首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed ligand complexes: [Co(L)(bipy)] · 3H2O (1), [Ni(L)(phen)] · H2O (2), [Cu(L)(phen)] · 3H2O (3) and [Zn(L)(bipy)] · 3H2O (4), where L2− = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter, H2L), bipy = 2,2′ bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10−1 mol dm−3 (NaNO3), at 25 ± 1 °C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H−1L), M(B)2+, M(L)(B), M(H−1L)(B), M2(H−1L)(OH), (B)M(H−1L)M(B)+, where H−1L3− represents two -COOH and the benzimidazole N1-H deprotonated quadridentate (O, N, O, N), or, quinquedentate (O, N, O, N, N) function of the coordinated ligand H2L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)2+ ? (B)M(H−1L)M(B)+ + H+ is favoured with higher π-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Δ log KM values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones.  相似文献   

2.
The malonato-bridged copper(II) complex [Cu(mal)(H2O)(azpy)1/2] · H2O (1) (mal = malonate, azpy = 4,4′-azobispyridine) has been synthesized and characterized by X-ray diffraction. The structure of 1 consists of malonato-bridged uniform copper(II) chains which are covalent connected through azpy to form two-dimensional wavelike network. The magnetic pathway of complex 1 is through a single syn-anti carboxylate bridge connecting equatorial and equatorial positions of adjacent copper(II) atoms, and have the value of the intrachain ferromagnetic coupling (J = 8.73(3) cm−1) and interchain antiferromagnetic coupling (zJ′ = − 1.31(1) cm−1) through a numerical expression for a ferromagnetic uniform chain.  相似文献   

3.
Two new squarato-bridged Fe(II) polymeric networks of molecular formula [Fe(squarate)(bpp)2(H2O)2] (1) and [Fe(squarate)(bpee)(H2O)2] (2) [bpp = 1,3-bis(4-pyridyl)propane; bpee = 1,2-bis(4-pyridyl)ethylene; ] have been synthesized and characterized by single-crystal X-ray diffraction studies and low temperature (300-2 K) magnetic measurements. Complex 1 is a 1D coordination chain of Fe(H2O)2 units connected by μ-O,O″ squarate dianions with monocoordinated bpp ligands dangling from the polymer. These 1D chains ultimately transform to a thick 2D layer through π-π interaction of pyridyl rings as well as through hydrogen bonds. Whereas structural determination of complex 2 reveals an inclined interpenetrated 3D architecture. Magnetic data for both the complexes 1 and 2 have been fitted using the Fisher formula for S = 2 system and show antiferromagnetic coupling for both the complexes. The best fit parameters are J = −0.40 cm−1, g = 2.30 and R = 0.01 for complex 1 and J = −0.49 cm−1, g = 2.08 and R = 1.9 × 10−3 for complex 2.  相似文献   

4.
Two new Co(II) coordination polymers with mixed ligands, {[Co(BTA)0.5(DBI)2]·DBI·H2O}n (1) and [Co(PDA)(DBI)(H2O)]n (2) (H4BTA = benzene-1,2,4,5-tetracarboxylic acid; H2PDA = 2,2′-(1,2-phenylene)diacetic acid; DBI = 5,6-dimethyl-1H-benzoimidazole) have been synthesized under hydrothermal conditions, respectively. Both of them are characterized by elemental analyses, powder X-ray diffraction, thermogravimetric analysis, single-crystal X-ray diffraction, and magnetic susceptibilities. In 1, the Co(II) ions are four-coordinated and lie in distorted tetrahedron coordination environment. 1D ladder-like chain structure is formed by the bridging BTA4− ligand. In 2, the Co(II) ions are in slightly distorted octahedral coordination geometry, and linked by PDA2− ligand exhibiting a 2D layer structure. Temperature-dependent magnetic susceptibility measurements of 1 and 2 revealed that there are antiferromagnetic interactions between Co(II) ions.  相似文献   

5.
Two oxamido-bridged trinuclear complexes of formula {[(LCu)(EtOH)]2Mn(EtOH)2}(ClO4)2 (1) and {[(LCu)(EtOH)]2Co(EtOH)2}(ClO4)2 · 2H2O (2) (H2L = 2,3-dioxo-5,6:13,14-dichlorobenzo-7,12-diphenyl-1,4,8,11-tetraazacyclo-pentadeca-7,11-diene) have been synthesized and structurally characterized. The central ions of complexes 1-2 (Mn(II), Co(II)) are all bridged by macrocyclic oxamido groups. Their magnetic properties were studied by susceptibility versus temperature measurement, the best fitting of the experimental data led to J = −16.91 cm−1 for 1 and J = −27.73 cm−1 for 2.  相似文献   

6.
The synthesis and characterization of several complexes of the composition [{M(terpy)}n(L)](ClO4)m (M = Pt, Pd; L = 1-methylimidazole, 1-methyltetrazole, 1-methyltetrazolate; terpy = 2,2′:6′,2″-terpyridine; n = 1, 2; m = 1, 2, 3) is reported and their applicability in terms of a metal-mediated base pair investigated. Reaction of [M(terpy)(H2O)]2+ with 1-methylimidazole leads to [M(terpy)(1-methylimidazole)](ClO4)2 (1: M = Pt; 2: M = Pd). The analogous reaction of [Pt(terpy)(H2O)]2+ with 1-methyltetrazole leads to the organometallic compound [Pt(terpy)(1-methyltetrazolate)]ClO4 (3) in which the aromatic tetrazole proton has been substituted by the platinum moiety. For both platinum(II) and palladium(II), doubly metalated complexes [{M(terpy)}2(1-methyltetrazolate)](ClO4)3 (4: M = Pt; 5: M = Pd) can also be obtained depending on the reaction conditions. In the latter two compounds, the [M(terpy)]2+ moieties are coordinated via C5 and N4. X-ray crystal structures of 1, 2, and 3 are reported. In addition, DFT calculations have been carried out to determine the energy difference between fully planar [Pd(mterpy)(L)]2+ complexes Ip-IVp (mterpy = 4′-methyl-2,2′:6′,2″-terpyridine; L = 1-methylimidazole-N3 (I), 1-methyl-1,2,4-triazole-N4 (II), 1-methyltetrazole-N3 (III), or 3-methylpyridine-N1 (IV)) and the respective geometry-optimized structures Io-IVo. Whereas this energy difference is larger than 70 kJ mol−1 for compounds I, II, and IV, it amounts to only 0.8 kJ mol−1 for the tetrazole-containing complex III, which is stabilized by two intramolecular C-H?N hydrogen bonds. Of all complexes under investigation, only the terpyridine-metal ion-tetrazole system with N3-coordinated tetrazole appears to be suited for an application in terms of a metal-mediated base pair in a metal-modified oligonucleotide.  相似文献   

7.
The complexes [Cu2(ox)(phen)2(H2O)2](NO3)2 (1), [Cu2(sq)(pmdien)2(H2O)2](ClO4)2 (2) and {[Cu3(pdc)3(4,4′-bipy)1.5(H2O)2.25] · 2.5(H2O)}n (3) [phen = 1,10-phenanthroline; pmdien = N,N,N′,N′,N″-pentamethyldiethylenetriamine; 4,4′-bipy = 4,4′-bipyridine; ox = oxalate dianion; sq = squarate dianion and pdc = pyridine 2,6-dicarboxylate] have been synthesized and characterized by X-ray single crystal structure determination, low temperature magnetic measurement and thermal study. Structure determination reveals that 1 and 2 are dinuclear copper(II) complexes bridged by oxalate and squarate dianions, respectively, while 3 is a hexanuclear species formed by three Cu(pdc)(H2O)-(4,4′-bipy)-Cu(pdc)(H2O) fragments, connected through long Cu-O(pdc) bonds in a centrosymmetric arrangement. In complex 1 H-bonds occurring between the coordinated water molecules and lattice nitrate anions result in eight-membered ring clusters with the concomitant formation of 1D supramolecular chain. The adjacent chains undergo π-π stacking forming a 2D architecture. In the crystal of 3 an extensive H-bonding scheme gives rise to a 3D supramolecular network. Low temperature magnetic study shows a strong antiferromagnetic coupling in 1 (J = −288 ± 2 cm−1, g = 2.21 ± 0.01, R = 1.2 × 10−6); and a very weak interaction in 2 and 3, the best-fit parameters being: J = −0.21 cm−1, g = 2.12 ± 0.01, R = 1.1 × 10−6 (2) and J = −1.34 cm−1 ± 0.1, g = 2.14 ± 0.01, R = 1.2 × 10−6 (3) (R defines as .  相似文献   

8.
Dinuclear nickel(II) complexes [Ni2(bomp)(MeCO2)2]BPh4 (1) and [Ni2(bomp)(PhCO2)2]BPh4 (2) were synthesized with the dinucleating ligand 2,6-bis[bis(2-methoxyethyl)aminomethyl]-4-methylphenol [H(bomp)]. X-Ray analysis revealed that the complex 1 · 0.5CHCl3 contains two nickel(II) ions bridged by phenolic oxygen and two acetate groups, forming a μ-phenoxo-bis(μ-acetato)dinickel(II) core. Electronic spectra were investigated for 1 and 2 in the range of 400-1800 nm, and the data were typical for the octahedral high-spin nickel(II) complexes. Obtained spectral components were well simulated based on the angular overlap model assuming the trigonally distorted octahedral geometry. Magnetic susceptibility was measured for 1 and 2 over a temperature range of 4.5-300 K. The optimized magnetic data were J = 1.75 cm−1, zJ′ = −0.234 cm−1, g = 2.21, D = 15.1 cm−1, and TIP = 370 × 10−6 cm−1 for complex 1 and J = 3.55 cm−1, zJ′ = −0.238 cm−1, g = 2.23, D = 21.8 cm−1, and TIP = 470 × 10−6 cm−1 for complex 2. The data revealed ferromagnetic interactions between the two nickel(II) ions.  相似文献   

9.
Reaction of the five-coordinate trigonal-bipyramidal platinum(II) complex, [Pt(pt)(pp3)](BF4) (pt = 1-propanethiolate, pp3 = tris[2-(diphenylphosphino)ethyl]phosphine), with I in chloroform gave the five-coordinate square-pyramidal complex with a dissociated terminal phosphino group and an apically coordinated iodide ion in equilibrium. The thermodynamic parameters for the equilibrium between the trigonal-bipyramidal and square-pyramidal geometries, [Pt(pt)(pp3)]+ + I ? [PtI(pt) (pp3)], and the kinetic parameters for the chemical exchange were obtained as follows: , ΔH0 = − 10 ± 2.4 kJ mol−1, ΔS0 = − 36 ± 10 J K−1 mol−1, , ΔH = 34 ± 4.7 kJ mol−1, ΔS = − 50 ± 21 J K−1 mol−1. The square-planar trinuclear platinum(II) complex was formed by bridging reaction of one of the terminal phosphino groups of trigonal-bipyramidal [PtCl(pp3)]Cl with trans-[PtCl2(NCC6H5)2] in chloroform. From these facts, ligand substitution reactions of [PtX(pp3)]+ (X = monodentate anion) are expected to proceed via an intermediate with a dissociated phosphino group. The rate constants for the chloro-ligand substitution reactions of [PtCl(pp3)]+ with Br and I in chloroform approached the respective limiting values as concentrations of the entering halide ions are increased. These kinetic results confirmed the preassociation mechanism in which the square pyramidal intermediate with a dissociated phosphino group and an apically coordinated halide ion is present in the rapid pre-equilibrium.  相似文献   

10.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

11.
Dinuclear cobalt(II) complexes Co2(bpmp)(OAc)3 (1) and Co2(bpcp)(OAc)3 (2) have been synthesized by using acyclic ligands 2,6-bis((4-(pyridin-2-yl)pyrimidin-2-ylthio)methyl)-4-methylphenol [H(bpmp)] and 2,6-bis((4-(pyridin-2-yl)pyrimidin-2-ylthio)methyl)-4-chlorophenol [H(bpcp)] with versatile coordination sites. X-ray analysis uncovered that complex 1 · 3H2O contains a μ-phenoxo-μ-acetato-bis(η2-acetato) dicobalt(II, II) core. Magnetic susceptibility was measured for 1 over the temperature range 1.8-300 K, and the best theoretical fitting parameters were g = 2.12(6), J = −3.63(9) cm−1 and D = −12(4) cm−1.  相似文献   

12.
Copper(II) complexes of general empirical formula, CuX(Hagpa) · nH2O and Cu(agpa) · 2H2O (H2agpa = aminoguanizone of pyruvic acid, X = Cl, Br, , CH3COO, , n = 0, 1, 1.5, 2), have been synthesized and characterized by IR, EPR spectroscopy and X-ray crystallography. The IR spectra of the complexes showed the ONN coordination of the ligand to copper(II) ion. The crystal structures of H2agpa · H2O and complexes [Cu(Hagpa)Br] and [Cu2(Hagpa)2(H2O)2(SO4)] · DMSO showed an invariable conformation and coordination mode for the uninegatively charged tridentate ligand and revealed the formation of linear polymers in which bromide or sulfate anions bridge the copper(II) ions. The EPR spectra for complexes CuX(Hagpa) · nH2O are described by spin Hamiltonian for S = 1/2, without hyperfine structure. The g-tensor is symmetrical for Cu(agpa) · 2H2O, has tri-axial anisotropy for sulfate complexes, and exhibits axial symmetry for the other compounds investigated.  相似文献   

13.
The reactions of a dioxotetraamine Cu(II) complex [Cu(H−2L)] (L is 6-(9-fluorenyl)-1,4,8,11-tetraazaandencane-5,7-dione)with O2 − were investigated by electrochemistry, UV-Vis spectrophotometry and pulse radiolysis, respectively. In DMSO solution, [CuII(H−2L)] was oxidized into [CuIII(H−2L)]+ by O2 −, a consecutive reaction was observed with [CuIII(H−2L)(O2 2−)] − as intermediates (k1=1.71×103 M−1 s−1, k2=1.2×10−2 s−1). The mechanism of O2 − dismutation catalyzed by the complex involved alternate oxidation and reduction of Cu(II) by O2 − and the kcat is 6.07 × 107 M−1 s−1 (pH 7.4).  相似文献   

14.
Two new complex salts of the form (Bu4N)2[Ni(L)2] (1) and (Ph4P)2[Ni(L)2] (2) and four heteroleptic complexes cis-M(PPh3)2(L) [M = Ni(II) (3), Pd(II) (4), L = 4-CH3OC6H4SO2NCS2] and cis-M(PPh3)2(L′) [ M = Pd(II) (5), Pt(II) (6), L′ = C6H5SO2NCS2] were prepared and characterized by elemental analyses, IR, 1H, 13C and 31P NMR and UV-Vis spectra, solution and solid phase conductivity measurements and X-ray crystallography. A minor product trans-Pd(PPh3)2(SH)2, 4a was also obtained with the synthesis of 4. The NiS4 and MP2S2 core in the complex salts and heteroleptic complexes are in the distorted square-plane whereas in the trans complex, 4a the centrosymmetric PdS2P2 core is perforce square planar. X-ray crystallography revealed the proximity of the ortho phenyl proton of the PPh3 ligand to Pd(II) showing rare intramolecular C-H?Pd anagostic binding interactions in the palladium cis-5 and trans-4a complexes. The complex salts with σrt values ∼10−5 S cm−1 show semi-conductor behaviors. The palladium and platinum complexes show photoluminescence properties in solution at room temperature.  相似文献   

15.
Two novel dinuclear nickel(II) complexes [Ni2(ntb)2(μ-tp)(H2O)1.61(CH3OH)0.39](NO3)2·5.13CH3OH·2.25H2O (1) and [Ni2(ntb)2(μ-fum)(H2O)(CH3OH)](NO3)2·6CH3OH·H2O (2) (tp = terephthalate dianion, fum = fumarate dianion, ntb = tris(2-benzimidazolylmethyl)amine) containing tetradentate poly-benzimidazole ligand were synthesized and structurally characterized by IR spectra, UV-Vis, elemental analysis and X-ray crystallography. The Ni(II) ions in 1 and 2 have distorted octahedral geometry with four nitrogen atoms of ntb, one oxygen atom of water and one oxygen atom supplied by the carboxylate group of the bridged dicarboxylato ligand. Complexes 1 and 2 consist of terephthalato- and fumarato-bridged dinickel(II) centers in bis(monodentate) bonding fashion. The Ni?Ni distances are 11.333 Å for 1 and 8.966 Å for 2. The magnetic susceptibility measurements at variable temperature show that two complexes exhibit weak antiferromagnetic interactions between nickel(II) ions with J values of −0.25 cm−1 and −0.36 cm−1, respectively.  相似文献   

16.
The coreactant electrogenerated chemiluminescence (ECL) of 5,10,15,20-tetraphenyl-21H,23H-porphine ruthenium(II) carbonyl (Ru(TPP)(CO))), and 2,3,7,8,12,13,17, 18-octaethyl-21H,23H-porphine ruthenium(II) carbonyl (Ru(OEP)(CO)) in acetonitrile is reported. Both complexes have absorption maxima in the visible region of the spectrum and emit in fluid solution at room temperature around 650 nm in acetonitrile. Photoluminescence efficiencies (?em) were between 1.5 × 10−4 and 4.0 × 10−4 when compared to (bpy = 2,2′-bipyridine) with ?em = 0.042. The complexes show two-electrochemically reversible oxidations via cyclic voltammetry. ECL was generated using tri-n-propylamine (TPrA) as an oxidative-reductive coreactant and the ECL peaks at a potential corresponding to oxidation of both the TPrA and both of the porphyrin oxidations. ECL efficiencies (?ecl) were 0.65 for Ru(TPP)(CO) and 0.58 for Ru(OEP)(CO) when compared to (?ecl = 1). Also, qualitative studies using transmission filters suggest that both complexes emit ECL in approximately the same region as their photoluminescence, indicating that the same excited state is formed in both experiments.  相似文献   

17.
Four new zinc(II) cyclams of the composition {Zn(L)(tp2−) · H2O}n (1), {Zn(L)(H2bta2−) · 2H2O}n (2), [Zn2(L)2(ox2−)] 2ClO4 · 2DMF (3), and Zn(L)(H2btc)2 · 2DMF (4), where L = cyclam, tp2− = 1,4-benzenedicarboxylate ion, H2bta2− = 1,2,4,5-benzenetetracarboxylate ion, ox2− = oxalate ion, DMF = N,N-dimethylformamide, and H2btc = 1,3,5-benzenetricarboxylate ion, have been synthesized and structurally characterized by a combination of analytical, spectroscopic and crystallographic methods. The carboxylato ligands in the complexes 1-4 show strong coordination tendencies toward zinc(II) cyclams with hydrogen bonding interactions between the pre-organized N-H groups of the macrocycle and oxygen atoms of the carboxylato ligands. The macrocycles in 1, 2, and 4 adopt trans-III configurations with the appropriate R,R,S,S arrangement of the four chiral nitrogen centers, respectively. However, the complex 3 shows an unusual cis V conformation with the R,R,R,R nitrogen configuration. The finding of strong interactions between the carboxylato ligands and the zinc(II) ions may provide additional knowledge for the improved design of receptor-targeted zinc(II) cyclams in anti-HIV agents.  相似文献   

18.
Three Cd(II) and Zn(II) coordination polymers, including {[Cd(3-bpo)(mip)(H2O)](H2O)2}n (1), {[Cd(4-bpo)(hip)(H2O)](H2O)4}n (2), and {[Zn(4-bpo)(tp)](CH3OH)}n (3) were synthesized from the reactions of CdII or ZnII nitrate with mixed organic ligands [3-bpo = 2,5-bis(3-pyridyl)-1,3,4-oxadiazole, H2mip = 5-methylisophthalic acid, 4-bpo = 2,5-bis(4-pyridyl)-1,3,4-oxadiazole, H2hip = 5-hydroxylisophthalic acid, H2tp = terephthalic acid] under the similar layered diffusion condition. The resulting crystalline materials 1-3 were characterized by IR, microanalysis, powder X-ray diffraction (PXRD) techniques. Single-crystal X-ray diffraction indicates a 1-D tubular motif for 1, a 1-D dual-track array for 2, and a 2-D grid-like pattern for 3, constructed via different metal-ligand coordination contacts. Higher-dimensional supramolecular architectures are further assembled in 1-3 via H-bonding and aromatic stacking interactions. In addition, thermal stability and fluorescence of these polymeric complexes were also investigated and discussed.  相似文献   

19.
Four new dinuclear Mn(III) compounds have been synthesised: [{Mn(bpy)(H2O)}2(μ-4-ClC6H4COO)2(μ-O)}](ClO4)2 (1), [{Mn(EtOH)(phen)}2(μ-O)(μ-4-ClC6H4COO)2](ClO4)2 (2), [{Mn(bpy)(EtOH)}(μ-4-BrC6H4COO)2(μ-O){Mn(bpy)(ClO4)](ClO4) (3) and [{Mn(H2O)(phen)}2(μ-4-BrC6H4COO)2(μ-O)](ClO4)2 (4). The crystal structures of 2 and 3 are evidence for the tendency of the ethanol and the perchlorate to act as ligands. Due to the coordination of these groups, the environment of the manganese ions is elongated in the monodentate ligand direction, and this distortion is more important when this ligand is the perchlorate. The magnetic properties of the four compounds have been analysed: compounds 1, 3 and 4 show antiferromagnetic behaviour, with J = −6.33 cm−1 for 1, J = −6.76 cm−1 for 3 and J = −3.08 cm−1 for 4 (H = −JS1·S2), while compound 2 shows a very weak ferromagnetic coupling. For this compound, at low temperature the most important effect on the χMT data is the zero-field splitting of the ion, and the best fit was obtained with |DMn| = 2.38 cm−1 and |EMn| = 0.22 cm−1.  相似文献   

20.
Hydrothermal synthesis has afforded four divalent metal 1,3-phenylenediacetate (1,3-phda) coordination polymers containing different dipyridyl-type ligands. {[Cu(1,3-phda)(dpa)(H2O)]·H2O}n (1, dpa = 4,4′-dipyridylamine) exhibits a simple 2-D (4,4) rhomboid grid structure. {[Co(1,3-phda)(bpy)]·1.5H2O}n (2, bpy = 4,4′-bipyridine) also possesses a (4,4) layer structure, but with syn-syn bridged {Co2(OCO)2} dimeric kernels serving as 4-connected nodes. {[Co(H2O)4(3-bpmpH2)](1,3-phda)2·8H2O}n (3, 3-bpmp = bis(3-pyridylmethyl)piperazine) manifests cationic 1-D [Co(H2O)4(3-bpmpH2)]n4n+ chains linked into higher dimensionality by unligated 1,3-phda anions and curled tetrameric water molecule units. {[Ni(1,3-phda)(4-bpmp)(H2O)2]·2H2O}n (4, 4-bpmp = bis(4-pyridylmethyl)piperazine) has an underlying twofold interpenetrated 658 (cds) 3-D network topology. Variable temperature magnetic susceptibility studies revealed the presence of weak antiferromagnetic coupling and zero-field splitting (J = −1.65(4) cm−1 and D = 30.9(7) cm−1 with g = 2.20(1)) within the {Co2(OCO)2} dimers in 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号