首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The secretory cells of the fundus of sweat glands from cystic fibrosis (CF) patients had higher Na and Cl contents and showed more granule depletion, cellular disruption and dilated intercellular canaliculi than normal. The cells of the coiled duct also had higher cytoplasmic levels of Na and Cl but were structurally normal. Thermal stimulation produced ultrastructural changes in the CF fundus comparable to normal, including further dilatation of the basolateral clefts, but did not induce the marked changes in the coiled duct which normally occur. The elevated Na and fall in K in the fundus and raised Na and Cl in the coiled duct upon activation, were not observed in the CF glands in which no significant changes were detected.  相似文献   

2.
Chloride permeability in 9 cystic fibrosis- and 11 normal-skin fibroblast lines has been investigated. Chloride efflux, under steady-state conditions, involves two intracellular compartments characterized by slow- and fast-rate constants of efflux. We show here that the fast rate constant in cystic fibrosis cells is reduced by 25% in comparison with controls. The data presented support recent studies indicating that isolated sweat glands and respiratory epithelia of patients suffering from cystic fibrosis have an unusual low permeability to chloride ions compared to control epithelia. It is concluded that variation in chloride transport can successfully be studied in cultured fibroblasts, which are not directly involved in the pathology of the disease.  相似文献   

3.
To understand potential mechanisms explaining interindividual variability observed in human sweat sodium concentration ([Na(+)]), we investigated the relationship among [Na(+)] of thermoregulatory sweat, plasma membrane expression of Na(+) and Cl(-) transport proteins in biopsied human eccrine sweat ducts, and basal levels of vasopressin (AVP) and aldosterone. Lower ductal luminal membrane expression of the Cl(-) channel cystic fibrosis transmembrane conductance regulator (CFTR) was observed in immunofluorescent staining of sweat glands from healthy young adults identified as exceptionally "salty sweaters" (SS) (n = 6, P < 0.05) and from patients with cystic fibrosis (CF) (n = 6, P < 0.005) compared with ducts from healthy young adults with "typical" sweat [Na(+)] (control, n = 6). Genetic testing of healthy subjects did not reveal any heterozygotes ("carriers") for any of the 39 most common disease-causing CFTR mutations in the United States. SS had higher baseline plasma [AVP] compared with control (P = 0.029). Immunostaining to investigate a potential relationship between higher plasma [AVP] (and sweat [Na(+)]) and ductal membrane aquaporin-5 revealed for all groups a relatively sparse and location-dependent ductal expression of the water channel with localization primarily to the secretory coil. Availability of CFTR for NaCl transport across the ductal membrane appears related to the significant physiological variability observed in sweat salt concentration in apparently healthy humans. At present, a heritable link between healthy salty sweaters and the most prevalent disease-causing CFTR mutations cannot be established.  相似文献   

4.
5.
We have previously described a high conductance calcium-activated 'maxi K' channel in primary cultures of human eccrine sweat gland cells both from normal subjects and those with cystic fibrosis. In further studies we have now identified a potassium-selective channel of much lower conductance which shows outward-rectification and which is present in sweat glands isolated from cystic fibrosis subjects. In experiments with inside-out patches using symmetrical pipette and bath solutions containing 140 mM K+ the channel showed an outward slope conductance (at +50 mV) of approximately 26 pS and an inward conductance (at -50 mV) of approximately 11 pS. When K+ in the bath was replaced by Na+ the reversal potential shifts to reveal a permeability ratio PK/PNa approximately 40 Unlike the maxi-K+ channel, the outward-rectifying channel does not show sensitivity to Ca2+. Channels were found in cells cultured from the glands of four out of five cystic fibrosis subjects. In cells cultured from 30 subjects who did not have cystic fibrosis, an outward-rectifying potassium channel was seen in only one out of approximately 3000 patches.  相似文献   

6.
We attempt to determine whether the decrease in Na+ reabsorption and the increase in K+ secretion in sweat of cystic fibrosis patients (CF) were associated with changes in glandular anaerobic metabolism evaluated by forehead sweat lactate excretion rate. 6 CF and 11 normal (C) children, 5 months to 14 years old, were exposed to external thermal load (45 degrees C). The data showed that: 1) Na+, K+ and Cl- concentrations in CF are constant at any flow rate (Qsw); 2) In both groups the excretion rates of Na+, K+ and Cl- increased linearly with Qsw but the slopes in CF were significantly higher than in C (p less than 0.001); 3) Lactate excretion rate increased with Qsw as in CF and C with the same slope. We suggest that an increase in energy expenditure of Na+ - K+ exchange and an active secretion of K+ by the duct could explain the normal energy metabolism that we observed in CF sweat glands.  相似文献   

7.
Tracheal, renal, salivary, and pancreatic epithelial cells from cystic fibrosis [CF; cystic fibrosis transmembrane conductance regulator (CFTR) -/-] and non-CF mice that carry a temperature-sensitive SV40 large T antigen oncogene (ImmortoMouse) were isolated and maintained in culture under permissive conditions (33 degrees C with interferon-gamma). The resultant cell lines have been in culture for >1 year and 50 passages. Each of the eight cell lines form polarized epithelial barriers and exhibit regulated, electrogenic ion transport. The four non-CF cell lines (mTEC1, mCT1, mSEC1, and mPEC1) express cAMP-regulated Cl(-) permeability and cAMP-stimulated Cl(-) secretion. In contrast, the four CFTR -/- cell lines (mTEC1-CF, mCT1-CF, mSEC1-CF, and mPEC1-CF) each lack cAMP-stimulated Cl(-) secretory responses. Ca(2+)-activated Cl(-) secretion is retained in both CF and non-CF cell lines. Thus we have generated genetically well-matched epithelial cell lines from several tissues relevant to cystic fibrosis that either completely lack CFTR or express endogenous levels of CFTR. These cell lines should prove useful for studies of regulation of epithelial cell function and the role of CFTR in cell physiology.  相似文献   

8.
Immunolocalization of band 3 protein in normal and cystic fibrosis skin   总被引:2,自引:0,他引:2  
Current evidence indicates that the defect in cystic fibrosis (CF) involves chloride transport in various epithelial cells. The sweat gland, one site of altered chloride transport in CF, was examined immunocytochemically for localization of a chloride-channel membrane protein, designated band 3 protein. Immunoreactivity was observed in sweat duct cell membranes of both normal and CF samples, whereas secretory coil regions were entirely unreactive. No difference was observed in the pattern or intensity of immunoreactivity between the two groups at the light microscopic (LM) level of resolution.  相似文献   

9.
cAMP-induced ion transport in normal and cystic fibrosis (CF) fibroblasts was investigated by X-ray microanalysis. Stimulation with cAMP causes an increase in cellular Na content and a decrease in cellular Cl and K content. No significant difference in response between CF and normal cells was noted. In this respect, fibroblasts differ from epithelial cells, where cAMP-induced Cl- efflux blocked in CF patients. Isoproterenol produced similar changes in Na and K content as cAMP, but did not effect Cl content.  相似文献   

10.
Chloride channel regulation in secretory epithelia   总被引:3,自引:0,他引:3  
Patch-clamp techniques were applied for single-channel recording to cultured cells from Cl secretory epithelia: human airway cells and the T84 cell line. Epinephrine or cyclic AMP (cAMP) stimulated single-channel activity in human airway cells during cell-attached recording. Similarly, prostaglandin E2 and cAMP stimulated single-channel activity in T84 cells. Ion substitution experiments with patches in the inside-out configuration indicated greater than 10:1 selectivity for Cl over Na in channels from both cell types, which confirms the identity of these events as Cl channel openings. The Ca ionophore A23187 stimulated these Cl channels to open in both cell types. Human airway cells from patients with cystic fibrosis (CF) did not respond to epinephrine or cAMP, but A23187 treatment elicited Cl channel activity. Changes in bath Ca activity in the inside-out configuration demonstrated that increased Ca could activate cAMP-insensitive Cl channels in CF cells. This indicates that the primary defect in CF is in the regulation of Cl channel opening rather than in conduction of Cl through the channel.  相似文献   

11.
The hereditary disease cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Understanding of the consequences of CFTR gene mutations is derived chiefly from in vitro studies on heterologous cell cultures and on cells hyperexpressing CFTR. Data from ex vivo studies on human tissue are scarce and contradictory, a fact which is in part explained by secondary tissue destruction in most affected organs. The purpose of this study was to establish conditions under which wild-type and mutated CFTR can be studied in affected human tissue. Sweat glands carry the basic defect underlying CF and are not affected by tissue destruction and inflammation. Therefore, we used this tissue to test a panel of eight different CFTR antibodies under various fixation techniques. The antibodies were tested on skin biopsy sections from healthy controls, from CF patients homozygous for the most common mutation, DeltaF508, and from patients carrying two nonsense mutations. Of the eight CFTR antibodies, only three-M3A7, MATG 1104, and cc24-met the criteria necessary for immunolocalization of CFTR in sweat glands. The labeling pattern in the CF sweat glands was consistent with the postulated processing defect of DeltaF508 CFTR. The antibodies exhibited different sensitivities for detecting DeltaF508 CFTR.  相似文献   

12.
Cultured normal (N) cystic fibrosis (CF) keratinocytes were evaluated for their Cl(-)-transport properties by patch-clamp-, Ussing chamber- and isotopic efflux-measurements. Special attention was paid to a 32 pS outwardly rectifying Cl- channel which has been reported to be activated upon activation of cAMP-dependent pathways in N, but not in CF cells. This depolarization-induced Cl- channel was found with a similar incidence in N and CF apical keratinocyte membranes. However, activation of this channel in excised patches by protein kinase (PK)-A or PK-C was not successful in either N or CF keratinocytes. Forskolin was not able to activate Cl- channels in N and CF cell-attached patches. The Ca(2+)-ionophore A23187 activated in cell-attached patches a linear 17 pS Cl- channel in both N and CF cells. This channel inactivated upon excision. No relationship between the cell-attached 17 pS and the excised 32 pS channel could be demonstrated. Returning to the measurement of Cl- transport at the macroscopic level, we found that a drastic rise in intracellular cAMP induced by forskolin did in N as well as CF cells not result in a change in the short-circuit current (Isc) or the fractional efflux rates of 36Cl- and 125I-. In contrast, addition of A23187 resulted in an increase of the Isc and in the isotopic anion efflux rates in N and CF cells. We conclude that Cl(-)-transport in cultured human keratinocytes can be activated by Ca2+, but not by cAMP-dependent pathways.  相似文献   

13.
Summary Vasoactive intestinal peptide (VIP) is a regulatory neuropeptide involved in a wide variety of functions, among them vasodilation, smooth muscle relaxation, sweat secretion, gastrointestinal peristalsis, and pancreatic function. A deficient VIP-innervation of sweat glands was recently described as a possible pathogenic factor in sweating of cystic fibrosis (CF) patients. To investigate a possible role for a defective VIP-gene in cystic fibrosis, we have used a panel of rodent-human hybrid cells, retaining defined complements of human chromosomes to localize the VIP-gene to the human chromosome region 6p216qter. As the CF gene was recently mapped to chromosome 7, we conclude that the VIP-gene is not the primary gene defect in this disease.  相似文献   

14.
Cystic fibrosis (CF) is a common inherited disorder which is characterized by the production of exocrine secretions with elevated ion content and abnormally viscous mucus. Over the last few years cells obtained from the peripheral blood or cultured from tissues of cystic fibrosis patients have been used increasingly in the study of the disease. Investigations of the following properties of cystic fibrosis cells are reviewed: morphology, ultrastructure, growth kinetics, cellular metachromasia, the production of ciliary inhibitors, cellular composition, plasma membrane composition, the transport of inorganic ions and small organic molecules, lysosomal enzyme content, and RNA methylation. Studies of the effects on cultured cells and erythrocyte membranes of factors in CF cell culture medium and biological fluids from CF patients are discussed.  相似文献   

15.
Putrescine transport was examined in normal and cystic fibrosis fibroblasts. No differences were observed in accumulation pattern, kinetics of uptake, or efflux between CF and normal cells. In both growing and growth-arrested CF and normal fibroblasts, exogenously supplied putrescine remained unchanged for at least 60 min. Some differences were observed in the response of CF and normal cells to environmental (media) changes.This research was supported by a grant from the Cystic Fibrosis Foundation and by a grant from the National Institutes of Health, Training Grant (GM01316 11 GNC).  相似文献   

16.
M Battino  M Rugolo  G Romeo  G Lenaz 《FEBS letters》1986,199(2):155-158
We compared the kinetics of cytochrome-c oxidase (cytochrome-c:oxygen oxidoreductase, EC 1.9.3.1) in fibroblasts derived from normal and cystic fibrosis individuals. The Km of the enzyme for reduced cytochrome c was significantly increased in CF cells; the change, however, was observed only at temperatures above 25 degrees C. The Vmax values were comparable in both types of individuals.  相似文献   

17.
Initial rate kinetics of methionine transport, time course of accumulation of methionine, and efflux of accumulated methionine were studied in three normal and four CF human diploid fibroblast strains. The range of apparent Km's was 12.7-32.1 micrometer for the CF strains and 18.3-39.2 micrometer for the normal strains. The range of apparent Vmax's was 6.69-9.22 nmole mg-1 min-1 for the CF strains and 5.59-7.87 nmole mg-1 min-1 for the normal strains. The patterns of accumulation and efflux are quite similar in all the strains studied except for WI-38, which showed somewhat higher efflux and lower accumulation than for others. There was no significant difference in the kinetic parameters of methionine transport between CF and normal skin fibroblasts, and methionine transport will not serve as a marker for cystic fibrosis in cultured fibroblasts.  相似文献   

18.
Taurine deficiency recently has been proposed to be clinically significant in cystic fibrosis (CF). Uptake of [14C]taurine by four cystic fibrosis (CF) and three control fibroblast lines was examined to determine whether a generalized defect in taurine transport could contribute to the deficiency. The time course of uptake was linear up to 20 h and was similar in both CF and control fibroblasts. Taurine was avidly retained after uptake, and the effect of metabolic (chlorpromazine) and competitive (hypotaurine, L-leucine) inhibitors was similar in both CF and control cells. In contrast, while taurine uptake in a calcium-free medium was impaired in both CF and control fibroblasts, the impairment was significantly less in CF cells. The findings suggest that a generalized abnormality in taurine transport is unlikely to be responsible for the taurine deficiency in CF.  相似文献   

19.
Submucosal glands are the primary source of airway mucus, a critical component of lung innate defenses. Airway glands are defective in cystic fibrosis (CF), showing a complete absence of secretion to vasoactive intestinal peptide or forskolin, which increase intracellular cAMP concentration. This defect is attributed to gland serous cells, which express the cystic fibrosis transmembrane conductance regulator. Calu-3 cells, which mimic many features of serous cells, secrete Cl(-) and HCO(3)(-), with HCO(3)(-) secretion predominating for forskolin stimulation and Cl(-) secretion predominating for stimuli that open basolateral K(+) channels to hyperpolarize the cells. We used pH stat and ion substitution experiments to clarify the mechanisms and consequences of these two modes of secretion. We confirm that Calu-3 cells secrete primarily HCO(3)(-) in response to forskolin. Unexpectedly, HCO(3)(-) secretion continued in response to K(+) channel openers, with Cl(-) secretion being added to it. Secretion of HCO(3)(-) from hyperpolarized cells occurs via the conversion of CO(2) to HCO(3)(-) and is reduced by approximately 50% with acetazolamide. A gap between the base equivalent current and short-circuit current was observed in all experiments and was traced to secretion of H(+) via a ouabain-sensitive, K(+)-dependent process (possibly H(+)-K(+)-ATPase), which partially neutralized the secreted HCO(3)(-). The conjoint secretion of HCO(3)(-) and H(+) may help explain the puzzling finding that mucus secreted from normal and CF glands has the same acidic pH as does mucus from glands stimulated with forskolin or ACh. It may also help explain how human airway glands produce mucus that is hypotonic.  相似文献   

20.
The mechanism of the pancreatic ductal HCO secretion defect in cystic fibrosis (CF) is not well defined. However, a lack of apical Cl(-)/HCO exchange may exist in CF. To test this hypothesis, we examined the expression of Cl(-)/HCO exchangers in cultured pancreatic duct epithelial cells with physiological features prototypical of CF [CFPAC-1 cells lacking a functional CF transmembrane conductance regulator (CFTR)] or normal duct cells (CFPAC-1 cells transfected with functional wild-type CFTR, CFPAC-WT). Cl(-)/HCO exchange activity, assayed with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein in cells grown on coverslips, increased about twofold in cells transfected with functional CFTR. This correlated with increased apical (36)Cl influx in cells expressing functional CFTR and grown on permeable support. Northern hybridizations indicated the induction of downregulated in adenoma (DRA) in cells expressing functional CFTR. The expression of putative anion transporter PAT1 also increased significantly in cells expressing functional CFTR. DRA was detected at high levels in native mouse pancreas by Northern hybridization and localized to the apical domain of the duct cells by immunohistochemical studies. In conclusion, CFTR upregulates DRA and PAT1 expression in cultured pancreatic duct cells. We propose that the pancreatic HCO secretion defect in CF patients is partly due to the downregulation of apical Cl(-)/HCO exchange activity mediated by DRA (and possibly PAT1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号