首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of [(PPh3)2Pt(η3-CH2CCPh)]OTf with each of PMe3, CO and Br result in the addition of these species to the metal and a change in hapticity of the η3-CH2CCPh to η1-CH2CCPh or η1-C(Ph)=C=CH2. Thus, PMe3 affords [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+, CO gives both [trans-(PPh3)2Pt(CO)(η1-CH2CCPh)]+ and [trans-(PPh3)2Pt(CO)(η1-C(Ph)=C=CH2)]+, and LiBr yields cis-(PPh3)2PtBr(η1-CH2CCPh), which undergoes isomerization to trans-(PPh3)2PtBr(η1-CH2CCPh). Substitution reactions of cis- and trans-(PPh3)2PtBr(η1-CH2CCPh) each lead to tautomerization of η1-CH2CCPh to η1-C(Ph)=C=CH2, with trans-(PPh3)2PtBr(η1-CH2CCPh) affording [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+ at ambient temperature and the slower reacting cis isomer giving [trans-(PPh3)(PMe3)2Pt(η1-C(Ph)=C=CH2)]+ at 54 °C . All new complexes were characterized by a combination of elemental analysis, FAB mas spectrometry and IR and NMR (1H, 13C{1H} and 31P{1H}) spectroscopy. The structure of [(PMe3)3Pt(η1-C(Ph)=C=CH2)]BPh4·0.5MeOH was determined by single-crystal X-ray diffraction analysis.  相似文献   

2.
The reactions of various proton donors (phenol, hexafluoro-2-propanol, perfluoro-2-methyl-2-propanol, monochloroacetic acid, and tetrafluoroboric acid) with the rhenium (I) hydride complex [(triphos)Re(CO)2H] (1) have been studied in dichloromethane solution by in situ IR and NMR spectroscopy. The proton donors from [(triphos)Re(CO)2H…HOR] adducts exhibiting rather strong H…H interactions. The enthalpy variations associated with the formation of the H-bonds (−ΔH = 4.4–6.0 kcal mol−1) have been determined by IR spectroscopy, while the H…H distance in the adduct [(triphos)Re(CO)2H…HOC(CF3)3] (1.83 Å) has been calculated by NMR spectroscopy through the determination of the T1min relaxation time of the Re---H proton. It has been shown that the [(triphos)Re(CO)2H…HOR] adducts are in equilibrium with the dihydrogen complex [(triphos)Re(CO)22-H2)]+, which is thermodynamically more stable than any H-bond adduct.  相似文献   

3.
The dinuclear Pt---Si complex {(Ph3P)Pt{μ-η2-H---SiH(IMP)]}2 (trans-1a–cis-1b=3:1; IMP=2-isopropyl-6-methylphenyl) reacted with basic phosphines such as 1,2-bis(diphenylphosphino)ethane (dppe) and dimethylphenylphosphine (PMe2Ph) to afford different dinuclear Pt---Si complexes with loss of H2, {(P)2Pt[μ-SiH(IMP)]}2 [P=dppe, trans-2a (major), cis-2b (trace); PMe2Ph, 3 (trans only)]. Complexes 2 and 3 were characterized by multinuclear NMR spectroscopy and X-ray crystallography (2a). In contrast, the reaction of 1a,b with the sterically demanding tricyclohexylphosphine (PCy3) afforded {(Cy3P)Pt{μ-η2-H---SiH(IMP)]}2 (trans-4a–cis-4b 2:1) analogous to 1a,b where the central Pt2Si2(μ-H)2 core remains intact but the PPh3 ligands have been replaced by PCy3. Complexes 4a and 4b was characterized by multinuclear NMR and IR spectroscopies.  相似文献   

4.
The chloro complexes trans-[Pt(Me)(Cl)(PPh3)2], after treatment with AgBF4, react with 1-alkynes HC---C---R in the presence of NEt3 to afford the corresponding acetylide derivatives trans-[Pt(Me) (C---C---R) (PPh3)2] (R = p-tolyl (1), Ph (2), C(CH3)3 (3)). These complexes, with the exception of the t-butylacetylide complex, react with the chloroalcohols HO(CH2)nCl (n = 2, 3) in the presence of 1 equiv. of HBF4 to afford the alkyl(chloroalkoxy)carbene complexes trans-[Pt(Me) {C[O(CH2)nCl](CH2R) } (PPh3)2][BF4] (R = p-tolyl, N = 2 (4), N = 3 (5); R=Ph, N = 2 (6)). A similar reaction of the bis(acetylide) complex trans-[Pt(C---C---Ph)2(PMe2Ph)2] with 2 equiv. HBF4 and 3-chloro-1-propanol affords trans-[Pt(C---CPh) {C(OCH2CH2CH2Cl)(CH2Ph) } (PMe2Ph)2][BF4] (7). T alkyl(chloroalkoxy)-carbene complex trans-[Pt(Me) {C(OCH2CH2Cl)(CH2Ph) } (PPh3)2][BF4] (8) is formed by reaction of trans-[Pt(Me)(Cl)(PPh3)2], after treatment with AgBF4 in HOCH2CH2Cl, with phenylacetylene in the presence of 1 equiv. of n-BuLi. The reaction of the dimer [Pt(Cl)(μ-Cl)(PMe2Ph)]2 with p-tolylacetylene and 3-chloro-1-propanol yields cis-[PtCl2{C(OCH2CH2CH2Cl)(CH2C6H4-p-Me}(PMe2Ph)] (9). The X-ray molecular structure of (8) has been determined. It crystallizes in the orthorhombic system, space group Pna21, with a = 11.785(2), B = 29.418(4), C = 15.409(3) Å, V = 4889(1) Å3 and Z = 4. The carbene ligand is perpendicular to the Pt(II) coordination plane; the PtC(carbene) bond distance is 2.01(1) Å and the short C(carbene)-O bond distance of 1.30(1) Å suggests extensive electronic delocalization within the Pt---C(carbene)---O moietry.  相似文献   

5.
The reaction of TiCl4 with Li2[(SiMe2)25-C5H3)2] in toluene at room temperature afforded a mixture of cis- and trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] in a molar ratio of 1/2 after recrystallization. The complex trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] was hydrolyzed immediately by the addition of water to THF solutions to give trans-[(TiCl2)2(μ-O){(SiMe2)25-C5H3)2}] as a solid insoluble in all organic solvents, whereas hydrolysis of cis-[(TiCl3)2{(SiMe2)25-C5H3)2}] under different conditions led to the dinuclear μ-oxo complex cis-[(TiCl2)2)(μ-O){(SiMe2)25-C5H3)2}] and two oxo complexes of the same stoichiometry [(TiCl)2(μ-O){(SiMe2)25-C5H3)2}]2(μ-O)2 as crystalline solids. Alkylation of cis- and trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] with MgCIMe led respectively to the partially alkylated cis-[(TiMe2Cl)2{(SiMe2)25-C5H3)2}] and the totally alkylated trans-[(TiMe3)2{(SiMe2)25-C5H3)2}] compounds. The crystal and molecular structure of the tetranuclear oxo complex [(TiCl)2(μ-O){(SiMe2)25-C5H3)2}]2(μ-O)2 was determined by X-ray diffraction.  相似文献   

6.
Treatment of a THF solution of trans-[ReCl(N2)L4] (L = PMePh2) with a cyanamide, NCNR2 (R = Me, Et or H) or with cyanoguanidine, NCNC(NH2)2 , yields mer-[ReCl(N2)(NCNR2)L3] (1) or mer-[Re(N2)[Re(N2){NCNC(NH2)2}2L3]Cl (2), respectively, which, to our knowledge, are the first mixed dinitrogen-cyanamide-type complexes to be reported. The former products (1, R=Me or Et) can also be obtained from reaction of the benzoyldiazenido complex [ReCl2(NNCOPh)L3] with NCNR2 in refluxing methanol; the Re(II) complex mer-[ReCl2(NCNEt2)L3] (3) is also formed (conceivably via an unusual homolysis of the C---N bond of the benzoyldiazenido ligand) and its crystal structure is reported. It shows an unusual pyramidal conformation at the amine N atom of the diethylcyanamide ligand which also exhibits a significant structural trans influence on the phosphine, behaving as a stronger net electron donor than the latter ligand.  相似文献   

7.
The Pt2 (II) isomeric terminal hydrides [(CO)(H)Pt(μ-PBu2)2Pt(PBu2H)]CF3SO3 (1a), and [(CO)Pt(μ-PBu2)2Pt(PBu2H)(H)]CF3SO3 (1b), react rapidly with 1 atm of carbon monoxide to give the same mixture of two isomers of the Pt2 (I) dicarbonyl [Pt2(μ-PBu2)(CO)2(PBu2H)2]CF3SO3 (3-Pt); the solid state structure of the isomer bearing the carbonyl ligands pseudo-trans to the bridging phosphide was solved by X-ray diffraction. A remarkable difference was instead found between the reactivity of 1a and 1b towards carbon disulfide or isoprene. In both cases 1b reacts slowly to afford [Pt2(μ-PBu2)(μ,η22-CS2)(PBu2H)2]CF3SO3 (4-Pt), and [Pt2(μ-PBu2)(μ,η22-isoprene) (PBu2H)2]CF3SO3 (6-Pt), respectively. In the same experimental conditions, 1a is totally inert. A common mechanism, proceeding through the preassociation of the incoming ligand followed by the P---H bond formation between one of the bridging P atoms and the hydride ligand, has been suggested for these reactions.  相似文献   

8.
An improved synthetic procedure for pentabenzylcyclopentadiene Bz5C5H was developed. Six new organomolybdenum and organotungsten halides η5-Bz5C5M(CO)3X(M = Mo, W; X = Cl, Br, I) were syntesized through the reaction of η5-Bz5C5M(CO)3Li (derived from Bz5C5H, n-BuLi and M(CO)6) with PCl3, PBr3 or I2 and characterized by elemental analysis, IR and 1H NMR spectroscopy. The structure of η5-Bz5C5Mo(CO)3I was determined by single-crystal X-ray diffraction techniques. It crystallized in the monoclinic space groupp P2/c with cell parameters a = 13.294(4), B = 15.147(4), C = 19.027(3) Å, β = 108.32(2)°, V = 3637(2) Å3, Z = 4 and Dx = 1.50 g cm−3. The final R value was 0.035 for 4564 observed reflections.  相似文献   

9.
Analogy with the isolable oxo cluster [Fe3(CO)93-O)]2−, which is structurally interesting and synthetically useful, prompted the present attempt to synthesize its ruthenium analog. Although the high reactivity of [Ru3(CO)93-O)]2− (I) prevented its isolation, the reaction of this species with [M(CO)3(NCCH3)]+, where M = Mn or Re, yields [PPN][MRu3(CO)1223-NC(μ-O)CH3]. The high nucleophilicity of the oxo ligand in [Ru3(CO)93-O)]2− (I) appears to be responsible for the conversion of acetonitrile to an acetamidediato ligand and for the instability of I. The crystal structure of [PPN][MnRu3(CO)1223-NC(μ-O)CH3)]] reveals a hinged butterfly array of metal atoms in which the acetamidediato ligand bridges the two wings with μ3-N bonding to an Mn and two Ru atoms, and μ-O bonding to an Ru atom.  相似文献   

10.
The reaction of RuCl3(H2O), with C5Me4CF3J in refluxing EtOH gives [Ru25-C5Me1CF2)2 (μ-Cl2] (20 in 44% yield. Dimer 2 antiferromagnetic (−2J=200 cm1). The crystal structures of 2 (rhombohedral system, R3 space group, Z=9, R=0.0589) and [Rh25-C5Me4CF3(2Cl2(μ-Cl)2] (3) (rhombohedral system. space group, Z = 9, R = 0.0641) were solved; both complexes have dimeric structures with a trans arrangement of the η5-C5Me4CF4 rings. Comparison of the geometry of 2 and 3 with those of the corresponding η5-C5Me5 complexes shows that lowering the ring symmetry causes significant distortion of the M2(μ-Cl)2 moiety. The analysis of the MCl3 fragment conformations in 2 and 3 and in the η5-C5ME5 analogues shows that they are correlated with the M---M distances. The Cl atoms are displaced by Br on reaction of 2 with KBr in MeOH to give the diamagnetic dimer [Ru25-C5Me4CF3)2Br2 (μ-Br2] (4). Complex 2 reacts with O2 in CH2Cl2 solution at ambient temperature to form a mixture of isomeric η6-fulvene dimers [Ru26-C5Me3CF3 = CH2)2Cl2(μ-Cl)2] (5). Reactions of 5 with CO and allyl chloride give Ru(η5-C5Me3CF3CH2Cl)(CO)2Cl (6) and Ru(η5-C5Me3CF3CF3CH2Cl)(η3-C3H5)Cl2 (7) respectively.  相似文献   

11.
The phosphinoalkenes Ph2P(CH2)nCH=CH2 (n= 1, 2, 3) and phosphinoalkynes Ph2P(CH2)n C≡CR (R = H, N = 2, 3; R = CH3, N = 1) have been prepared and reacted with the dirhodium complex (η−C5H5)2Rh2(μ−CO) (μ−η2−CF3C2CF3). Six new complexes of the type (ν−C5H5)2(Rh2(CO) (μ−η11−CF3C2CF3)L, where L is a P-coordinated phosphinoalkene, or phosphinoalkyne have been isolated and fully characterized; the carbonyl and phosphine ligands are predominantly trans on the Rh---Rh bond, but there is spectroscopic evidence that a small amount of the cis-isomer is formed also. Treatment of the dirhodium-phosphinoalkene complexes with (η−CH3C5H4)Mn(CO)2thf resulted in coordination of the manganese to the alkene function. The Rh2---Mn complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2P(CH2)3CH=CH2} (η−CH3C5H4)Mn(CO)2] was fully characterized. Simi treatment of the dirhodium-phosphinoalkyne complexes with Co2(CO)8 resulted in the coordination of Co2(CO)6 to the alkyne function. The Rh2---Co2 complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2PCH2C≡CCH3}Co2(CO)2], C37H25Co2F6O7PRh2, was fully characteriz spectroscopically, and the molecular structure of this complex was determined by a single crystal X-ray diffraction study. It is triclinic, space group (Ci1, No. 2) with a = 18.454(6), B = 11.418(3), C = 10.124(3) Å, = 112.16(2), β = 102.34(3), γ = 91.62(3)°, Z = 2. Conventional R on |F| was 0.052 fo observed (I > 3σ(I)) reflections. The Rh2 and Co2 parts of the molecule are distinct, the carbonyl and phosphine are mutually trans on the Rh---Rh bond, and the orientations of the alkynes are parallel for Rh2 and perpendicular for Co2. Attempts to induce Rh2Co2 cluster formation were unsuccessful.  相似文献   

12.
The thermal and photochemical reactions of CpRe(PPh3)2H4 and CpRe(PPh3)H4 (Cp = η5-C5H5) with PMe3, P(p-tolyl)3, PMe2Ph, DMPE, DPPE, DPPM, CO, 2,6-xylylisocyanide and ethylene have been examined. While CpRe(PPh3)2H2 is thermally inert, it will undergo photochemical substitution of one or two PPh3 ligands. With ethylene, substitution is followed by insertion of the olefin into the C-H bond of benzene, giving ethylbenzene. CpRe(PPh3)H4 undergoes thermal loss of PPh3, which leads to substituted products of the type CpRe(L) H4. Photochemically, reductive elimination of dihydrogen occurs preferentially. The complex trans-CpRe(DMPE)H2 was structurally characterized, crystallizing in the monoclinic space group P21/n (No. 14) with a = 6.249(6), b = 16.671(8), c = 13.867(7) Å, β = 92.11(6)°, V = 1443.7(2.9) Å and Z = 4. The complex trans-CpRe(PMe2Ph)2H2 was structurally characterized, crystallizing in the monoclinic space group P21/n (No. 14) with a = 7.467(3), b = 23.874(14), c = 11.798(6) Å, β = 100.16(4)°, V = 2070.2(3.4) Å3 and Z = 4.  相似文献   

13.
The PMe2Ph ligands in the aquo-cations mer- [MCl2(H2O)(PMe2Ph)3][ClO4] rapidly exchange on the NMR time-scale giving coalescence in the 1H and 31P NMR spectra. Dissociation of the H2O ligand which is trans to PMe2Ph leads to a five- coordinate intermediate. This intermediate (M = Rh) is believed to be involved in the rapid reaction of [RhCl2(H2O)(PMe2Ph)3] [ClO4] with mer- [RhCl3(PMe2Ph)3] by a chloride transfer mechanism leading to total exchange of the PMe2Ph ligands.  相似文献   

14.
Several novel dimers of the composition [M2Cl4(trans-dppen)2] (M=Ni (1), Pd (2), Pt (3)) containing trans-1,2-bis(diphenylphosphino)ethene (trans-dppen) have been prepared and characterized by X-ray diffraction methods, NMR spectroscopy (195Pt{1H}, 31P{1H}), elemental analyses, and melting points. The intramolecular [2+2] photocycloaddition of the two diphosphine-bridges in 3 produces [Pt2Cl4(dppcb)] (4), where dppcb is the new tetradentate phosphine cis,trans,cis-1,2,3,4-tetrakis(diphenylphosphino)cyclobutane. Neither 1 nor the free diphosphine trans-dppen shows this reaction. In the case of 2 the photocycloaddition is slower than in 3. This difference can be explained by the shorter distance between the two aliphatic double bonds in 3 than in 2, but also different transition probabilities within ground and excited states of the used metals could be involved. Furthermore, variable-temperature 31P{1H} NMR spectroscopy of 2 or 3 reveals a negative activation entropy of 2 for the [2+2] photocycloaddition, but a positive of 3. The removal of chloride from 4 by precipitating AgCl with AgBF4, and subsequent treatment with 2,2′-bipyridine (bipy) or 1,10-phenanthroline (phen) leads to [Pt2(dppcb)(bipy)2](BF4)4 (5) and [Pt2(dppcb)(phen)2](BF4)4 (6), respectively. In an analogous reaction of 4 with PMe2Ph or PMePh2, [Pt2(dppcb)(PMe2Ph)4](BF4)4 (7) and [Pt2(dppcb)(PMePh2)4](BF4)4 (8) are formed. Complexes 1–8 show square–planar coordinations, where the compounds 4–8 have also been characterized by the above mentioned methods together with fast atom bombardment mass spectrometry (7, 8). The crystal structure of 4 reveals two conformations, which arise from an energetic competition between the sterical demands of dppcb and an ideal square–planar environment of Pt(II). The free tetraphosphine dppcb can be obtained easily from 4 by treatment with NaCN. It has been characterized fully by the above methods including 13C{1H} and 1H NMR spectroscopy. The X-ray structure analysis shows the pure MMMP-enantiomer in the solid crystal, which is therefore optically active. This chirality is induced by a conformation of dppcb, where all four PPh2 groups are non-equivalent. Variable-temperature 31P{1H} NMR spectroscopy of dppcb confirms this explanation, since the single signal at room temperature is split into two doublets at 183 K. The goal of this article is to demonstrate the facile production of a new tetradentate phosphine from a diphosphine precursor via Pt(II) used as a template.  相似文献   

15.
Reactions of Cr(CO)36-BT), in which the Cr is π-coordinated to the benzene ring of benzo[b]thiophene (BT), with Cp′(CO)2Re(THF), where Cp′ = η5-C5H5 or η5-C5Me5, give the products Cp′(CO)2Re(η262-BT)Cr(CO)3 in which the Cr remains coordinated to the benzene ring and Re is bound to the C(2)=C(3) double bond. An X-ray diffraction study of Cp(CO)2Re(η262-BT)Cr(CO)3 (3) provides details of the geometry. This structure contrasts with that of the Cp′(CO)2Re(BT) complexes that exist as mixtures of isomers in which the BT is coordinated to the Re through either the double bond (2,3-η2) or the sulfur (η1(S)). Thus, the electron-withdrawing Cr(CO)3 group in 3 stabilizes the 2,3-η2 mode of BT coordination to the Cp′(CO)2Re fragment. Implications of these results for catalytic hydrodesulfurization of BT are discussed. Crystal data for 3: triclinic, space group .  相似文献   

16.
Kinetic results are reported for intramolecular PPh3 substitution reactions of Mo(CO)21-L)(PPh3)2(SO2) to form Mo(CO)22-L)(PPh3)(SO2) (L = DMPE = (Me)2PC2H4P(Me)2 and dppe=Ph2PC2H4PPh2) in THF solvent, and for intermolecular SO2 substitutions in Mo(CO)32-L)(η2-SO2) (L = 2,2′-bipyridine, dppe) with phosphorus ligands in CH2Cl2 solvent. Activation parameters for intramolecular PPh3 substitution reactions: ΔH values are 12.3 kcal/mol for dmpe and 16.7 kcal/mol for dppe; ΔS values are −30.3 cal/mol K for dmpe and −16.4 cal/mol K for dppe. These results are consistent with an intramolecular associative mechanism. Substitutions of SO2 in MO(CO)32-L)(η2-SO2) complexes proceed by both dissociative and associative mechanisms. The facile associative pathways for the reactions are discussed in terms of the ability of SO2 to accept a pair of electrons from the metal, with its bonding transformations of η2-SO2 to η1-pyramidal SO2, maintaining a stable 18-e count for the complex in its reaction transition state. The structure of Mo(CO)2(dmpe)(PPh3)(SO2) was determined crystallographically: P21/c, A=9.311(1), B = 16.344(2), C = 18.830(2) Å, ß=91.04(1)°, V=2865.1(7) Å3, Z=4, R(F)=3.49%.  相似文献   

17.
The syntheses and structures of [Ni(H2O)6]2+[MF6]2− (M = Ti,Zr,Hf) and Ni3(py)12F6·7H2O are reported. The former three compounds are isostructural, crystallizing in the trigonal space group (No. 148) with Z = 3. The lattice parameters are a = 9.489(4), C = 9.764(7) Å, with V = 761(1) Å3 for Ti; a = 9.727(2), C = 10.051(3) Å, with V = 823.6(6) Å3 for Zr; and a = 9.724(3), C = 10.028(4)Å, with V = 821.2(8)Å3 for Hf. The structures consist of discrete [Ni(H2O)6]2+ and [MF6]2− octahedra joined by O---HF hydrogen bond Large single crystals were grown in an aqueous hydrofluoric acid solution. Ni3(py)12F6·7H2O crystallizes in the monoclinic space group I2/a (No. 15) with Z = 4. The lattice parameters are a = 16.117(4), B = 8.529(3), C = 46.220(7) Å, β = 92.46(2)°, and V = 6348(5) Å3. The structure consists of discrete Ni(py)4F2 octahedra linked through H---O---HF and H---O---HO hydrogen bonding interactions. Single c were grown from a (HF)x·pyridine/pyridine/water solution.  相似文献   

18.
In a synthetic route that varies from the standard procedure requiring irradiation, the (η6-C6H5Cl)Cr(CO)2PPh3 complex is obtained upon reacting (η6-C6H5Cl)Cr(CO)3 with tetrakis(triphenylphosphine)palladium(0), CuI, and trimethylsilylphenylacetylene in triethylamine. The X-ray crystal structure of the yellow–orange crystals of (η6-C6H5Cl)Cr(CO)2PPh3 allows structural comparisons to related (arene)Cr(CO)2PR3 complexes.  相似文献   

19.
A series of cationic nickel complexes [(η3-methally)Ni(PP(O))]SbF6 (1–4) [PP(O) = Ph2P(CH2)P(O)Ph2 (dppmO) (1), Ph2P(CH2)2P(O)Ph2 (dppeO) (2), Ph2P(CH2)3P(O)Ph2 (dpppO) (3), pTol2P(CH2)P(O)pTol2 (dtolpmO) (4)] has been synthesized in good yields by treatment of [(η3-methally)NiBr]2 with biphosphine monoxides and AgSbF6. The ligands are coordinated in a bidentate way. Starting from [(η3-all)PdI]2 the cationic complexes [(η3-all)PP(O))]Y (8–14). [PP(O) = dppmO, dppeO, dpppO, dtolpmO;Y = BF4, SbF6, CF3SO3, pTolSO3] were synthesized in good yields. The coordination mode of the ligand is dependent on the backbone and the anion, revealing a monodentate coordination with dppmO for stronger coordinating anions. The intermediates [(η3-all)Pd(I)(PP(O)-κ1-P)] (5–7) [PP(O) = dppmO (5), dppeO (6), dtolpmO (7)] were isolated and characterized. Neutral methyl complexes [(Cl)(Me)Pd(PP(O))] (15–18). [PP(O) = dppmO (15), dppeO (16), dpppO (17), dtolpmO (18)] can easily be obtained in high yields starting from [(cod)PdCl2]. For dppmO two different routes are presented. The structure of [(Me)(Cl)Pd{;Ph2P(CH2-P(O)Ph22-P,O};] · CH2Cl2 (15) with the chlorine atom trans to phosphorus was determined by X-ray diffraction.  相似文献   

20.
Manganese tricarbonyl complexes (η5-C5H4CH2CH2Br)Mn(CO)3 (3) and (η5-C5H4CH2CH2I)Mn(CO)3 (4), with an alkyl halide side chain attached to the cyclopentadienyl ligand, were synthesized as possible precursors to chelated alkyl halide manganese complexes. Photolysis of 3 or 4 in toluene, hexane or acetone-d6 resulted in CO dissociation and intramolecular coordination of the alkyl halide to manganese to produce (η51-C5H4CH2CH2Br)Mn(CO)2 (5) and (η51-C5H4CH2CH2I)Mn(CO)2 (6). Low temperature NMR and IR spectroscopy established the structures of 5 and 6. Photolysis of 3 in a glass matrix at 91 K demonstrated CO release from manganese. Low temperature NMR spectroscopy established that the coordinated alkyl halide complexes are stable to approximately −20°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号