共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
J A Mangos 《Texas reports on biology and medicine》1973,31(4):651-663
3.
White NM Jiang D Burgess JD Bederman IR Previs SF Kelley TJ 《American journal of physiology. Lung cellular and molecular physiology》2007,292(2):L476-L486
Determining how the regulation of cellular processes is impacted in cystic fibrosis (CF) is fundamental to understanding disease pathology and to identifying new therapeutic targets. In this study, unesterified cholesterol accumulation is observed in lung and trachea sections obtained from CF patients compared with non-CF tissues, suggesting an inherent flaw in cholesterol processing. An alternate staining method utilizing a fluorescent cholesterol probe also indicates improper lysosomal storage of cholesterol in CF cells. Excess cholesterol is also manifested by a significant increase in plasma membrane cholesterol content in both cultured CF cells and in nasal tissue excised from cftr(-/-) mice. Impaired intracellular cholesterol movement is predicted to stimulate cholesterol synthesis, a hypothesis supported by the observation of increased de novo cholesterol synthesis in lung and liver of cftr(-/-) mice compared with controls. Furthermore, pharmacological inhibition of cholesterol transport is sufficient to cause CF-like elevation in cytokine production in wild-type cells in response to bacterial challenge but has no effect in CF cells. These data demonstrate via multiple methods in both cultured and in vivo models that cellular cholesterol homeostasis is inherently altered in CF. This perturbation of cholesterol homeostasis represents a potentially important process in CF pathogenesis. 相似文献
4.
Mitochondrial NADH dehydrogenase in cystic fibrosis: enzyme kinetics in cultured fibroblasts. 总被引:1,自引:0,他引:1
下载免费PDF全文

Differences among cystic fibrosis (CF) genotypes (CF, obligate carriers for CF [HZ], and controls) in mitochondrial calcium pool size, oxygen (O2) consumption, and rotenone inhibition of O2 consumption led to examination of mitochondrial NADH dehydrogenase (NADH: [acceptor] oxidoreductase, E.C. 1.6.99.3). pH optima of mitochondrial NADH dehydrogenase were different in enzyme derived from whole cell homogenates of cultured skin fibroblasts of subjects with CF, HZ, and controls. We describe here apparent binding of substrate to the enzyme (Km [NADH]) in cell fractions. Km (NADH) for CF ranged from 10.9 to 16.1 micro M (no. = 7); for HZ from 20.9 to 26.3 microM (no. = 5). With three exceptions, Km for controls (no. = 12) ranged from 31.8 to 42.8 microM. Km of the three exceptional controls were 21.5, 23.7, and 22.4 microM (the latter two are identical twins). pH optima of enzyme from these three strains were no different from that of known HZ. The correlation between two kinetic parameters of an enzyme and the three CF genotypes suggests an association between the CF gene and mitochondrial NADH dehydrogenase. 相似文献
5.
6.
B S Danes 《Texas reports on biology and medicine》1976,34(1):135-150
Observations on the characteristics of the cell with the cystic fibrosis (CF) genotype in culture are reviewed. Although numerous and diverse abnormalities have been described, none were specific for the CF gene. The relevance of each of these abnormalities to the clinical syndrome known as CF is discussed, emphasizing that the value thus far of such cell culture research has been to learn how the CF gene influences cellular function. 相似文献
7.
Using the whole-cell voltage clamp (to determine the membrane current) and current clamp (to determine membrane potential) methods in conjunction with the nystatin-perforation technique, we studied the effect of methacholine (MCh) and other secretagogues on whole cell K and Cl currents in dissociated rhesus palm eccrine sweat clear cells. Application of MCh by local superfusion induced a net outward current (at a holding potential of ?60 mV and a clamp voltage of 0 mV), and a transient hyperpolarization by 5.6 mV, suggesting the stimulation of K currents. The net outward current gradually changed to the inward (presumably Cl) currents over the next 1 to 2 min of continuous MCh stimulation. During this time the membrane potential also changed from hyperpolarization to depolarization. The inward currents were increasingly more activated than outward (presumably K) currents during repeated MCh stimulations so that a net inward current (at ?60 mV) was observed after the fourth or fifth MCh stimulation. Ionomycin (10 μm) also activated both inward and outward current. The observed effect of MCh was abolished by reducing extracellular [Ca] to below 1 nm (Ca-free + 1 mm EGTA in the bath). MCh-activated outward currents were inhibited by 5 mm Ba and by 0.1 mm quinidine, although these agents also suppressed the inward currents. Bi-ionic potential measurements indicated that the contribution of Na to the membrane potential was negligible both before and after MCh or ISO (isoproterenol) stimulations and that the observed membrane current was carried mainly by K and Cl. MCh increased the bi-ionic potential by step changes in external K and Cl concentrations, further supporting that MCh-induced outward and inward currents represent K and Cl currents, respectively. Stimulation with ISO or FK (forskolin) resulted in a depolarization by about 55 mV and a net inward (most likely Cl) current independent of external Ca. CT-cAMP mimicked the effects of FK and ISO. The bi-ionic potential, produced by step changes in the external Cl concentration, increased during ISO stimulation, whereas that of K decreased. This indicates that the ISO-induced inward current is due to Cl current and that K currents were unchanged or slightly decreased during stimulation with ISO or 10 μm FK. Both myoepithelial and dark cells responded only to MCh (but not to FK) with a marked depolarization of the membrane potential due to activation of Cl, but not K, currents. We conclude that MCh stimulates Ca-dependent K and Cl currents, whereas ISO stimulates cAMP-dependent Cl currents in eccrine clear cells. 相似文献
8.
Coakley RJ Taggart C Canny G Greally P O'Neill SJ McElvaney NG 《American journal of physiology. Lung cellular and molecular physiology》2000,279(1):L66-L74
Cystic fibrosis (CF) is a condition characterized by neutrophil-mediated lung damage and bacterial colonization. The physiological basis for reported functional alterations in CF neutrophils, including increased release of neutrophil elastase, myeloperoxidase, and oxidants, is unknown. These processes are, however, regulated by intracellular pH (pH(i)). We demonstrate here that pH(i) regulation is altered in neutrophils from CF patients. Although resting pH(i) is similar, pH(i) after acid loading and activation (N-formyl-methionyl-leucyl-phenylalanine and phorbol 12-myristate 13-acetate) is more acidic in CF cells than in normal cells. Furthermore, patients with non-CF-related bronchiectasis handle acid loading and activation in a fashion similar to subjects with normal neutrophils, suggesting that chronic pulmonary inflammation alone does not explain the difference in pH(i). This is further supported by data showing that normal neutrophils exposed to the CF pulmonary milieu respond by increasing pH(i) as opposed to decreasing pH(i) as seen in activated CF neutrophils. These pH(i) differences in activated or acid-loaded CF neutrophils are abrogated by ZnCl(2) but not by amiloride and bafilomycin A(1), suggesting that passive proton conductance is abnormal in CF. In addition, DIDS, which inhibits HCO(3)(-)/Cl(-) exchange, causes alkalinization of control but not of CF neutrophils, suggesting that anion transport is also abnormal in CF neutrophils. In summary, we have shown that pH(i) regulation in CF neutrophils is intrinsically abnormal, potentially contributing to the pulmonary manifestations of the condition. 相似文献
9.
Peter Steen Pedersen 《In vitro cellular & developmental biology. Plant》1989,25(4):342-352
Summary Human sweat duct cells from the coiled reabsorptive segment have been cultured successfully, free from fibroblasts, in a low serum, hormone-supplemented medium. Ham's F12. The cultured cells exhibited a typical epithelial cobblestone pattern and microvilli-covered luminal cells were seen joined together with typical junctional complexes. In cultures derived from normals and patients with cystic fibrosis (CF), growth and morphologic characteristics were indistinguishable. When grown on a membranous support, and mounted in an Ussing chamber, vectorial electroconductive ion-transport could be identified. The epithelial preparations produced active mucosa to serosa-directed sodium flux via amiloride-sensitive, apical sodium channels and ouabain-sensitive sodium pumps located in the basolateral membrane, which also contained a potassium shunt. These findings are consistent with a polarized epithelium with properties similar to the intact organ. High transepithelial resistance and increased amiloride sensitivity were typical for cells derived from CF, indicating that principal normal as well as pathologic properties of the sweat duct are preserved in culture. Financial support was provided by CF Foundation USA (G1397-01), SLF, Ville Heyse, Haensch, Nationalforeningen, Winthertur, Novo, and Egmont Foundation. 相似文献
10.
We have previously described a high conductance calcium-activated 'maxi K' channel in primary cultures of human eccrine sweat gland cells both from normal subjects and those with cystic fibrosis. In further studies we have now identified a potassium-selective channel of much lower conductance which shows outward-rectification and which is present in sweat glands isolated from cystic fibrosis subjects. In experiments with inside-out patches using symmetrical pipette and bath solutions containing 140 mM K+ the channel showed an outward slope conductance (at +50 mV) of approximately 26 pS and an inward conductance (at -50 mV) of approximately 11 pS. When K+ in the bath was replaced by Na+ the reversal potential shifts to reveal a permeability ratio PK/PNa approximately 40 Unlike the maxi-K+ channel, the outward-rectifying channel does not show sensitivity to Ca2+. Channels were found in cells cultured from the glands of four out of five cystic fibrosis subjects. In cells cultured from 30 subjects who did not have cystic fibrosis, an outward-rectifying potassium channel was seen in only one out of approximately 3000 patches. 相似文献
11.
J B Ward 《Texas reports on biology and medicine》1976,34(1):11-36
Cystic fibrosis (CF) is a common inherited disorder which is characterized by the production of exocrine secretions with elevated ion content and abnormally viscous mucus. Over the last few years cells obtained from the peripheral blood or cultured from tissues of cystic fibrosis patients have been used increasingly in the study of the disease. Investigations of the following properties of cystic fibrosis cells are reviewed: morphology, ultrastructure, growth kinetics, cellular metachromasia, the production of ciliary inhibitors, cellular composition, plasma membrane composition, the transport of inorganic ions and small organic molecules, lysosomal enzyme content, and RNA methylation. Studies of the effects on cultured cells and erythrocyte membranes of factors in CF cell culture medium and biological fluids from CF patients are discussed. 相似文献
12.
S M Wilson H Y Elder A M Sutton D M Jenkinson F Cockburn I Montgomery S A McWilliams D L Bovell 《Tissue & cell》1988,20(5):691-700
The secretory cells of the fundus of sweat glands from cystic fibrosis (CF) patients had higher Na and Cl contents and showed more granule depletion, cellular disruption and dilated intercellular canaliculi than normal. The cells of the coiled duct also had higher cytoplasmic levels of Na and Cl but were structurally normal. Thermal stimulation produced ultrastructural changes in the CF fundus comparable to normal, including further dilatation of the basolateral clefts, but did not induce the marked changes in the coiled duct which normally occur. The elevated Na and fall in K in the fundus and raised Na and Cl in the coiled duct upon activation, were not observed in the CF glands in which no significant changes were detected. 相似文献
13.
14.
The membrane glycoprotein enzyme, alkaline phosphatase was induced in cultured human fibroblasts by dibutyryl cyclic AMP, sodium butyrate, the serum glycoprotein fetuin, the Tamm-Horsfall urinary glycoprotein, and by a number of inhibitors of DNA synthesis. The uninduced basal enzyme activity increased at later stages of growth when the cells became confluent. Induction by dibutyryl cyclic AMP or fetuin was most effective when the agents were added after the cells had reached stationary phase and was maximal after at least two days of exposure. The levels of induction resulting from the addition of pairs of the agents, dibutyryl cyclic AMP, n-butyrate and fetuin were additive indicating that these have different modes of action. The inhibitors of DNA synthesis, cytosine arabinoside, hydroxyurea, and methothrexate were less effective inducers. Bromodeoxyuridine which also has non-DNA mediated effects induced to the same extent as dibutyryl cyclic AMP. Similar experiments with sex- and age-matched cell strains derived from patients with cystic fibrosis failed to detect differences in the levels of induction from those observed in normal cells. In addition, the combined inductive effects of Tamm-Horsfall glycoprotein, isoproterenol and theophylline, were similar with normal and cystic fibrosis cells. 相似文献
15.
Diphenyleneiodonium (DPI) is a broad-spectrum flavoprotein inhibitor commonly used to inhibit oxidant production by the NADPH oxidase of phagocytic and nonphagocytic cells. A previous study has shown that DPI can sensitize T24 bladder carcinoma cells to Fas-mediated apoptosis. We observed DPI to deplete intracellular reduced glutathione (GSH) in T24 cells and a range of other primary and transformed cell types. The effect was immediate, with 50% loss of intracellular GSH within 2 h of treatment with DPI. The glutathione was quantitatively recovered in the extracellular medium, indicating that efflux was occurring. The loss of GSH was blocked with bromosulfophthalein, an inhibitor of the canalicular GSH transporters. We conclude that DPI induces a dramatic efflux of cellular GSH from T24 cells via a specific transport channel. This provides a potential mechanism for its proapoptotic effect, and it also has important implications for the regulation of glutathione homeostasis in cells. 相似文献
16.
17.
Altered channel properties of porins from Haemophilus influenzae: isolates from cystic fibrosis patients 总被引:3,自引:0,他引:3
Changes in amino-acid sequence of the unique pore-forming protein of H. influenzae (OmpP2; porin) have been associated with increased antimicrobial resistance in H. influenzae strains isolated from cystic fibrosis patients. From patients who were subjected to long-term antimicrobial therapy, H. influenzae strains 67d and 69a (patient 27) and strains 77a and 77f (patient 30) were isolated. Strains 67d and 77a were previously shown to have elevated values for minimal inhibitory concentrations of antibiotics compared to strains 69a and 77f. Porins were extracted from all four H. influenzae strains by detergent treatment and purified to homogeneity by ion exchange chromatography. By reconstitution of the clinical Hi porins into planar lipid bilayers, single-channel conductance, ionic selectivity, and voltage-gating characteristics were assessed. Porins 77a and 77f displayed similar single-channel conductance and ionic selectivity. Current-voltage relationships were determined for the different porins: porin 77f displayed substantial voltage gating at both positive and negative polarity; porin 77a gated at negative polarity only. Porins 67d and 69a showed substantial differences in their pore-forming properties: the single-channel conductance of porin 69a was significantly increased (1.05 nS) relative to porin 67d (0.73 nS). Porin 67d was twice as permeable to cations as porin 69a, and at both positive and negative polarities the extent of voltage gating was greater for porin 67d relative to porin 69a. Expression of the porins in an isogenic, porin-deleted H. influenzae background allowed for assessment of the contribution of each porin to the minimum inhibitory concentrations of various antimicrobial compounds. Porin 67d was found to have a decreased susceptibility to the antimicrobials novobiocin and streptomycin. This decreased susceptibility of porin 67d to novobiocin and streptomycin correlates with its decrease in single-channel conductance. 相似文献
18.
cAMP-dependent Cl(-) channel protein (CFTR) and its mRNA are expressed in the secretory portion of human eccrine sweat gland. 总被引:2,自引:0,他引:2
Immunoreactive cystic fibrosis transport regulator (CFTR) proteins in human sweat ducts has been documented but CFTR expression in the secretory coil has remained uncertain. Using monoclonal antibodies (MAbs) against epitopes in the R-domain and C-terminus, we observed the following: Formalin fixation masks the CFTR epitopes but the epitopes are exposed by treatment with urea and heat (antigen retrieval). Pen-Fix fixation preserves CFTR epitopes. The secretory coil also expresses CFTR epitopes for the R-domain and C-terminus. An MAb against C-terminus amino acids 1466-1480 coupled to keyhole limpet hemocyanin (MAb WC) stained dark cells predominantly. Staining by MAbs against the C-terminus was completely blocked by a C-terminus peptide. mRNA for CFTR was amplified by RT-PCR in both the duct and the secretory coil. In situ hybridization for CFTR mRNA after 3SR amplification indicates that mRNA is localized in the dark cells and perhaps also in the clear cell cytoplasm near the secretory coil. mRNA is present in both the luminal and basal duct cells. We conclude that CFTR is expressed equally well in both the duct and the secretory coil, suggesting that cAMP-dependent Cl(-) channels are involved in regulation of sweat secretion and duct absorption. 相似文献
19.
Baconnais S Delavoie F Zahm JM Milliot M Terryn C Castillon N Banchet V Michel J Danos O Merten M Chinet T Zierold K Bonnet N Puchelle E Balossier G 《Experimental cell research》2005,309(2):296-304
The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na(+) absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na(+), Mg(2+), P, S and Cl(-)) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR(inh)-172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF. 相似文献
20.
M Kansen J Keulemans A T Hoogeveen B Scholte A B Vaandrager A W van der Kamp M Sinaasappel A G Bot H R de Jonge J Bijman 《Biochimica et biophysica acta》1992,1139(1-2):49-56
Cultured normal (N) cystic fibrosis (CF) keratinocytes were evaluated for their Cl(-)-transport properties by patch-clamp-, Ussing chamber- and isotopic efflux-measurements. Special attention was paid to a 32 pS outwardly rectifying Cl- channel which has been reported to be activated upon activation of cAMP-dependent pathways in N, but not in CF cells. This depolarization-induced Cl- channel was found with a similar incidence in N and CF apical keratinocyte membranes. However, activation of this channel in excised patches by protein kinase (PK)-A or PK-C was not successful in either N or CF keratinocytes. Forskolin was not able to activate Cl- channels in N and CF cell-attached patches. The Ca(2+)-ionophore A23187 activated in cell-attached patches a linear 17 pS Cl- channel in both N and CF cells. This channel inactivated upon excision. No relationship between the cell-attached 17 pS and the excised 32 pS channel could be demonstrated. Returning to the measurement of Cl- transport at the macroscopic level, we found that a drastic rise in intracellular cAMP induced by forskolin did in N as well as CF cells not result in a change in the short-circuit current (Isc) or the fractional efflux rates of 36Cl- and 125I-. In contrast, addition of A23187 resulted in an increase of the Isc and in the isotopic anion efflux rates in N and CF cells. We conclude that Cl(-)-transport in cultured human keratinocytes can be activated by Ca2+, but not by cAMP-dependent pathways. 相似文献