首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been demonstrated that Thiobacillus denitrificans may be readily cultured aerobically in batch and continuous flow reactors on H(2)S(g) under sulfide limiting conditions. Under these conditions sulfide concentrations in the culture medium were less than 1muM resulting in very low concentrations of H(2)S in the reactor outlet gas. Biomass yield under aerobic conditions was much lower than previously reported for anaerobic conditions, presumably because of oxygen inhibition of growth. However, biomass yield was not affected by steady state oxygen concentration in the range of 45muM-150muM. Biomass yield was also observed to be essentially independent of specific growth rate in the range of 0.030-0.053 h(-1). Indicators of reactor upset were determined and recovery from upset conditions demonstrated. Maximum loading of the biomass for H(2)S oxidation under aerobic conditions was observed to be 15.1-20.9 mmol/h/g biomass which is much higher than previously reported for aerobic conditions. Other aspects of the stoichiometry of aerobic H(2)S oxidation are also reported.  相似文献   

2.
A novel bioreactor, employing a silicone membrane for microaeration, was studied for partial sulfide oxidation to elemental sulfur. The objective of this study was to assess the feasibility of using an internal silicone membrane reactor (ISMR) to treat dissolved sulfide and to characterize its microbial community. The ISMR is an effective system to eliminate sulfide produced in anaerobic reactors. Sulfide removal efficiencies reached 96 % in a combined anaerobic/microaerobic reactor and significant sulfate production did not occur. The oxygen transfer was strongly influenced by air pressure and flow. Pyrosequencing analysis indicated various sulfide-oxidizing bacteria (SOB) affiliated to the species Acidithiobacillus thiooxidans, Sulfuricurvum kujiense and Pseudomonas stutzeri attached to the membrane and also indicated similarity between the biomass deposited on the membrane wall and the biomass drawn from the material support, supported the establishment of SOB in an anaerobic sludge under microaerobic conditions. Furthermore, these results showed that the reactor configuration can develop SOB under microaerobic conditions and can improve and reestablish the sulfide conversion to elemental sulfur.  相似文献   

3.
It has been demonstrated that Thiobacillus denitrificans may be readily cultivated anaerobically in batch reactors on H(2)S (g) under sulfide-limiting conditions. Under these conditions sulfide concentrations in the culture medium were less than 1 muM, resulting in very low concentrations of H(2)S in the reactor outlet gas. The stoichiometry of the reaction was determined, and stable reactor operation was demonstrated at reactor loadings as high as 4-5 mmol H(2)S oxidized/h g biomass. Maximum loading was estimated at 5.4-7.6 mmol H(2)S/h g biomass under the conditions employed in this study. Indicators of reactor upset were determined and recovery from upset conditions demonstrated. Barotolerance of T. denitrificans to 12.5 MPa as well as a relative insensitivity to pressurization-depressurization cycles were also demonstrated. T. denitrificans was observed to be very sensitive to CH(3)SH but relatively tolerant of CS(2), COS, and CH(3)SCH(3).  相似文献   

4.
为探究光照对艾(Artemisia argyi)的产量及主要挥发油成分积累的影响,以蕲艾组培苗为试材,采用高光强、红光、蓝光等进行不同光强光质处理实验。结果表明,高光强及蓝光处理可促进艾生物量积累,红光和蓝光处理可促进植株伸长。高光强、红光及蓝光均可提高艾叶挥发油中1,8-桉油素、β-萜品醇含量。高光强还能促进龙脑积累,而蓝光处理下可检测到较多在其他光照条件下未检测到的化合物,如萜烯和蓝桉醇等物质。对不同光强光质处理下光受体及光响应转录因子基因表达量进行分析,在高光强处理下,所有光受体的表达量均显著升高;而响应不同光质的对应光受体基因表达量增加。光受体基因表达与艾生物量及主要挥发油的相关性分析表明,光受体基因表达对艾草生物量的影响起重要作用,且不同光处理调控可通过光受体响应并级联调控相关基因表达,调控艾叶生长及挥发油的合成。高光强和蓝光处理下,艾草的生物量及有效挥发油代谢物增加,可在艾草栽培中加以应用。  相似文献   

5.
《Process Biochemistry》2010,45(1):30-38
An Upflow Anaerobic Fixed Bed (UAFB) reactor packed with activated carbon was used to remove the azo dye Reactive red 272. The biomass grown on the activated carbon surface was composed of an adapted consortium of microorganisms. Residence time distribution test indicated that the reactor was a plug flow behavior. A dynamic mathematical model is presented for dye flux along the reactor and within the bioparticles composed of two regions: activated carbon core and biofilm. The model considers that the reaction is performed in the biofilm and in the liquid phase and includes dye transport by dispersion and diffusion. The concentration profile within the bioparticles changes with reactor height and time as the equilibrium is achieved. Changes in dye concentrations affect the concentration profile in the reactor and reduce the removal efficiency. The effectiveness factor depends on the reactor height and on the dye concentration at the inlet.  相似文献   

6.
This article reports a novel multispectral image processing technique for rapid, noninvasive quantification of biomass concentration in attached and suspended algae cultures. Monitoring the biomass concentration is critical for efficient production of biofuel feedstocks, food supplements, and bioactive chemicals. Particularly, noninvasive and rapid detection techniques can significantly aid in providing delay‐free process control feedback in large‐scale cultivation platforms. In this technique, three‐band spectral images of Anabaena variabilis cultures were acquired and separated into their red, green, and blue components. A correlation between the magnitude of the green component and the areal biomass concentration was generated. The correlation predicted the biomass concentrations of independently prepared attached and suspended cultures with errors of 7 and 15%, respectively, and the effect of varying lighting conditions and background color were investigated. This method can provide necessary feedback for dilution and harvesting strategies to maximize photosynthetic conversion efficiency in large‐scale operation. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:808–816, 2013  相似文献   

7.
Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor   总被引:1,自引:0,他引:1  
A biotechnological process is described to remove hydrogen sulfide (H(2)S) from high-pressure natural gas and sour gases produced in the petrochemical industry. The process operates at halo-alkaline conditions and combines an aerobic sulfide-oxidizing reactor with an anaerobic sulfate (SO(4) (2-)) and thiosulfate (S(2)O(3) (2-)) reducing reactor. The feasibility of biological H(2)S oxidation at pH around 10 and total sodium concentration of 2 mol L(-1) was studied in gas-lift bioreactors, using halo-alkaliphilic sulfur-oxidizing bacteria (HA-SOB). Reactor operation at different oxygen to sulfide (O(2):H(2)S) supply ratios resulted in a stable low redox potential that was directly related with the polysulfide (S(x) (2-)) and total sulfide concentration in the bioreactor. Selectivity for SO(4) (2-) formation decreased with increasing S(x) (2-) and total sulfide concentrations. At total sulfide concentrations above 0.25 mmol L(-1), selectivity for SO(4) (2-) formation approached zero and the end products of H(2)S oxidation were elemental sulfur (S(0)) and S(2)O(3) (2-). Maximum selectivity for S(0) formation (83.3+/-0.7%) during stable reactor operation was obtained at a molar O(2):H(2)S supply ratio of 0.65. Under these conditions, intermediary S(x) (2-) plays a major role in the process. Instead of dissolved sulfide (HS(-)), S(x) (2-) seemed to be the most important electron donor for HA-SOB under S(0) producing conditions. In addition, abiotic oxidation of S(x) (2-) was the main cause of undesirable formation of S(2)O(3) (2-). The observed biomass growth yield under SO(4) (2-) producing conditions was 0.86 g N mol(-1) H(2)S. When selectivity for SO(4) (2-) formation was below 5%, almost no biomass growth was observed.  相似文献   

8.
The performance of a new sulfide-oxidizing, expanded-bed bioreactor is described. To stimulate the formation of well-settleable sulfur sludge, which comprises active sulfide-oxidizing bacterial biomass and elemental sulfur, the aeration of the liquid phase and the oxidation of sulfide to elemental sulfur are spatially separated. The liquid phase is aerated in a vessel and subsequently recirculated to the sulfide-oxidizing bioreactor. In this manner, turbulencies due to aeration of the liquid phase in the bioreactor are avoided. It appeared that, under autotrophic conditions, almost all biomass present in the reactor will be immobilized within the sulfur sludge which consists mainly of elemental sulfur (92%) and biomass (2.5%). The particles formed have a diameter of up to 3 mm and can easily be grinded down. Within time, the sulfur sludge obtained excellent settling properties; e.g., after 50 days of operation, 90% of the sludge settles down at a velocity above 25 m h(-1) while 10% of the sludge had a sedimentation velocity higher than 108 m h(-1). Because the biomass is retained in the reactor, higher sulfide loading rates may be applied than to a conventional "free-cell" suspension. The maximum sulfide-loading rate reached was 14 g HS(-) L(-1) d(-1), whereas for a free-cell suspension a maximum loading rate of 6 g HS(-) L(-1) d(-1) was found. At higher loading rates, the upward velocities of the aerated suspension became too high so that sulfur sludge accumulated in the settling zone on top of the reactor. When the influent was supplemented with volatile fatty acids, heterotrophic sulfur and sulfate reducing bacteria, and possibly also (facultatively) heterotrophic Thiobacilli, accumulated within the sludge. This led to a serious deterioration of the system; i.e., the sulfur formed was increasingly reduced to sulfide, and also the formation rate of sulfur sludge declined. (c) 1997 John Wiley & Sons, Inc.  相似文献   

9.
Denitrifying sulfide removal (DSR) processes simultaneously convert sulfide, nitrate, and chemical oxygen demand from industrial wastewater into elemental sulfur, dinitrogen gas, and carbon dioxide, respectively. The failure of a DSR process is signaled by high concentrations of sulfide in reactor effluent. Conventionally, DSR reactor failure is blamed for overcompetition for heterotroph to autotroph communities. This study indicates that the elementary sulfur produced by oxidizing sulfide that is a recoverable resource from sulfide-laden wastewaters can be reduced back to sulfide by sulfur-reducing Methanobacterium sp. The Methanobacterium sp. was stimulated with excess organic carbon (acetate) when nitrite was completely consumed by heterotrophic denitrifiers. Adjusting hydraulic retention time of a DSR reactor when nitrite is completely consumed provides an additional control variable for maximizing DSR performance.  相似文献   

10.
Anaerobic dechlorination of pentachlorophenol (PCP) was studied in two upflow anaerobic sludge blanket reactors. One reactor received glucose (0.9 g liter-1) as an additional carbon source; the other one served as a control. The concentration of PCP in the medium was 4.5 and 3.0 mg liter-1 in the experimental and control reactors, respectively. The reactors were inoculated with granular sludge previously grown on sugar-containing wastewater. After 10 months of continuous operation, the removal of PCP was 99% in the glucose-amended reactor, whereas the removal in the control reactor varied between 32 and 77%. Furthermore, 94% of the PCP was completely dechlorinated in the glucose reactor compared with a maximum of 20% in the control reactor. In the same period, the amount of biomass in the glucose reactor had increased by approximately 150% compared with that in the control reactor, where no growth of the sludge bed occurred. Batch culture activity tests showed that the addition of glucose had a stimulatory effect on the dechlorination rate of PCP per gram of volatile solids. This indicated that the better performance of the glucose-amended reactor was due to a higher concentration of biomass and a direct stimulatory effect of glucose on the dechlorination rate. The pattern of dechlorination of PCP showed that an initial para cleavage was followed by two ortho cleavages.  相似文献   

11.
Anaerobic dechlorination of pentachlorophenol (PCP) was studied in two upflow anaerobic sludge blanket reactors. One reactor received glucose (0.9 g liter-1) as an additional carbon source; the other one served as a control. The concentration of PCP in the medium was 4.5 and 3.0 mg liter-1 in the experimental and control reactors, respectively. The reactors were inoculated with granular sludge previously grown on sugar-containing wastewater. After 10 months of continuous operation, the removal of PCP was 99% in the glucose-amended reactor, whereas the removal in the control reactor varied between 32 and 77%. Furthermore, 94% of the PCP was completely dechlorinated in the glucose reactor compared with a maximum of 20% in the control reactor. In the same period, the amount of biomass in the glucose reactor had increased by approximately 150% compared with that in the control reactor, where no growth of the sludge bed occurred. Batch culture activity tests showed that the addition of glucose had a stimulatory effect on the dechlorination rate of PCP per gram of volatile solids. This indicated that the better performance of the glucose-amended reactor was due to a higher concentration of biomass and a direct stimulatory effect of glucose on the dechlorination rate. The pattern of dechlorination of PCP showed that an initial para cleavage was followed by two ortho cleavages.  相似文献   

12.
An anaerobic upflow porous media biofilm reactor was designed to study the kinetics and stoichiometry of hydrogen sulfide production by the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans (ATCC 5575) as the first step for the modeling and control of formation souring (H(2)S) in oil field porous media. The reactor was a packed bed (50 x 5.5 cm) tubular reactor. Sea sand (140 to 375 mum) was used as the porous media. The initial indication of souring was the appearance of well-separated black spots (precipitates of iron sulfide) in the sand bed. The blackened zones expanded radially and upward through the column. New spots also appeared and expanded into the cone shapes. Lactate (substrate) was depleted and hydrogen sulfide appeared in the effluent.Analysis of the pseudo-steady state column shows that there were concentration gradients for lactate and hydrogen sulfide along the column. The results indicate that most of the lactate was consumed at the front part of the column. Measurements of SRB biomass on the solid phase (sand) and in the liquid phase indicate that the maximum concentration of SRB biomass resided at the front part of the column while the maximum in the liquid phase occurred further downstream. The stoichiometry regarding lactate consumption and hydrogen sulfide production observed in the porous media reactor was different from that in a chemostat. After analyzing the radial dispersion coefficient for the SRB in porous media and kinetics of microbial growth, it was deduced that transport phenomena dominate the souring process in our porous media reactor system. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
LED光质对乌饭树组培苗茎段增殖和生根的影响   总被引:1,自引:0,他引:1  
周鹏  张敏  吴双竹  黄婧 《植物研究》2018,38(5):697-703
采用发光二极管(LED)调制光质,以荧光灯为对照,研究LED不同红蓝光质比对乌饭树茎段增殖及生根的影响,为利用光质调控技术提高乌饭树组培效率和品质提供科学依据。结果表明,红光有利于新梢伸长及叶面积增加,但显著抑制叶绿素合成;蓝光抑制茎段新梢的诱导,但能促进组培苗不定根形成。红蓝复合光最有利于乌饭树组培苗茎段增殖、生物量积累以及根系发育,其中,在70% R(红光)+30% B(蓝光)处理下,带芽茎段的新梢诱导率、新梢数、叶片数、鲜重和干重均达到最大;而在生根阶段,组培苗的生根率、根数和根长在50% R+50% B处理下达到最大。此外,在单色蓝光处理下叶绿素a/b比值最大,是红光处理下的1.46倍;红蓝复合光促进乌饭树组培苗类胡萝卜素的合成。与荧光灯相比,适宜的LED光质能显著促进乌饭树茎段增殖和生根,是替代荧光灯的理想光源。  相似文献   

14.
Images taken at different spectral bands are increasingly used for characterizing plants and their health status. In contrast to conventional point measurements, imaging detects the distribution and quantity of signals and thus improves the interpretation of fluorescence and reflectance signatures. In multispectral fluorescence and reflectance set-ups, images are separately acquired for the fluorescence in the blue, green, red, and far red, as well as for the reflectance in the green and in the near infrared regions. In addition, 'reference' colour images are taken with an RGB (red, green, blue) camera. Examples of imaging for the detection of photosynthetic activity, UV screening caused by UV-absorbing substances, fruit quality, leaf tissue structure, and disease symptoms are introduced. Subsequently, the different instrumentations used for multispectral fluorescence and reflectance imaging of leaves and fruits are discussed. Various types of irradiation and excitation light sources, detectors, and components for image acquisition and image processing are outlined. The acquired images (or image sequences) can be analysed either directly for each spectral range (wherein they were captured) or after calculating ratios of the different spectral bands. This analysis can be carried out for different regions of interest selected manually or (semi)-automatically. Fluorescence and reflectance imaging in different spectral bands represents a promising tool for non-destructive plant monitoring and a 'road' to a broad range of identification tasks.  相似文献   

15.
The present investigation makes a comparative investigation of individual light source on the different commercially important pigments in Spirulina fussiformis in photobioreactor culture condition. Continuous culture system was carried out throughout the experimental condition. Initially, seed culture, corresponding to 0.2 g/L on dry weight basis was cultivated in Zarrouks medium with different colored light source in reactor. Maximum daily biomass productivity, 0.8 g/L, 0.75 g/L and 0.69 g/L in white light (WL), blue light (BL) and green light (GL), respectively, conditions was noticed. Pigment content during WL treatment showed the highest accumulation (5.5 microg/mL) of chlorophyll whereas, other pigments roughly remained constant without much change, implying WL intensity is better for chlorophyll synthesis. On the other hand, chlorophyll and phycocyanin content gradually increased up to 7 microg/mL and 2 mg/mL, respectively, at BL intensity. The response to GL was negative to all pigments studied except for phycocyanin; in this case a highest production (2.5 mg/mL) was seen during 18 days experimental period. Additionally, when yellow light (YL) treatment experiments were conducted, the rate of production gradually decreased from 6th day onward in all pigments demonstrating the photobleaching effect of YL. The average rate of pigments production did not show significant accumulation in red light (RL) light treatment except phycoerythrin which showed an increasing trend of production. It is worth to mention here that higher light intensity is better for production of phycocyanin and phycoerythrin in Spirulina.  相似文献   

16.
Aims:  Evaluation of various immobilization methods and bioreactors for sulfide oxidation using Thiobacillus sp. was studied.
Methods and Results:  Ca-alginate, K-carrageenan and agar gel matrices (entrapment) and polyurethane foam and granular activated carbon (adsorption) efficacy was tested for the sulfide oxidation and biomass leakage using immobilized Thiobacillus sp. Maximum sulfide oxidation of 96% was achieved with alginate matrix followed by K-carrageenan (88%). Different parameters viz. alginate concentration (1%, 2%, 3%, 4% and 5%), CaCl2 concentration (1%, 2%, 3%, 4% and 5%), bead diameter (1, 2, 3, 4 and 5 mm), and curing time (1, 3, 6, 12 and 18 h) were studied for optimal immobilization conditions. Repeated batch experiments were carried out to test reusability of Ca-alginate immobilized beads for sulfide oxidation in stirred tank reactor and fluidized bed reactor (FBR) at different sulfide concentrations.
Conclusions:  The results proved to be promising for sulfide oxidation using Ca-alginate gel matrix immobilized Thiobacillus sp. for better sulfide oxidation with less biomass leakage.
Significance and Impact of the Study:  Biological sulfide oxidation is gaining more importance because of its simple operation. Present investigations will help in successful design and operation of pilot and industrial level FBR for sulfide oxidation.  相似文献   

17.
This article presents a multispectral image analysis approach for probing the spectral backscattered irradiance from algal cultures. It was demonstrated how this spectral information can be used to measure algal biomass concentration, detect invasive species, and monitor culture health in real time. To accomplish this, a conventional RGB camera was used as a three band photodetector for imaging cultures of the green alga Chlorella sp. and the cyanobacterium Anabaena variabilis. A novel floating reference platform was placed in the culture, which enhanced the sensitivity of image color intensity to biomass concentration. Correlations were generated between the RGB color vector of culture images and the biomass concentrations for monocultures of each strain. These correlations predicted the biomass concentrations of independently prepared cultures with average errors of 22 and 14%, respectively. Moreover, the difference in spectral signatures between the two strains was exploited to detect the invasion of Chlorella sp. cultures by A. variabilis. Invasion was successfully detected for A. variabilis to Chlorella sp. mass ratios as small as 0.08. Finally, a method was presented for using multispectral imaging to detect thermal stress in A. variabilis. These methods can be extended to field applications to provide delay free process control feedback for efficient operation of large scale algae cultivation systems. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:233–240, 2014  相似文献   

18.
Plant leaf colour is commonly used as an index for nutrientdiagnosis. We have developed a low-cost diagnostic method thatis easy to use to assess the nutrient status of plants, basedon the estimation of chlorophyll content of leaves using a portablecolour video camera and a personal computer. Relationships betweenchlorophyll content and various functions derived from red,green and blue wavelengths are examined. Although red-blue andgreen-blue wavelengths show the highest correlation with chlorophyllcontent under a limited range of meteorological conditions,the normalized difference (red-blue)/(red+blue) is the mostapplicable function which can use data collected under differentmeteorological conditions. The accuracy in estimating chlorophyllcontent from video images could be improved by correcting withsolar radiation data. It is shown that, for practical purposes,the chlorophyll content of leaves can be estimated with sufficientaccuracy using a portable video camera.Copyright 1998 Annalsof Botany Company Chlorophyll content; leaf colour; video camera; image processing; nutrient diagnosis.  相似文献   

19.
The performance of anaerobic reactor for simultaneous sulfide and nitrate removal under substrate shock loading was studied. The response to the shock loading could be divided into three stages i.e. disturbance, inertial and recovery periods. The effect of the shock loading was directly proportional to the intensity of the shock loads. The reactor performance was stable at a relatively lower intensity (1.5 times shock load), while it was considerably affected by higher intensity (higher than 2.0 times shock load). Nevertheless, the reactor performance recovered from disturbances at all the tested shock loads. The effluent sulfide-sulfur concentration was found as sensitive parameter, which increased up to 18 times of that at steady state; it could be used as an indicator of the reactor’s performance.  相似文献   

20.
滤光膜对黄檗幼苗生物量及初级氮同化酶活性的影响   总被引:3,自引:0,他引:3  
李霞  阎秀峰  于涛 《应用生态学报》2006,17(11):2020-2023
以日光为对照,采用红色、黄色、蓝色和绿色4种滤光膜遮光处理温室栽培的黄檗幼苗100 d,测定了不同光环境下幼苗生物量、叶片叶绿素含量、可溶性蛋白含量、硝酸还原酶(NR)活性及谷氨酰胺合成酶(GS)活性的变化.结果表明,4种滤光膜处理均抑制黄檗幼苗的生长,黄檗幼苗的全株生物量与日光下的差异均达到显著水平(P<0.05).4种滤光膜对黄檗幼苗株高、茎径的影响与对全株生物量的影响相似;红膜和黄膜处理对黄檗幼苗根冠比影响不明显,蓝膜和绿膜处理明显抑制地下部分的生长(P<0.05);蓝膜、绿膜和红膜遮光的黄檗幼苗叶片叶绿素含量显著高于日光下的黄檗幼苗(P<0.05),以蓝膜处理最为突出;红膜处理增加了叶绿素a的比例,而蓝膜处理则使叶绿素a比例减少.经滤光膜遮光处理的黄檗幼苗可溶性蛋白含量均显著高于对照,且叶片NR和GS活性也显著高于日光下对照.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号