]. Mono-nuclear complexes of the type [LCS2]Cu[PR3] have been obtained and characterized by elemental analyses, FT-IR, ESI-MS and multinuclear (1H, 13C and 31P) NMR spectral data; in these complexes the ligand behaves as a κ3-N,N,S scorpionate system. One exception to this stoichiometry was observed in the complex [LCS2]Cu[P(CH2OH)3]2, where two phosphine co-ligands are coordinated to the copper(I) centre. The solid-state X-ray crystal structure of [LCS2]Cu[P(C6H5)3] has been determined. The [LCS2]Cu[P(C6H5)3] complex has a pseudo tetrahedral copper site where the bis(3,5-dimethylpyrazolyl)dithioacetate ligand acts as a κ3-N,N,S donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号