首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition of antioxidant enzymes, especially superoxide dismutase (SOD), was studied in one nontransgenic and three transgenic lines of nodulated alfalfa plants. Transgenic lines overproduced MnSOD in the mitochondria of nodules and leaves (line 1-10), MnSOD in the chloroplasts (line 4-6), and FeSOD in the chloroplasts (line 10-7). In nodules of line 10-7, the absence of transgene-encoded FeSOD activity was due to a lack of mRNA, whereas in nodules of line 4-6 the absence of transgene-encoded MnSOD activity was due to enzyme inactivation or degradation. Transgenic alfalfa showed a novel compensatory effect in the activities of MnSOD (mitochondrial) and FeSOD (plastidic) in the leaves, which was not caused by changes in the mRNA levels. These findings imply that SOD activity in plant tissues and organelles is regulated, at least partially, at the posttranslational level. All four lines had low CuZnSOD activities and an abundant FeSOD isozyme, especially in nodules, indicating that FeSOD performs important antioxidant functions other than the scavenging of superoxide radicals generated in photosynthesis. This was confirmed by the detection of FeSOD cDNAs and proteins in nodules of other legumes such as cowpea, pea, and soybean. The cDNA encoding alfalfa nodule FeSOD was characterized and the deduced protein found to contain a plastid transit peptide. A comparison of sequences and other properties reveals that there are two types of FeSODs in nodules.  相似文献   

2.
Aspartate aminotransferase (AAT) is a key plant enzyme affecting nitrogen and carbon metabolism, particularly in legume root nodules and leaves of C4 species. To ascertain the molecular genetic characteristics and biochemical regulation of AAT, we have isolated a cDNA encoding the nodule-enhanced AAT (AAT-2) of alfalfa (Medicago sativa L.) by screening a root nodule cDNA expression library with antibodies. Complementation of an Escherichia coli AAT mutant with the alfalfa nodule AAT-2 cDNA verified the identity of the clone. The deduced amino acid sequence of alfalfa AAT-2 is 53 and 47% identical to animal mitochondrial and cytosolic AATs, respectively. The deduced molecular mass of AAT-2 is 50,959 daltons, whereas the mass of purified AAT-2 is about 40 kilodaltons as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the protein's N-terminal domain (amino acids 1-59) contains many of the characteristics of plastid-targeting peptides. We postulate that AAT-2 is localized to the plastid. Southern blot analysis suggests that AAT-2 is encoded by a small, multigene family. The expression of AAT-2 mRNA in nodules is severalfold greater than that in either leaves or roots. Northern and western blots showed that expression of AAT activity during effective nodule development is accompanied by a sevenfold increase in AAT-2 mRNA and a comparable increase in enzyme protein. By contrast, plant-controlled ineffective nodules express AAT-2 mRNA at much lower levels and have little to no AAT-2 enzyme protein. Expression of root nodule AAT-2 appears to be regulated by at least two events: the first is independent of nitrogenase activity; the second is associated with nodule effectiveness.  相似文献   

3.
De novo purine biosynthesis is localized to both mitochondria and plastids isolated from Bradyrhizobium sp.-infected cells of cowpea (Vigna unguiculata L. Walp) nodules, but several of the pathway enzymes, including aminoimidazole ribonucleotide synthetase (AIRS [EC 6.3.3.1], encoded by Vupur5), are encoded by single genes. Immunolocalization confirmed the presence of AIRS protein in both organelles. Enzymatically active AIRS was purified separately from nodule mitochondria and plastids. N-terminal sequencing showed that these two isoforms matched the Vupur5 cDNA sequence but were processed at different sites following import; the mitochondrial isoform was five amino acids longer than the plastid isoform. Electrospray tandem mass spectrometry of a trypsin digest of mitochondrial AIRS identified two internal peptides identical with the amino acid sequence deduced from Vupur5 cDNA. Western blots of proteins from mitochondria and plastids isolated from root tips showed a single AIRS protein present at low levels in both organelles. (35)S-AIRS protein translated from a Vupur5 cDNA was imported into isolated pea (Pisum sativum) leaf chloroplasts in vitro by an ATP-dependent process but not into import-competent mitochondria from several plant and non-plant sources. Components of the mature protein are likely to be important for import because the N-terminal targeting sequence was unable to target green fluorescent protein to either chloroplasts or mitochondria in Arabidopsis leaves. The data confirm localization of the protein translated from the AIRS gene in cowpea to both plastids and mitochondria and that it is cotargeted to both organelles, but the mechanism underlying import into mitochondria has features that are yet to be identified.  相似文献   

4.
Photosystem II and oxygen regulation in Sesbania rostrata stem nodules   总被引:1,自引:0,他引:1  
The tropical wetland legume Sesbania rostrata Brem. produces nitrogen-fixing stem nodules which are green and contain chlorophyll, the chloroplasts being concentrated in a hand in the inner and mid-cortex close to the nitrogen-fixing cells. The photosystem II thylakoid membrane proteins D1, D2 and PsbO, which are essential for photo-synthetic O2 evolution, were shown by immunoblotting to be present in extracts of leaves and stem nodules. Immunogold labelling confirmed their presence on stem nodule thylakoids and showed that labelling was most intense in well-developed chloroplasts in the mid-cortex and least intense in the smaller, less-abundant chloroplasts adjacent to the nitrogen-fixing cells. Concentrations of the oxygen-carrying protein leghaemoglobin (Lb) did not differ between stem and S. rostrata root nodules, and Lb was localized in bacteroid-containing cells, including those immediately adjacent to the cortex, in both nodule types. Moreover, nitrogenase component 2 was localized in bacteroids within the outermost layers of infected cells, suggesting that a low pO2 was maintained, despite the nearby chloroplasts. Nodule extracts examined by ELISA and immunoblots, using the monoclonal antibody MAC265, showed greatly enhanced expression of a 139 kDa glycoprotein in stem compared to root nodules. Immunogold labelling showed that material containing the MAC265 antigen occluded intercellular spaces, and was present in cell walls, throughout the cortex of stem nodules (particularly in the chloroplasl-rich inner and mid-cortex), but was considerably less evident in root nodules.  相似文献   

5.
6.
7.
Superoxide dismutases (SODs) are metalloenzymes that play a primary role in the protection against oxidative stress in plants and other organisms. We have characterized four SOD genes in Lotus japonicus and have analyzed their expression in roots and four developmental stages of nodules. The expression of cytosolic CuZnSOD, at the mRNA, protein, and enzyme activity levels, decreases with nodule age, and the protein is localized in the dividing cells and infection threads of emergent nodules and in the infected cells of young nodules. The mitochondrial MnSOD was downregulated, whereas the bacteroidal MnSOD displayed maximal protein and enzyme activity levels in older nodules. Two additional genes, encoding plastidic (FeSOD1) and cytosolic (FeSOD2) FeSOD isoforms, were identified and mapped. The genes are located in different chromosomes and show differential expression. The FeSOD1 mRNA level did not change during nodule development, whereas FeSOD2 was upregulated. The distinct expression patterns of the SOD genes may reflect different regulatory mechanisms of the enzyme activities during nodule ontogeny. In particular, at the mRNA and activity levels, the virtual loss of cytosolic CuZnSOD in mature and old nodules, concomitant with the induction of FeSOD2, suggests that the two enzymes may functionally compensate each other in the cytosol at the late stages of nodule development.  相似文献   

8.
Allene oxide synthase (AOS) is the first enzyme in the lipoxygenase (LOX) pathway which leads to formation of jasmonic acid (JA). Two full-length cDNAs of AOS designated as AOS1 and AOS2, respectively, were isolated from barley (H. vulgare cv. Salome) leaves, which represent the first AOS clones from a monocotyledonous species. For AOS1, the open reading frame encompasses 1461 bp encoding a polypeptide of 487 amino acids with calculated molecular mass of 53.4 kDa and an isoelectric point of 9.3, whereas the corresponding data of AOS2 are 1443 bp, 480 amino acids, 52.7 kDa and 7.9. Southern blot analysis revealed at least two genes. Despite the lack of a putative chloroplast signal peptide in both sequences, the protein co-purified with chloroplasts and was localized within chloroplasts by immunocytochemical analysis. The barley AOSs, expressed in bacteria as active enzymes, catalyze the dehydration of LOX-derived 9- as well as 13-hydroperoxides of polyenoic fatty acids to the unstable allene oxides. In leaves, AOS mRNA accumulated upon treatment with jasmonates, octadecanoids and metabolizable carbohydrates, but not upon floating on abscisic acid, NaCl, Na-salicylate or infection with powdery mildew. In developing seedlings, AOS mRNA strongly accumulated in the scutellar nodule, but less in the leaf base. Both tissues exhibited elevated JA levels. In situ hybridizations revealed the preferential occurrence of AOS mRNA in parenchymatic cells surrounding the vascular bundles of the scutellar nodule and in the young convoluted leaves as well as within the first internode. The properties of both barley AOSs, their up-regulation of their mRNAs and their tissue specific expression suggest a role during seedling development and jasmonate biosynthesis.  相似文献   

9.
Ribose-5-phosphate isomerase (RPI) catalyses the interconversion of ribose-5-phosphate and ribulose-5-phosphate in the reductive and oxidative pentose phosphate pathways in plants. RPI from spinach chloroplasts was purified and microsequenced. Via PCR with degenerate primers designed against microsequenced peptides, a hybridisation probe was obtained and used to isolate several cDNA clones which encode RPI. The nuclear-encoded 239 amino acid mature RPI subunit has a predicted size of 25.3 kDa and is translated as a cytosolic precursor possessing a 50 amino acid transit peptide. The processing site of the transit peptide was identified from protein sequence data. Spinach leaves possess only one type of homodimeric RPI enzyme which is localized in chloroplasts and is encoded by a single nuclear gene. Molecular characterization of RPI supports the view that a single amphibolic RPI enzyme functions in the oxidative and reductive pentose phosphate pathways of spinach plastids.Abbreviations RPI ribose-5-phosphate isomerase - OPPP oxidative pentose phosphate pathway - CNBr cyanogen bromide - R5P ribose-5-phosphate - Ru5P ribulose-5-phosphate  相似文献   

10.
Phosphoenolpyruvate carboxylase (PEPC) plays a key role in N2 fixation and ammonia assimilation in legume root nodules. The enzyme can comprise up to 2% of the soluble protein in root nodules. We report here the isolation and characterization of a cDNA encoding the nodule-enhanced form of PEPC. Initially, a 2945 bp partial-length cDNA was selected by screening an effective alfalfa nodule cDNA library with antibodies prepared against root nodule PEPC. The nucleotide sequence encoding the N-terminal region of the protein was obtained by primer-extension cDNA synthesis and PCR amplification. The complete amino acid sequence of alfalfa PEPC was deduced from these cDNA sequences and shown to bear striking similarity to other plant PEPCs. Southern blots of alfalfa genomic DNA indicate that nodule PEPC is a member of a small gene family. During the development of effective root nodules, nodule PEPC activity increases to a level that is 10- to 15-fold greater than that in root and leaf tissue. This increase appears to be the result of increases in amount of enzyme protein and PEPC mRNA. Ineffective nodules have substantially less PEPC mRNA, enzyme protein and activity than do effective nodules. Maximum expression of root nodule PEPC appears to be related to two signals. The first signal is associated with nodule initiation while the second signal is associated with nodule effectiveness. Regulation of root nodule PEPC activity may also involve post-translational processes affecting enzyme activity and/or degradation.  相似文献   

11.
The chloroplastic isoform of monodehydroascorbate (MDA) radical reductase was purified from spinach chloroplasts and leaves. The cDNA of chloroplastic MDA reductase was cloned, and its deduced amino acid sequence, consisting of 497 residues, showed high homology with those of putative organellar MDA reductases deduced from cDNAs of several plants. The amino acid sequence of the amino terminal of the purified enzyme suggested that the chloroplastic enzyme has a transit peptide consisting of 53 residues. A southern blot analysis suggested the occurrence of a gene encoding another isoform homologous to the chloroplastic isoform in spinach. The recombinant enzyme was highly expressed in Eschericia coli using the cDNA, and purified to a homogeneous state with high specific activity. The enzyme properties of the chloroplastic isoform are presented in comparison with those of the cytosolic form.  相似文献   

12.
The controversial question of the intracellular location of manganese-containing superoxide dismutase in higher plants was examined under a new experimental approach by applying the more rigorous and specific methods of immunocytochemistry to protoplasts isolated fromPisum sativum L. leaves. Manganese superoxide dismutase (EC 1.15.1.1) was purified to homogeneity from 15 kg of leaves ofPisum sativum L. Rabbits were immunized with the mangano enzyme and the antibody specific for pea manganese superoxide dismutase was purified and found not to contain antigenic sites in common with (i) human manganese superoxide dismutase, (ii) iron superoxide dismutase from eitherEscherichia coli or higher plants, or (iii) plant or animal cuprozinc-superoxide dismutase.Pisum sativum L. manganese superoxide dismutase only appears to have antigenic determinants similar to other manganese superoxide dismutases from higher land plants. The antibody to pea Mn-superoxide dismutase was used to locate the enzyme in protoplasts isolated from young pea leaves by indirect immunofluorescence, and by electron microscopy using the unlabelled antibody peroxidase-antiperoxidase method. Results from immunofluorescence showed that chloroplasts were devoid of specific fluorescence which appeared scattered over the cytosolic spaces among chloroplasts, and demonstrate the absence of manganese superoxide dismutase inside chloroplasts. The metalloenzyme was found to be localized only in peroxisomes, whereas mitochondria, the traditionally accepted site for this enzyme in many eukaryotic organisms, did not show any specific staining. The possible subcellular roles of manganese superoxide dismutase inPisum sativum L. leaves are discussed in the light of its peroxisomal location.  相似文献   

13.
14.
A cDNA clone encoding an ascorbate peroxidase was isolated from the cDNA library from halotolerant Chlamydomonas W80 by a simple screening method based on the bacterial expression system. The cDNA clone contained an open reading frame encoding a mature protein of 282 amino acids with a calculated molecular mass of 30,031 Da, preceded by the chloroplast transit peptide consisting of 37 amino acids. In fact, ascorbate peroxidase was localized in the chloroplasts of Chlamydomonas W80 cells; the activity was detected in the stromal fraction but not in the thylakoid membrane. The deduced amino acid sequence of the cDNA showed 54 and 49% homology to chloroplastic and cytosolic ascorbate peroxidase isoenzymes of spinach leaves, respectively. The enzyme from Chlamydomonas W80 cells was purified to electrophoretic homogeneity. The molecular properties of the purified enzyme were similar to those of the other algal ascorbate peroxidases rather than those of ascorbate peroxidases from higher plants. The enzyme was relatively stable in ascorbate-depleted medium compared with the chloroplastic ascorbate peroxidase isoenzymes of higher plants. The presence of NaCl (3%) as well as of beta-d-thiogalactopyranoside was needed for the expression of Chlamydomonas W80 ascorbate peroxidase in Escherichia coli.  相似文献   

15.
We present a mechanism of regulation of growth and activity of legume root nodules which is consistent with published experimental observations. The concentration of reduced nitrogen compounds, probably amino acids, flowing into the nodules from the phloem, is sensed by the nodules; growth and activity of the nodules is adjusted accordingly. In many legumes this response may involve changes in the oxygen diffusion resistance of the nodule cortex. A straightforward feedback mechanism in which nodule activity is lowered when reduced N in the phloem is high and increased when it is low is envisaged. Almost all import into nodules is via the phloem sap originating in the lower leaves. As a plant develops, these mature leaves no longer utilize nitrogen delivered in the xylem and so export it in the phloem. In plants with an adequate nitrogen supply (from nodules or combined nitrogen in soil), a high concentration of nitrogen containing compounds in the phloem from the lower leaves may inhibit nodule growth as well as activity. This suggestion is an alternative to the hypotheses of carbohydrate deprivation or nitrate inhibition which are commonly used to explain the effects of combined nitrogen on nodule growth and activity.  相似文献   

16.
King CA  Purcell LC 《Plant physiology》2005,137(4):1389-1396
Decreased N2 fixation in soybean (Glycine max) L. Merr. during water deficits has been associated with increases in ureides and free amino acids in plant tissues, indicating a potential feedback inhibition by these compounds in response to drought. We evaluated concentrations of ureides and amino acids in leaf and nodule tissue and the concurrent change in N2 fixation in response to exogenous ureides and soil-water treatments for the cultivars Jackson and KS4895. Exogenous ureides applied to the soil and water-deficit treatments inhibited N2 fixation by 85% to 90%. Mn fertilization increased the apparent catabolism of ureides in leaves and hastened the recovery of N2 fixation following exogenous ureide application for both cultivars. Ureides and total free amino acids in leaves and nodules increased during water deficits and coincided with a decline in N2 fixation for both cultivars. N2 fixation recovered to 74% to 90% of control levels 2 d after rewatering drought-stressed plants, but leaf ureides and total nodule amino acids remained elevated in KS4895. Asparagine accounted for 82% of the increase in nodule amino acids relative to well-watered plants at 2 d after rewatering. These results indicate that leaf ureides and nodule asparagine do not feedback inhibit N2 fixation. Compounds whose increase and decrease in concentration mirrored the decline and recovery of N2 fixation included nodule ureides, nodule aspartate, and several amino acids in leaves, indicating that these are potential candidate molecules for feedback inhibition of N2 fixation.  相似文献   

17.
Glutamine synthetase was localized in nodules, roots, stems, and leaves of red kidney bean (Phaseolus vulgaris L.) by immunocytochemistry. Affinity purified antibodies reactive with glutamine synthetase were prepared using purified nodule-enhanced glutamine synthetase. Immunogold labeling was observed in the cell cytoplasm in each plant organ. In nodules, the labeling was more intense in the infected cells than in the uninfected cells. No labeling was observed in nodule bacteroids, peribacteroid spaces, or in peribacteroid membranes, while previous reports of glutamine synthetase immunolabeling of legume nodules showed labeling in the bacteroid fraction. Significant labeling was observed in nodule proplastids which contained starch granules. Substantial labeling was also observed in leaf chloroplasts. No labeling was observed in other organelles including mitochondria, peroxisomes, and endoplasmic reticulum. Preimmune IgGs did not bind to any structure in the tissues examined.  相似文献   

18.
19.
20.
Green leaves of plants require the high-level activity that can regenerate ascorbate during photosynthesis. One of such enzyme is dehydroascorbate reductase (DHAR), but the molecular and enzymological properties of the enzyme remain to be fully characterized. In this study, we showed that two major DHAR existed in spinach leaves. The two DHARs occupied at least over 90% of total DHAR activity. The amount of the two DHARs was almost the same. We purified both DHARs from spinach leaves. One form of DHAR originated in chloroplasts; the other occurred in the subcellular compartment other than chloroplasts. The chloroplast DHAR had Km values of 70 microM and 1.1 mM for dehydroascorbate and reduced glutathione, respectively. The specific activity of the purified enzyme corresponded to 360 micromol of ascorbate formed per milligram of protein per minute. These properties were quite different from those of trypsin inhibitor, which has been reported to be the plastid DHAR. The other DHAR had the very similar properties to those of chloroplast DHAR. Chloroplast and the other DHARs functioned as a monomer with molecular masses of 26 kDa and 25 kDa, respectively. cDNA for the chloroplast DHAR was cloned with the determined amino-terminal amino acid sequence. The primary sequence predicted from the cDNA included the plastid-targeting sequence. Finally, the significance of chloroplast DHAR in the regeneration of ascorbate is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号