首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Pd(II) complexes of a 2N-donor ligand containing a pendent indole, 3-(2-pyridylmethylamino)ethylindole (L), were synthesized and characterized. Reaction of the ligand with [PdCl2(CH3CN)2] at room temperature gave [Pd(L)Cl2] (1) as pale yellow crystals. The X-ray crystal structure analysis and 1H NMR spectrum of 1 revealed that the complex has a 2N2Cl-donor set in a square-planar geometry and that the pendent indole ring has no characteristic intramolecular interaction with the Pd(II) ion and the coordinated pyridine moiety. Refluxing a solution of 1 in CH2Cl2/DMF for a few hours under basic conditions gave yellow crystals, which were shown to be an indole-C2 binding complex [Pd(L)Cl] (2) by X-ray analysis. Conversion of complex 1 to 2 in DMSO was observed upon dilution of the solution of complex 1. From solution equilibrium and kinetic studies the initial step of the conversion by dilution has been assigned to the replacement of a coordinated Cl ion with the DMSO molecule. The ligand replacement easily occurred at low concentrations of 1. The complex with a coordinated solvent molecule exhibited a high reactivity and formed a stable Pd-C bond with the indole ring located close to the Pd(II) center. We discussed the concentration dependent formation of the indole-C2 binding complex 2 and its detailed mechanism.  相似文献   

2.
The reaction of H2[PtCl6] · 6H2O and (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O (18C6 = 18-crown-6) with 9-methylguanine (MeGua) proceeded with the protonation of MeGua forming 9-methylguaninium hexachloroplatinate(IV) dihydrate (MeGuaH)2[PtCl6] · 2H2O (1).The same compound was obtained from the reaction of Na2[PtCl6] with (MeGuaH)Cl.On the other hand, the reaction of guanosine (Guo) with (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O in methanol at 60 °C proceeded with the cleavage of the glycosidic linkage and with ligand substitution to give a guaninium complex of platinum(IV), [PtCl5(GuaH)] · 1.5(18C6) · H2O (2).Within several weeks in aqueous solution a slow reduction took place yielding the analogous guaninium platinum(II) complex, [PtCl3(GuaH)] · (18C6) · 2Me2CO (3).H2[PtCl6] · 6H2O and guanosine was found to react in water, yielding (GuoH)2[PtCl6] (4) and in ethanol at 50 °C, yielding [PtCl5(GuoH)] · 3H2O (5).Dissolution of complexes 2 and 5 in DMSO resulted in the substitution of the guaninium and guanosinium ligands, respectively, by DMSO forming [PtCl5(DMSO)].Reactions of 1-methylcytosine (MeCyt) and cytidine (Cyd) with H2[PtCl6] · 6H2O and(H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O resulted in the formation of hexachloroplatinates with N3 protonated pyrimidine bases as cation (MeCytH)2[PtCl6] · 2H2O (6) and (CydH)2[PtCl6] (7), respectively. Identities of all complexes were confirmed by 1H, 13C and 195Pt NMR spectroscopic investigations, revealing coordination of GuoH+ in complex 5 through N7 whereas GuaH+ in complex 3 may be coordinated through N7 or through N9. Solid state structure of hexachloroplatinate 1 exhibited base pairing of the cations yielding (MeGuaH+)2, whereas in complex 6 non-base-paired MeCytH+ cations were found. In both complexes, a network of hydrogen bonds including the water molecules was found. X-ray diffraction analysis of complex 3 exhibited a guaninium ligand that is coordinated through N9 to platinum and protonated at N1, N3 and N7. In the crystal, these NH groups form hydrogen bonds N–HO to oxygen atoms of crown ether molecules.  相似文献   

3.
From the reaction between dihydroxoplatinum(II) and l-ascorbic acid, two types of platinum(II) ascorbate complexes were obtained and structurally characterized with ethylenediamine (en), N,N-dimethylethylenediamine (dmen) and N,N,N′-trimethylethylenediamine (trimen) as stabilizing ligands. In [Pt(en)(asc-C,O)] (1), [Pt(dmen)(asc-C,O)] (2) and [Pt(trimen)(asc-C,O)] (4), the ascorbate dianion forms a five-membered chelate ring, coordinating to the Pt(II) ion at the 2-carbon and the 5-oxygen atoms (C,O-chelate). From the same mother solution, crystals of [Pt(trimen)(asc-O,O′)] (3) were obtained during the precipitation of 4; in 3 the ascorbate is bound to the Pt at the 2- and 3-oxygen atoms (O,O′-chelate). Compounds 3 and 4 are the first well-characterized linkage isomers among the transition-metal ascorbate complexes. The O,O′-chelated 3 slowly changes to the C,O-chelated 4 in an aqueous solution. Bulkiness of the stabilizing ligand, i.e. en, dmen and trimen has an influence on the formation of the C,O-chelated species, 1, 2 and 4.  相似文献   

4.
A series of Pt(II) complexes containing 1,2-diphenylethylenediamine (stien) isomers were synthesized and tested for their antitumor activity against leukemia L1210. Among the Pt(II) complexes examined water-soluble Pt(II) complexes with sulfate, nitrate and D-glucuronate ions as leaving groups exhibited relatively high antitumor activity. Furthermore, the interactions between calf-thymus DNA and Pt(SO4) (stein) complexes were investigated by means of circular dichroism spectrometry. Dichroism enhancements observed in the interaction between DNA and Pt(SO4) (stien) complexes were analysed to be contributable to two factors: (1) vicinal effects of DNA on the d-d transitions of Pt(II) ions and (2) conformational changes of DNA caused by the coordination of cis-configurational Pt(II) complexes.  相似文献   

5.
Three new complexes [Pt(dpop)(Cl)2], [(Cl)2Pt(dpop)Pt(Cl)2] and [(bpy)2Ru(dpop)Pt(Cl)2](PF6)2 (dpop = dipyrido(2,3-a:3′,2′-h)phenazine) were prepared and studied. The electronic absorption spectra of the complexes display Pt dπ → dpop π* and Ru dπ → dpop π* MLCT transitions at longer wavelengths than for previously reported similar complexes. Results of cyclic voltammograms show reversible dpop centered reductions while for the mixed metal [(bpy)2Ru(dpop)Pt(Cl)2]2+ an irreversible Pt(II) oxidative wave precedes the Ru(II) oxidation/reduction couple. Spectroelectrochemical results show that all oxidative and reductive processes are completely reversible. The [(Cl)2Pt(dpop)Pt(Cl)2] complex cleaves in solution with pseudo-first order kinetics resulting in loss of the Pt dπ → dpop π* MLCT transition at 545 nm.  相似文献   

6.
The bulky phosphine ligands di-tert-butyl(1-naphthyl)phosphine (1) or di-tert-butyl(N-indolyl)phosphine (2) react at room temperature with [(μ-SMe2)PtMe2]2. Coordination of the phosphine and C-H bond activation at an sp2 carbon of the ligand with the release of methane takes place to form the PC cyclometalated products [(PC)PtMe(SMe2)] (3 or 4, respectively). The cyclometalated complexes 3 and 4 have both been characterized by X-ray crystallography. Complexes 3 and 4 were each observed to undergo intermolecular activation of arene C-H bonds. Upon thermolysis in benzene, complexes 3 and 4 react to eliminate methane and yield isolable platinum(II)-phenyl complexes.  相似文献   

7.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

8.
Two complexes of the formula [MH3L](ClO4)2 [M = Cu(II) (1), Ni(II) (2)] have been prepared by the reaction of M(ClO4)2 · 6H2O with the ligand (H3L) formed by the Schiff base condensation of tris(2-aminoethyl)amine (tren) with three molar equivalents of 4-methyl-5-imidazolecarboxaldehyde and structurally and magnetically characterized. The structures of 1 and 2 are isomorphous with each other and with the iron(II) complex of H3L which has been reported previously. The ligand, while potentially heptadentate, forms six coordinate complexes with both metal centers forming three M-Nimine and three M-Nimidazole bonds. The tren central N atom is at a nonbonded distance from M of 3.261 Å for 1 and 3.329 Å for 2. The neutral complex CuHL 3 was prepared by reaction of H3L with Cu(OCH3)2 and the ionic complex Na[NiL] 4 was prepared by deprotonation of 2 with aqueous sodium hydroxide. Magnetic measurements of 1-3 are consistent with the spin-only values expected for S = 1/2 (d9, Cu(II)) and S = 1 (d8, Ni (II)) systems.  相似文献   

9.
The aim of this study was to synthesize and evaluate plasmid DNA interaction of new platinum(II) complexes with some 2-substituted benzimidazole derivatives as carrier ligands which may have potent anticancer activity and low toxicity. Twelve benzimidazole derivatives carrying indole, 2-/or 3-/or 4-methoxyphenyl, 4-methylphenyl, 3,4-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 3,4,5-trimethoxystyryl, 3,4,5-trimethoxybenzylthio or dimethylamino ethyl groups in their position 2 and twelve platinum(II) complexes with these carrier ligands were synthesized. The chemical structure of the platinum complexes have been characterized by their elemental analysis and FIR, 1H NMR and mass spectra and their 1H NMR and FIR spectra were interpreted by comparison with those of the ligands. The interaction of all the ligands and their complexes with plasmid DNA and their restriction endonuclease reactions by BamHI and HindIII enzymes were studied by agarose gel electrophoresis. It was determined that complex 1 [dichloro-di(2-(1H-indole-3-yl)benzimidazole)platinum(II)·2H2O] has stronger interaction than carboplatin and complex 10 [dichloro-di(2-(3,4,5-trimethoxystyryl)benzimidazole)platinum(II)·2H2O] has stronger interaction than both carboplatin and cisplatin with plasmid DNA.  相似文献   

10.
Copper(II) and nickel(II) complexes of potentially N2O4 Schiff base ligands 2-({[2-(2-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}ethoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L1) and 2-({[2-(4-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}butoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L2) prepared of 5-phenylazo salicylaldehyde (1) and two various diamines 2-[2-(2-aminophenoxy)ethoxy]aniline (2) and 2-[4-(2-aminophenoxy)butoxy]aniline (3) were synthesized and characterized by a variety of physico-chemical techniques. The single-crystal X-ray diffractions are reported for CuL1 and NiL2. The CuL1 complex contains copper(II) in a near square-planar environment of N2O2 donors. The NiL2 complex contains nickel(II) in a distorted octahedral geometry coordination of N2O4 donors. In all complexes, H2L1 behaves as a tetradentate and H2L2 acts as a hexadentate ligand. Cyclic voltammetry of copper(II) complexes indicate a quasi-reversible redox wave in the negative potential range.  相似文献   

11.
Four palladium(II) and platinum(II) saccharinate (sac) complexes with 2-(hydroxymethyl)pyridine (2-hmpy) and 2-(2-hydroxyethyl)pyridine (2-hepy), namely trans-[Pd(2-hmpy)2(sac)2]·H2O (1), trans-[Pt(2-hmpy)2(sac)2]·3H2O (2), trans-[Pd(2-hepy)2(sac)2] (3) and trans-[Pt(2-hepy)2(sac)2] (4), have been synthesized and characterized by elemental analysis, UV–vis, IR and NMR. Single crystal X-ray analysis reveals that the metal(II) ions in each complex are coordinated by two sac and two 2-hmpy or 2-hepy ligands with a trans arrangement. Anticancer effects of 14 were tested against four different cancer cell lines (A549 and PC3 for lung cancer, C6 for glioblastoma, and Hep3B for liver cancer). Cytotoxicity was first screened by the MTT assay and the results were further confirmed by the ATP assay. The mode of cell death was determined by both histological and biochemical methods. Among the metal complexes, complex 2 resulted in relatively stronger anti-growth effect in a dose-dependent manner (3.13–200 μM), compared to the others, by inducing apoptosis.  相似文献   

12.
The dinuclear complexes [Pd2(L)2(bipy)2] (1), [Pd2(L)2(phen)2] (2), [Pt2(L)2(bipy)2] (3) and [Pt2(L)2(phen)2] (4), where bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline and L = 2,2′-azanediyldibenzoic dianion) dibridged by H2L ligands have been synthesized and characterized. The binding of the complexes with fish sperm DNA (FS-DNA) were investigated by fluorescence spectroscopy. The results indicate that the four complexes bound to DNA with different binding affinity, in the order complex 4 > complex 3 > complex 2 > complex 1, and the complex 3 binds to DNA in both coordination and intercalative mode. Gel electrophoresis assay demonstrates the ability of the complexes to cleave the pBR 322 plasmid DNA. The cytotoxic activity of the complexes was tested against four different cancer cell lines. The four complexes exhibited cytotoxic specificity and significant cancer cell inhibitory rate.  相似文献   

13.
A series of reduced amino pyridine Schiff base platinum(II) complexes were prepared as potential anticancer drugs, and characterized by NMR, IR spectroscopy, elemental analysis, and molar conductivity. UV and CD results showed the binding mode between these compounds and salmon sperm DNA may be intercalation. The cytotoxicity of these complexes was validated against A549, Hela, and MCF-7 cell lines by MTT assay. Some complexes exhibited better cytotoxic activity than cisplatin against Hela and MCF-7 cell lines.  相似文献   

14.
A new series of square planar palladium(II) complexes with pincer ligands, pip2NCN (pip2NCNH = 1,3-bis(piperidylmethyl)benzene) and pip2NNN (2,6-bis(piperidylmethyl)pyridine), has been prepared: Pd(pip2NCN)X (X = Cl, Br, I), [Pd(pip2NCN)(L)](BF4) (L = pyridine, 4-phenylpyridine), and [Pd(pip2NNN)Cl]Cl. The X-ray crystal structures of Pd(pip2NCN)Br, [Pd(pip2NCN)(L)]BF4, and [Pd(pip2NNN)Cl]Cl confirm the tridentate coordination geometries of the pincer ligands. For the pip2NCN complexes, each piperidyl ring adopts a chair conformation with the metal center at an equatorial position on the N(piperidyl) atom. However, one of the piperidyl groups of Pd(pip2NNN)Cl+ adopts a previously unobserved coordination geometry, effectively placing the metal center at an axial position on the N(piperidyl) atom. 1H NMR and UV-Vis absorption measurements provide additional insight into the electronic structures of these complexes. The 1H NMR spectra of Pd(pip2NCN)X (X = Cl, Br, I) are consistent with deshielding of the pip2NCN ligand resonances along the Cl < Br < I series, in opposition to the relative halogen electronegativities. It is suggested that this trend is consistent with decreasing filled/filled repulsions between the dπ orbitals of the metal center and the lone pair orbitals of the halide ligands along this series. Electronic absorption spectra support the notion that ligand-to-metal charge-transfer states are stabilized in these palladium(II) complexes relative to their platinum(II) analogues.  相似文献   

15.
A new series of dinuclear squarato-bridged nickel(II) and copper(II) complexes [Ni2(2,3,2-tet)21,3-C4O4)(H2O)2](ClO4)2 (1), [Ni2(aepn)21,3-C4O4)(H2O)2](ClO4)2 (2), [Cu2(pmedien)21,3-C4O4)(H2O)2](ClO4)2.4H2O (3) and [Cu2(DPA)21,2-C4O4)(H2O)2](ClO4)2 (4) where is the dianion of 3,4-dihydroxycyclobut-3-en-1,2-dione (squaric acid), 2,3,2-tet = 1,4,8,11-tetraazaundecane, aepn = N-(2-aminoethyl)-1,3-propanediamine, pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine and DPA = di(2-pyridylmethyl)amine were synthesized and structurally characterized by X-ray crystallography. The spectral and structural characterization as well as the magnetic behaviour of these complexes is reported. In this series, structures consist of the groups as counter ions and the bridging the two M(II) centers in a μ-1,3- (1-3) and in a μ-1,2-bis(monodentate) (4) bonding fashions. The coordination geometry around the Ni(II) ions in 1 and 2 is six-coordinate with distorted octahedral environment achieved by N atoms of the amines and by one or two oxygen atoms from coordinated water molecules, respectively. In the Cu(II) complexes 3 and 4, a distorted square pyramidal geometry is achieved by the three N-atoms of the aepn or DPA and by an oxygen atom from a coordinated water molecule. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the M(II) centers. The complexes show weak antiferromagnetic coupling with ∣J∣ = 1.8-4.2 cm−1 in the μ-1,3- bridged squarato compounds 1-3, and J = −16.1 cm−1 in the corresponding μ-1,2- bridged squarato complex 4. The magnetic properties are discussed in relation to the structural data.  相似文献   

16.
The complexes Pt(pq)Cl2(1) and Pt(pq)(bdt) (2) (where pq = 2-(2'pyridyl)quinoxaline and bdt=benzene-1,2-dithiolate) have been synthesized and fully characterized by UV-visible (UV-Vis), Fourier Transformer Infrared Spectra (FTIR), 1 and 2D NMR and cyclic voltammetry (CV). Interactions of the tested systems (the aforementioned complexes 1 and 2) and the free ligands pq and bdt with double stranded calf thymus DNA (CT-DNA) were studied by UV-spectrophotometric (melting curves) and circular dichroism (CD) measurements. The results suggest that both complexes 1 and 2, are able to form adducts with DNA and to distort the double helix by changing the base stacking. Complex 2 forms stronger adducts to CT-DNA than complex 1 and this is probably due to the substitution of the chlorine atoms of 1 by the 1,2-dithiolate ligand (bdt) in 2. The latter induces an extensive distortion in the planarity of 2 as density functional theory (DFT) calculations reveal. Besides, the light absorbing complex 2 possess intense mixed metal ligand to ligand charge transfer (MM'LLCT) transition in the visible region of the spectrum and could act as photoluminescent metal-based probe for the study of DNA binding. Thus, the photocleavage of DNA by 2 has been studied by UV-Vis and CD spectra and monitored by agarose gel electrophoresis. Under our experimental conditions, it is unclear that complex 2 can photocleave DNA. Furthermore, the ability of 2 to inhibit proliferation of human tumor cell lines was tested and the results indicate some cytoxytic effect on the SF-286 cells.  相似文献   

17.
Synthesis of the novel ligand ferrocenyliminophosphine [(η5-C5H5)Fe{(η5-C5H4)CHN(C6H4-2-PPh2)}] (1, L) and studies on its complexation properties with mercury (II) are reported. Halogen-bridged binuclear mercury (II) complexes [HgX(μ-X)L]2 (X = Cl (2a), Br (2b)) and a mononuclear mercury (II) complex HgCl2L2 (4a) have been obtained under different reaction conditions. In both cases, the ferrocenyliminophosphine acts as a P-monodentate ligand and the imino nitrogen does not participate in coordination to mercury (II). All the new compounds 1, 2a, 2b and 4a were characterized by elemental analysis, 1H NMR, 31P NMR and IR spectra. In addition, structures of 2a and 4a have been determined by X-ray single-crystal analysis.  相似文献   

18.
In the present study, four Pt(II) complexes with 2-ethyl (1)/or benzyl (2)/or p-chlorobenzyl (3)/or 2-phenoxymethyl (4) benzimidazole carrier ligands were evaluated for their in vitro cytotoxic activities against the human HeLa cervix, oestrogen receptor-positive MCF-7 breast, and oestrogen receptor-negative MDA-MB 231 breast cancer cell lines. The plasmid DNA interactions and inhibition of the BamHI restriction enzyme activities of the complexes were also studied. Complex 3 was found to be more active than carboplatin for all examined cell lines and comparable with cisplatin, except for the HeLa cell line.  相似文献   

19.
In this study, the effects of four novel mononuclear palladium(II) and platinum(II) complexes on the activity of human serum paraoxanase1 were examined. First, four novel mononuclear palladium(II) and platinum(II) complexes were synthesized with a nitrogen donor ligand 1‐(2‐aminoethyl)pyrrolidine and nonsteroidal anti‐inflammatory drugs diclofenac, mefenamic acid. These complexes were characterized by spectroscopic, thermal, and elemental analyses. The crystal structures of complex [Pd(2‐amepyr)2](dicl)2 1 and [Pd(2‐amepyr)2](mef)2 3 were determined by X‐ray crystallography. Then, paraoxonase1 enzyme was purified from human serum. The effects of these complexes on enzyme were evaluated in vitro. The complexes consist of the cationic unit and the counterions. The diclofenac and mefenamic acid acted as a counterion in the complexes. It was observed that all the complexes were stable up to high temperatures. These complexes, even at low doses, inhibited the activity of the enzyme with different inhibition mechanisms.  相似文献   

20.
Syntheses of two novel ligand precursors O,O'-diisopropyl- (1a) and O,O'-diisobutyl-(S,S)-ethylenediamine-N,N'-di-2-propanoate dihydrochloride monohydrate (1b) and the corresponding dichloroplatinum(II) (2a and 2b) and tetrachloroplatinum(IV) complexes (3a and 3b) are described here. The substances were characterized by IR, (1)H and (13)C spectroscopy and elemental analysis. Crystal structures were determined for 1a and the corresponding platinum(IV) complex, 3a. In vitro antiproliferative activity was determined against tumor cell lines: human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x, rested and stimulated normal immunocompetent cells (human peripheral blood mononuclear PBMC cells) using KBR test (Kenacid Blue Dye binding test). The IC(50)(microM) values for the most active compound 3a were: 30.48+/-2.54; 12.26+/-2.60; 13.68+/-3.22; 80.18+/-24.07 and 71.30+/-21.70, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号