首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Subunits of wheat endosperm proteins have been fractionated by two-dimensional electrophoresis. To determine which subunits in the two-dimensional electrophoretic pattern belong to gliadin or glutenin the endosperm proteins have also been fractionated by a modified Osborne procedure and by gel filtration on Sephadex G-100 and Sepharose CL-4B prior to separation by two-dimensional electrophoresis.The control of production of five major grain protein subunits is shown to be determined by chromosomes 6A, 6B and 6D by comparing two-dimensional electrophoretic protein subunit patterns of aneuploid lines of the variety Chinese Spring. From these and previous studies it is concluded that some , and gliadins (molecular weights by SDS-PAGE 30,000 to 40,000) are specified by genes on the short arms of homoeologous Group 6 chromosomes, the gliadins (molecular weights by SDS-PAGE 50,000 to 70,000) are specified by genes on the short arms of homoeologous Group 1 chromosomes and the glutenin subunits (molecular weights by SDS-PAGE > 85,000) are specified by genes on the long arms of homoeologous Group 1 chromosomes.No major gliadins or glutenin subunits were absent when any of the chromosomes in homoeologous Groups 2, 3, 4, 5 or 7 were deleted. However two gliadins whose presumed structural genes are on chromosome 6D were absent in aneuploid stocks of Chinese Spring carrying two additional doses of chromosome 2A. Two out of thirty-three intervarietal or interspecific chromosome substitution lines examined, involving homoeologous Group 2 chromosomes, lacked the same two gliadins. All the subunits in the other thirty-one chromosome substitution lines were indistinguishable from those in Chinese Spring. It is therefore concluded that the major variation affecting gliadin and glutenins in wheat is concentrated on the chromosomes of homoeologous Groups 1 and 6 but Group 2 chromosomes are candidates for further study.An endosperm protein controlled by chromosome 4D in Chinese Spring is shown to be a high molecular weight globulin.  相似文献   

2.
Summary The endosperm storage proteins, glutenin and gliadin, are major determinants of bread-making quality in hexaploid wheat. Genes encoding them are located on chromosomes of homoeologous groups 1 and 6. Aneuploid lines of these groups in spring wheat cultivar Chinese Spring have been used to investigate the effect of varying the dosage of chromosomes and chromosome arms upon bread-making quality, where quality has been assessed using the SDS-sedimentation test. Differences between the group 1 chromosomes for quality were greater than those between the group 6 chromosomes. The chromosomes were ranked within homoeologous groups for their effect on quality as follows (>=better quality): 1D>1B>1A and 6A>6B=6D. The relationship of chromosome dosage with quality was principally linear for four of the chromosomes, but not for 6B and 6D. Increases in the dosage of 1B, 6A and, especially, 1D, were associated with significant improvements in quality, whereas increases in the dosage of 1A were associated with reductions in quality. The effects of 1A and 1D were such that the best genotype for quality was nullisomic 1A-tetrasomic 1D. For group 1, effects of the long arm appeared in general to be more important than effects of the short arm. For group 6, effects were found associated with the long arms as well as with the short arms, a surprising result in view of the absence of genes encoding storage proteins on the long arms. Significant interactions were found between chromosomes and genetic backgrounds, and between individual chromosomes. Analysis of trials grown over two years demonstrated that, although additive environmental differences over years and genotype x years interaction were present, they were relatively small in magnitude compared with purely genetic differences.  相似文献   

3.
Summary A triple (1AL.1RS/1BL.1RS/1DL.1RS) and three double (1AL.1RS/1BL.1RS, 1AL.1RS/1DL.1RS, 1BL.1RS/1DL.1RS) wheat-rye 1RS translocation stocks were isolated from a segregating population using the Gli-1, Tri-1 and Sec-1 seed proteins as genetic markers. These stocks carried 42 chromosomes and formed the expected multivalents (frequency of 14–25%) at metaphase 1. They gave floret fertility ranging from 40–60%. These stocks were subsequently used to determine the genetic control of low-molecular-weight (LMW) glutenin subunits in Chinese Spring and Gabo by means of two-step one-dimensional SDS-PAGE. All of the B subunits and most of the C subunits of glutenin were shown to be controlled by genes on the short arms of group-1 chromosomes in these wheats. The other C subunits were not controlled by group-1 chromosomes. The triple translocation line served as a suitable third parent in producing test-cross seeds for studying the inheritance of the LMW glutenin subunits and gliadins in wheat cultivars, e.g. Chinese Spring and Orca. The segregation patterns of the LMW glutenin subunits in these cultivars revealed that the subunits were inherited in clusters and that their controlling genes (Glu-3) were tightly linked with those controlling gliadins (Gli-1). The LMW glutenin patterns d, d and e in Orca segregated as alternatives to the patterns a, a and a in Chinese Spring controlled by Glu-A3, Glu-B3 and Glu-D3 loci on chromosome arms 1AS, 1BS and 1DS, respectively, thus indicating that these patterns were controlled by allelic genes at these loci.  相似文献   

4.
Summary The inheritance and biochemical properties of gliadins controlled by the group 1 chromosomes of the high-quality bread wheat cultivar Neepawa were studied in the progeny of the cross Neepawa x Costantino by six different electrophoretic procedures. Chromosome 1B of Neepawa contains two gliadin loci, one (Gli-B1) coding for at least six - or -gliadins, the other (Gli-B3) controlling the synthesis of gliadin N6 only. The map distance between these loci was calculated as 22.1 cM. Amongst the chromosome 1A gliadins, three proteins are encoded at the Gli-A1 locus whereas polypeptides N14-N15-N16 are controlled by a remote locus which recombines with Gli-A1. Six other gliadins are controlled by a gene cluster at Gli-D1 on chromosome 1D. Canadian wheat cultivars sharing the Gli-B1 allele of Neepawa were found to differ in the presence or absence of gliadin N6. The electrophoretic mobilities of proteins N6 and N14-N15-N16 were unaffected by the addition of a reducing agent during two-dimensional sodium dodecyl sulphate polyacrylamid-gel electrophoresis, suggesting the absence of intra-chain disulphide bonds in their structure.Research supported by a grant from the Commission of the European Communities, ECLAIR programme, Contract AGRE 0052  相似文献   

5.
Concentrations of cadmium in the grain of durum wheat (Triticum turgidum L. var durum) are often above the internationally acceptable limit of 0.2 mg kg−1. Cultivars that vary in concentrations of cadmium in the grain have been identified but the physiology behind differential accumulation has not been determined. Three pairs of near-isogenic lines (isolines) of durum wheat that vary in aboveground cadmium accumulation (8982-TL ‘high’ and ‘low’, W9260-BC ‘high’ and ‘low’, and W9261-BG ‘high’ and ‘low’) were used to test the hypothesis that the greater amounts of cadmium in shoots of the ‘high’ isolines are correlated with greater volumes of water transpired. In general, cadmium content was positively correlated with transpiration only in the ‘low’ isolines. Although shoots of the ‘high’ isolines of W9260-BC and W9261-BG contained higher concentrations of cadmium than did their corresponding ‘low’ isolines, they did not transpire larger volumes of water. In addition, isolines of 8982-TL transpired less water than did the other pairs of isolines yet both ‘high’ and ‘low’ isolines of 8982-TL contained higher amounts of cadmium than did the other pairs. The difference between ‘high’ and ‘low’ isolines appears to be related to the relative contribution of transpiration to cadmium translocation to the shoot. Increased transpiration was associated with increased cadmium content in the ‘low’ isolines but in the ‘high’ isolines increased cadmium in the shoot occurred independently of the volume of water transpired.  相似文献   

6.
7.
Summary A molecular marker analysis of a near-isogenic line (NIL), its donor parent (DP), and its recurrent parent (RP) can provide information about linkages between molecular markers and a conventional marker introgressed into the NIL. If the DP and RP possess different alleles for a given molecular marker, and if the NIL possesses the same allele as the DP, then it is reasonable to presume a linkage between that molecular marker and the introgressed marker. In this study, we examined the utility of RFLPs as molecular markers for the NIL genemapping approach. The allelic status of fifteen RFLP loci was determined in 116 soybean RP/NIL/DP line sets; 66 of the Clark RP type and 50 of the Harosoy RP type. Of the 1740 possible allelic comparisons (116 NILs x 15 RFLP loci), 1638 were tested and 462 (33.9%) of those were informative (i.e., the RP and DP had different RFLP alleles). In 15 (3.2%) of these 462 cases the NIL possessed the DP-derived RFLP allele, leading to a presumption of linkage between the RFLP locus and the introgressed conventional marker locus. Two presumptive linkages, pK-3 — and pK-472 — Lf i, were subsequently confirmed by cosegregation linkage analysis. Although not yet confirmed, two other associations, pk-7 ab and pK-229 — y 9 seemed to be plausible linkages, primarily because the pk-7 — ab association was detected in two independently derived NILs and both markers of the pK-229 — y 9 association were known to be linked to Pb. The data obtained in this investigation indicated that RFLP loci were useful molecular markers for the NIL gene-mapping technique.Published as Paper no. 9101, Journal Series, Nebraska Agric. Res. Div. Project no. 12-091. Research partially funded by a grant from the Nebraska Soybean Development, Utilization, and Marketing Board  相似文献   

8.
RFLP markers for the wheat powdery mildew resistance genes Pm1 and Pm2 were tagged by means of near-isogenic lines. The probe Whs178 is located 3 cM from the Pm1 gene. For the powdery mildew resistance gene Pm2, two markers were identified. The linkage between the Pm2 resistance locus and one of these two probes was estimated to be 3 cM with a F2 population. Both markers can be used to detect the presence of the corresponding resistance gene in commercial cultivars. Bulked segregant analysis was applied to identify linkage disequillibrium between the resistance gene Pm18 and the abovementioned marker, which was linked to this locus at a distance of 4 cM. Furthermore, the RAPD marker OPH-111900 (5-CTTCCGCAGT-3) was selected with pools created from a population segregating for the resistance of Trigo BR 34. The RAPD marker was mapped about 13 cM from this resistance locus.  相似文献   

9.
Summary Stable wheat-Aegilops introgression lines with 42 chromosomes (H-93), derived by repeated selfing from a cross (Triticum turgidum x Aegilops ventricosa) x T. aestivum, have been characterized using the following DNA probes and isozyme markers: (1) single or low-copy DNA fragments from Ae. ventricosa; (2) known cDNA probes corresponding to 1-thionin, monomeric -amylase inhibitor, the CM3 subunit of tetrameric -amylase inhibitor, and sucrose synthase from wheat; (3) anonymous cDNA probes from wheat that have been mapped by Sharp et al. (1989); (4) isozyme markers corresponding to aconitase, shikimate dehydrogenase, adenylate kinase, and endopeptidase. Meiotic metaphases of appropriate hybrids involving selected H-93 lines have been investigated by the Giemsa C-banding technique. The substitution of whole chromosomes [(5A) 5Mv; (4D) 4Mv; (5D) 5Mv; (7D) 7Mv] and chromosomal segments (1Mv; 3Mv; 5Mv; 7Mv) from the Mv genome of Aegilops ventricosa has been demonstrated. The distribution of selected markers among putative wheat-Ae. ventricosa addition lines has also been investigated. The 7Mv addition has been characterized for the first time, while the identity of the previously reported 5Mv and 6Mv additions has been confirmed.  相似文献   

10.
The contribution of a locus to the genotypic variance depends not only on the effects of its genes but also on their frequency and on the genetic background in which it segregates. In two synthetic populations, involving common cultivars of our collection, estimates were made of the contributions of alleles at the homoeologous high-molecular-weight glutenin (HMW) loci, Glu-A1, Glu-B1, and Glu-D1, to the variation in flour quality using SDS sedimentation as an index. These estimates were of the magnitude of the contributions relative to each other, relative to the residual genetic variance, and relative to the environmental variance. The first population was a synthetic formed from ten bread-wheat cultivars known for their good quality, and selected under forced random mating for high SDS sedimentation. The second was the selfed progeny of a cross of Ribereño, a very poor quality bread-wheat of genotype (Null, 7–8,2–12), with line 7681, a very good quality bread-wheat with the genotype (2*, 7–9, 5–10). Slightly over one-half of the phenotypic variance is under genetic control and over one-half of this was accounted for by HMW contributions. The initial response to selection was very rapid, as is expected when genes with large effects are involved. In addition, the frequencies of good HMW alleles increased so quickly that their contribution to the genetic variance was exhausted by the fourth generation of selection. If our estimates are correct, over one-half of the maximum possible advance in quality in heterogeneous populations similar to ours can easily be achieved in 2 years, or less, of marker-assisted selection.  相似文献   

11.
The objective of this study was to identify molecular markers linked to genes for resistance to powdery mildew (Pm) in wheat using a series of Chancellor near-isogenic-lines (NILs), each having one powdery mildew resistance gene. A total of 210 probes were screened for their ability to detect polymorphism between the NILs and the recurrent parent. One of these restriction fragment length polymorphism (RFLP) markers (Xwhs179) revealed polymorphism not only between the NILs for the Pm3 locus, but also among NILs possessing different alleles of the Pm3 locus. The location of the marker Xwhs179 was confirmed to be on homoeologous chromosome group 1 with the help of nullitetrasomic wheat lines. The linkage relationship between this probe and the Pm3 locus was estimated with double haploid lines derived from a cross between wheat cvs Club and Chul (Pm3b). The genetic distance was determined to be 3.3±1.9 cM.  相似文献   

12.
Analyses of RFLPs, isozymes, morphological markers and chromosome pairing were used to isolate 12 Triticum aestivum cv Chinese Spring (genomes A, B, and D)-T. peregrinum (genomes Sv and Uv) disomic chromosome addition lines. The evidence obtained indicates that each of the 12 lines contains an intact pair of T. peregrinum chromosomes. One monosomic addition line, believed to contain an intact 6Sv chromosome, was also isolated. A CS-7Uv chromosome addition line was not obtained. Syntenic relationships in common with the standard Triticeae arrangement were found for five of the seven Sv genome chromosomes. The exceptions were 4Sv and 7Sv. A reciprocal translocation exists between 4S1 and 7S1 in T. longissimum and evidence was obtained that the same translocation exists in T. peregrinum. In contrast, evidence for syntenic relationships in common with the standard Triticeae arrangements were found for only one Uv chromosome of T. peregrinum.; namely, chromosome 2Uv. All other Uv genome chromosomes are involved in at least one translocation, and the same translocations were found in the U genome of T. umbellulatum. Evidence was also obtained indicating that the centromeric regions of 4U and 4Uv are homoeologous to the centromeric regions of Triticeae homoeologous group-6 chromosomes, that the centromeric regions of 6U and 6Uv are homoeologous to the centromeric regions of group-4 chromosomes, and that 4U and 4Uv are more closely related overall to Triticeae homoeologous group-6 chromosomes than they are to group-4 chromosomes.  相似文献   

13.
The development and use of RAPD markers for applications in crop improvement has recently generated considerable interest within the plant breeding community. One potential application of RAPDs is their use for tagging simply-inherited (monogenic) pest-resistance genes and enabling more efficient identification and selection of genotypes carrying specific combinations of resistance genes. In this report, we propose and describe the use of heterogeneous inbred populations as sources of near-isogenic lines (NILs) for targeting RAPD markers linked to major pest resistance genes. The development of these NILs for RAPD marker analyses involved a sequence of line and mass selection during successive generations of inbreeding. DNA bulks derived from the NILs were used to identify a RAPD marker (designated OK14620, generated by 5-CCCGCTACAC-3 decamer) that was tightly linked (2.23±1.33 centiMorgans) to an important rust [Uromyces appendiculatus (Pers.) Unger var. appendiculatus] resistance gene (Ur-3) in common bean (Phaseolus vulgaris L.). The efficiency of this approach was demonstrated by a low rate of false-positives identified, the tightness of the linkage identified, and the ability to detect polymorphism between genomic regions that are representative of the same gene pool of common bean. This method of deriving NILs should find application by researchers interested in utilizing marker-assisted selection for one or more major pest resistance genes. The identification of OK14620 should help to facilitate continued use of the Ur-3 resistance source and will now enable marker-assisted pyramiding of three different bean rust resistance sources (two previously tagged) to provide effective and stable resistance to this important pathogen.Research supported in part by the grant DAN 1310-G-SS-6008-00 from the USAID Bean/Cowpea Collaborative Research Support Program, the Michigan Agricultural Experiment Station, and the USDA-ARS. Mention of a trademark or a proprietary product does not constitute a guarantee or warranty of the product by the USDA and does not imply its approval to the exclusion of other products that may also be suitable  相似文献   

14.
Two wheat (Triticum aestivum L.) varieties, Cheyenne (Ch, winter wheat with excellent frost tolerance) and Chinese Spring (CS, spring wheat with weak frost tolerance), and chromosome substitution lines (CS/Ch 5A, CS/Ch 5D, CS/Ch 7A) created from Cheyenne and Chinese Spring were used to study the effect of chromosome substitutions on the membrane lipid composition in the leaves and crowns before and after cold hardening. The percentage of fatty acid unsaturation in phosphatidylethanolamine was greater in the crown of hardened Cheyenne than in Chinese Spring. The value of CS/Ch 5A was similar to Cheyenne and that of CS/Ch 5D to Chinese Spring, while the value of CS/Ch 7A was in between those of Cheyenne and Chinese Spring. A smaller difference was found between the unsaturation level in the phosphatidylcholine from Cheyenne and Chinese Spring after hardening, while the value obtained for the substitution line CS/Ch 7A was similar to Cheyenne. The percentage decrease in thetrans3-hexadecenoic acid content was found to be correlated with the frost tolerance of the wheat genotypes.  相似文献   

15.
Summary The nucleolar organizer activity of the Agropyron elongatum, its amphiploid with hexaploid wheat (Triticum aestivum) and the chromosome addition lines is analyzed by the silver-staining procedure. Four Ag-NORs are observed in A. elongatum corresponding to the chromosomes 6E and 7E. In the amphiploid T. aestivum — A. elongatum, eight Ag-NORs are observed which corresponds the wheat chromosomes 1B and 6B and to the elongatum chromosomes 6E and 7E. Thus, there is codominance in the nucleolar organizer activity of the chromosomes of the two species. However, a partial amphiplasty is detected since less than 8 Ag-NORs (7 up to 4) are observed in some metaphase cells; the chromosomes 6E and 7E are occasionally suppressed by wheat chromosomes. This conclusion is confirmed by the behaviour of the addition lines since only in those corresponding to the chromosomes 6E and 7E are the elongatum chromosomes nucleolar active although occasionally they can be suppressed by wheat chromosomes.  相似文献   

16.
Summary Plants of three common wheat (Triticum aestivum L. em. Thell) cultivars and one randomly selected doubled-haploid line derived by anther culture from each of the three cultivars were each grown in three environments, a field environment, a greenhouse environment, and a growth chamber environment. Anthers containing largely miduninucleate to late uninucleate microspores were cultured and calli were induced to regenerate plants in order to assess the effects of cultivar, cultivar family (cultivar and corresponding doubled-haploid derivative), anther-donor plant environment, and cultivar X environment interaction on androgenic responses. Large differences in response were observed among cultivars as well as between cultivars and doubled-haploids. Differences between cultivar and doubled-haploid within cultivar family usually resulted from higher frequency of response in the cultivar, contrary to the hypothesis that anther culture per se constitutes a general selective device for superior androgenic responses. Also, in a second experiment, anther callusing frequency was greater in the cultivar Kitt than in any of five unique doubled-haploid lines derived from Kitt. Significant effects were also observed in the first experiment for the interactions of cultivar family X environment as well as doubled-haploid vs. cultivar X environment, although the effect of environment itself was less significant than these interactions.Contribution from the USDA, SEA, AR, Beltsville, Md, and the Department of Agronomy, University of Maryland, College Park, Md, as scientific article No. A-3413, contribution No. 6486  相似文献   

17.
Leaf rust, caused by Puccinia triticina Eriks., is an important foliar disease of common wheat (Triticum aestivum L.) worldwide. Pyramiding several major rust-resistance genes into one adapted cultivar is one strategy for obtaining more durable resistance. Molecular markers linked to these genes are essential tools for gene pyramiding. The rust-resistance gene Lr41 from T. tauschii has been introgressed into chromosome 2D of several wheat cultivars that are currently under commercial production. To discover molecular markers closely linked to Lr41, a set of near-isogenic lines (NILs) of the hard winter wheat cultivar Century were developed through backcrossing. A population of 95 BC3F2:6 NILs were evaluated for leaf rust resistance at both seedling and adult plant stages and analyzed with simple sequence repeat (SSR) markers using bulked segregant analysis. Four markers closely linked to Lr41 were identified on chromosome 2DS; the closest marker, Xbarc124, was about 1 cM from Lr41. Physical mapping using Chinese Spring nullitetrasomic and ditelosomic genetic stocks confirmed that markers linked to Lr41 were on chromosome arm 2DS. Marker analysis in a diverse set of wheat germplasm indicated that primers BARC124, GWM210, and GDM35 amplified polymorphic bands between most resistant and susceptible accessions and can be used for marker-assisted selection in breeding programs.  相似文献   

18.
The recent techniques of genetic immunization, in which DNA constructs are introduced directly into mammalian tissuesin vivo, were used to produce antisera against thioredoxinh, a protein of wheat. Two rabbits and two mice were inoculated intramuscularly with a vector containing the cDNA encoding the protein of interest under control of a cytomegalovirus promoter. No immune response was observed in rabbits, even when a fourfold quantity of DNA and a different inoculation site were used. By contrast, an inoculated mouse was found to produce antisera against the wheat thioredoxinh as analyzed by western blotting. This technique appears useful, therefore, to obtain polyclonal antibodies against plant proteins that are difficult to purify, if the corresponding cDNAs are available.  相似文献   

19.
A standard karyotype and a generalized idiogram of Triticum umbellulatum (syn. Aegilops umbellulata, 2n = 2x = 14) was established based on C-banding analysis of ten accessions of different geographic origin and individual T. umbellulatum chromosomes in T. aestivumT. umbellulatum chromosome addition lines. Monosomic (MA) and disomic (DA) T. aestivumT. umbellulatum chromosome addition lines (DA1U = B, DA2U = D, MA4U = F, DA5U = C, DA6U = A, DA7U = E = G) and telosomic addition lines (DA1US, DA1UL, DA2US, DA2UL, DA4UL, MA5US, (+ iso 5US), DA5UL, DA7US, DA7UL) were analyzed. Line H was established as a disomic addition line for the translocated wheat — T. umbellulatum chromosome T2DS·4US. Radiation-induced wheat — T. umbellulatum translocation lines resistant to leaf rust (Lr9) were identified as T40 = T6BL·6BS-6UL, T41 = T4BL·4BS-6UL, T44 = T2DS·2DL-6UL, T47 = Transfer = T6BS·6BL-6UL and T52 = T7BL·7BS-6UL. Breakpoints and sizes of the transferred T. umbellulatum segments in these translocations were determined by in situ hybridization analysis using total genomic T. umbellulatum DNA as a probeContribution no. 94-349-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, USA  相似文献   

20.
Zhou C  Xia G  Zhi D  Chen Y 《Planta》2006,223(4):714-724
In this paper, we describe how Bupleurum scorzonerifolium/Triticum aestivum asymmetric somatic hybrids can be exploited to study the wheat genome. Protoplasts of B. scorzonerifolium Willd were irradiated with ultraviolet light (UV) and fused with protoplasts of common wheat (T. aestivum L.). All cell clones were similar in appearance to those of B. scorzonerifolium, while the regenerated plantlets were either intermediate or B. scorzonerifolium-like. Genotypic screening using isozymes showed that 39.3% of cell clones formed were hybrid. Some of the hybrid cell clones grew vigorously, and differentiated green leaves, shoots or plantlets. DNA marker analysis of the hybrids demonstrated that wheat DNA was integrated into the nuclear genomes of B. scorzonerifolium and in situ karyotyping cells revealed that a few wheat chromosome fragments had been introgressed into B. scorzonerifolium. The average wheat SSR retention frequency of the RH panel was 20.50%, but was only 6.67% in fusions with a non-irradiated donor. B. scorzonerifolium chromosomes and wheat SSR fragments in most asymmetric hybrid cell lines remained stable over a period of 2.5–3.5 years. We suggest the UV-induced asymmetric somatic hybrids between B. scorzonerifolium Willd and T. aestivum L. have the potential for use in the construction of an RH map of the wheat genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号