首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Green  R King 《Blood cells》1989,15(3):481-91; discussion 492-5
A novel red cell discriminant function [MCV2 x RDW/(Hgb x 100)] was compared to six other discriminants in 102 patients with established mild iron deficiency anemia and 33 patients with beta-thalassemia minor. The discriminant incorporates the two key measurements of erythrocyte cell volume distribution, namely the mean (MCV) and standard deviation (RDW), which are known to be helpful for distinguishing between these two frequent causes of microcytic hypochromic anemia. Data used for the learning set to develop the new discriminant were obtained using an electrical impedance automated whole blood analyzer (Coulter S + IV) and were applied as a validation set for six other discriminants. The discriminant was also tested on smaller subsets of the patients groups using data obtained on either an alternate electrical impedance instrument (Sysmex E-5000) or a laser light scattering based system (Technicon H*1). From the comparison it was concluded that use of a discriminant function that incorporates a measurement of red cell volume dispersion results in enhanced accuracy for distinguishing iron deficiency anemia from thalassemia minor.  相似文献   

2.
Glucose-6-phosphate dehydrogenase (G-6-PDH) deficiency is the most common known human genetic polymorphism. This study tested the hypothesis that G-6-PDH deficiency worsens sepsis-induced erythrocyte dysfunction. Sepsis (24 h) was induced by cecal ligation and puncture in wild-type (WT) and G-6-PDH-deficient (G-6-PDH activity 15% of WT) mice. Erythrocyte responses were tested in whole blood as well as in subpopulations of circulating erythrocytes. Whereas erythrocyte deformability was similar in unchallenged deficient and WT animals, sepsis decreased erythrocyte deformability that was more pronounced in deficient than WT animals. Sepsis also resulted in anemia and hemolysis in deficient compared with WT animals. Mean corpuscular hemoglobin content and erythrocyte deformability decreased in younger erythrocyte subpopulations from septic deficient compared with WT animals. Sepsis decreased the reduced-to-oxidized glutathione ratio in erythrocytes from both deficient and WT animals; however, plasma glutathione increased more in deficient than in WT animals. Erythrocyte content of band 3 associated with the cytoskeleton was elevated in deficient compared with WT erythrocytes. The antioxidant N-acetyl-l-cysteine in vivo alleviated the sepsis-induced decrease in erythrocyte deformability in deficient animals compared with sham-operated control animals. This study demonstrates that a mild degree of G-6-PDH deficiency (comparable to the human class III G-6-PDH deficiencies) worsens erythrocyte dysfunction during sepsis. Increased erythrocyte rigidity and tendency for hemolysis together with alterations in band 3-spectrin interactions may contribute to the immunomodulatory effects of G-6-PDH deficiency observed after major trauma and infections in humans.  相似文献   

3.
During recent years, atomic force microscopy has become a powerful technique for studying the mechanical properties (such as stiffness, viscoelasticity, hardness and adhesion) of various biological materials. The unique combination of high-resolution imaging and operation in physiological environment made it useful in investigations of cell properties. In this work, the microscope was applied to measure the stiffness of human red blood cells (erythrocytes). Erythrocytes were attached to the poly-L-lysine-coated glass surface by fixation using 0.5% glutaraldehyde for 1 min. Different erythrocyte samples were studied: erythrocytes from patients with hemolytic anemias such as hereditary spherocytosis and glucose-6-phosphate-dehydrogenase deficiency patients with thalassemia, and patients with anisocytosis of various causes. The determined Young's modulus was compared with that obtained from measurements of erythrocytes from healthy subjects. The results showed that the Young's modulus of pathological erythrocytes was higher than in normal cells. Observed differences indicate possible changes in the organization of cell cytoskeleton associated with various diseases.  相似文献   

4.
Congenital dyserythropoietic anemia type II or HEMPAS (hereditary erythroblastic multinuclearity with positive acidified serum lysis test) is a genetic anemia in humans caused by a glycosylation deficiency. Erythrocyte membrane glycoproteins, such as band 3 and band 4.5, which are normally glycosylated with polylactosamines lack these carbohydrates in HEMPAS. Polylactosamines accumulate as glycolipids in HEMPAS erythrocytes. Analysis of N-glycans from HEMPAS erythrocyte membranes revealed a series of incompletely processed N-glycan structures, indicating defective glycosylation at N-acetylglucosaminyltransferase II (GnT-II) and/or alpha-mannosidase II (MII) steps. Genetic analysis has identified two cases from England in which the MII gene is defective. Mutant mice in which the MII gene was inactivated by homologous recombination resulted in a HEMPAS-like phenotype. On the other hand, linkage analysis of HEMPAS cases from southern Italy excluded MII and GnT-II as the causative gene, but identified a gene on chromosome 20q11. HEMPAS is therefore genetically heterogeneous. Regardless of which gene is defective, HEMPAS is characterized by incomplete processing of N-glycans. The study of HEMPAS will identify hitherto unknown factors affecting N-glycan synthesis.  相似文献   

5.
A method of automated red cell analysis suitable for the rapid classification of large numbers of red cells from individual blood specimens has been developed, and preliminarily tested on normal bloods and clinically proven cases of anemias and red cell disorders. According to this method digital image processing techniques provide several features relating to shape and internal central pallor configurations of red cells. These features are used with a fully automated decision logic to rapidly provide a quantitative "red cell differential" analysis, a report of the percentage subpopulations of recognized categories of red cells. For each subpopulation, measurements of mean cell area, mean cell hemoglobin content and mean cell hemoglobin density are provided. The nine types of red cell disorders studied with this method were: (a) iron deficiency anemia, (b) the anemia of chronic disease, (c) beta-thalassemia trait, (d) sickle cell anemia, (e) hemoglobin C disease, (f) intravascular hemolysis, (g) hereditary elliptocytosis, (h) hereditary spherocytosis, and (i) megaloblastic anemia due to folic acid deficiency. Preliminary indications are that the red cell differential is useful in distinguishing between these conditions.  相似文献   

6.
《CMAJ》1967,97(6):309-310
Thirteen Canadians with a mild hypochromic anemia were found to have beta thalassemia trait. The families of these individuals had resided in Canada for two to five generations and, where known, had not emigrated from areas with a high incidence for the thalassemia gene. A Negro family with abnormal erythrocyte morphology was suspected to be carrying the thalassemia gene although the hemoglobin A2 concentration was normal and abnormal minor components were not detected. Thalassemia trait has been detected in practically every ethnic group, and its sporadic occurrence among Canadians without Mediterranean ancestry can be expected.  相似文献   

7.
Band 3, the human erythrocyte anion exchanger (AE1), and the glucose transporter (GLUT1) proteins each contain a single site of N-glycosylation that is heterogeneously glycosylated. Lectin binding and enzymatic deglycosylation assays showed that the polylactosaminyl oligosaccharide structure of these glycoproteins was altered to a high mannose or hybrid glycan form in three patients with hereditary erythroblastic multinuclearity, with a positive acidified-serum lysis test (HEMPAS). Offspring from one of the HEMPAS patients had intermediate levels of polylactosaminyl oligosaccharide associated with AE1 and GLUT1, suggesting they may have been heterozygous for the genetic defect. The array of polylactosaminyl-containing glycoproteins present in EBV-transformed lymphoblasts derived from fresh blood of HEMPAS patients was similar to control lymphoblasts. HEMPAS lymphoblasts do not therefore express the defect in polylactosamine synthesis found in erythroid cells, indicating that lymphoid cells are not deficient in the processing enzymes or contain an alternative oligosaccharide processing pathway. Purified HEMPAS band 3 had an unaltered oligomeric structure but dimers aggregated more rapidly in detergent solution than normal band 3. The altered oligosaccharide structure did not affect the sensitivity of band 3 to proteolytic digestion in intact red cells but a greater amount of HEMPAS band 3 was associated with the cytoskeleton. The transport activities of AE1 and GLUT1 in HEMPAS erythrocytes were similar to those in normal controls. This shows that the HEMPAS glycosylation defect does not impair the functional accumulation of these two important erythrocyte membrane transporters even though it produces subtle structural changes in band 3 that result in its increased cytoskeletal interaction and self association in detergent solution.  相似文献   

8.
S A Bentley  L H Ayscue  J M Watson  D W Ross 《Blood cells》1989,15(3):575-82; discussion 583-4
Several groups of authors have derived discriminant functions (DFs) based on red cell indices (primarily MCH, MCV, and RDW) that can be used to differentiate iron deficiency from thalassemia minor. The Technicon H*1 analyzer provides a direct MCHC measurement (termed the CHCM), in addition to the conventional computed value (Hgb/PCV). To evaluate the clinical utility of red cell discriminant analysis, chart review was performed in 176 cases for which hemoglobin characterization and quantitation studies had been requested. Six published discriminants were evaluated for cases of clearly defined iron deficiency anemia and thalassemia minor. Overall diagnostic efficiency ranged from 50%-82%, and the diagnostic performance of three of the discriminants failed to achieve statistical significance. Mean values for both MCHC and CHCM were significantly lower in patients with iron deficiency than in patients with other causes of microcytic anemia. It was also observed that MCHC was significantly greater than CHCM in patients with iron deficiency anemia, but not in patients with other causes of microcytic anemia. Both MCHC and the difference between MCHC and CHCM showed potential value as parameters for the differential diagnosis of iron deficiency from other causes of microcytic anemia. It was noted, however, that in 67% of the cases studied, the use of a DF could not have resolved the diagnosis to the extent that hemoglobin characterization and quantitation studies were no longer indicated.  相似文献   

9.
Plasma 125I-albumin was used as a marker of extracellular dilution in order to study the effect of high-speed centrifugation on transmembrane water distribution in several types of human red cells, including normal (AA), hemoglobin variants (beta A, AS, SC, beta S, and SS), and those from patients with hereditary spherocytosis. SS and AA erythrocytes were also examined for changes in intracellular hemoglobin concentration of three different density fractions and with increasing duration of spin. The minimum force and duration of centrifugation required to impair water permeability were found to vary with the red cell type, the anticoagulant used (heparin or EDTA), the initial hematocrit of the sample centrifuged, as well as among the individual erythrocyte fractions within the same sample. When subjecting pathologic erythrocytes to high-speed centrifugation, the 125I-albumin dilution technique can be used to determine whether the centrifugation procedure has led to an artifactual red cell water loss and to correct for this when it does occur. An abnormal membrane susceptibility to mechanical stress was demonstrated in erythrocytes from patients with hereditary spherocytosis and several hemoglobinopathies.  相似文献   

10.
The present work is aimed to study the mechanism of faster erythrocyte clearance in hereditary spherocytosis (HS), a heterogeneous disorders characterized by alterations in the proteins of the red cell membrane skeleton along with different kinds of thalassemia. The maximum exposure of phosphatidylserine (PS) is found in HS compared to those in both α- and β-thalassemia. Interestingly, in HS more PS exposed cells were found in younger erythrocytes compared to normal and the thalassemics where aged cells showed higher loss of PS asymmetry. Loss of sialic acid and GlcNAc bearing glycoconjugates, presumably the glycophorins, was also found upon aging. The loss of PS asymmetry together with the cell surface glycoproteins mediated by membrane vesiculation, seemed to play key role in early clearance of erythrocytes from circulation following a mechanism similar to HbEβ-thalassemia.  相似文献   

11.
Previous reports revealed that mutation of mitochondrial inner-membrane located protein SFXN1 led to pleiotropic hematological and skeletal defects in mice, associated with the presence of hypochromic erythroid cell, iron overload in mitochondrion of erythroblast and the development of sideroblastic anemia (SA). However, the potential role of sfxn1 during erythrocyte differentiation and the development of anemia, especially the pathological molecular mechanism still remains elusive. In this study, the correlation between sfxn1 and erythroid cell development is explored through zebrafish in vivo coupled with human hematopoietic cells assay ex vivo. Both knockdown and knockout of sfxn1 result in hypochromic anemia phenotype in zebrafish. Further analyses demonstrate that the development of anemia attributes to the biosynthetic deficiency of hemoglobin, which is caused by the biosynthetic disorder of heme that associates with one?carbon (1C) metabolism process of mitochondrial branch in erythrocyte. Sfxn1 is also involved in the differentiation and maturation of erythrocyte in inducible human umbilical cord blood stem cells. In addition, we found that functional disruption of sfxn1 causes hypochromic anemia that is distinct from SA. These findings reveal that sfxn1 is genetically conserved and essential for the maturation of erythrocyte via facilitating the production of hemoglobin, which may provide a possible guidance for the future clinical treatment of sfxn1 mutation associated hematological disorders.  相似文献   

12.
Innate resistance to malaria: the intraerythrocytic cycle   总被引:3,自引:0,他引:3  
R L Nagel 《Blood cells》1990,16(2-3):321-39; discussion 340-9
The human innate resistance to P. falciparum malaria is based on genetic features that affect several stages of the intraerythrocytic cycle of the plasmodia. HbS, HbE and alpha and beta thalassemia (in addition to G-6PD deficiency) are protective to the carriers, because they inhibit the intraerythrocytic growth period, and in the case of AS red cells, in addition, parasitosis make them detectable expeditiously by the spleen. Blood group polymorphisms can interfere with red cell invasion by plasmodia. HbC belongs to a special category, since it apparently interferes with the cycle at the moment of cell lysis and release of merozoites. Finally, ovalocytosis observed in South East Asia, which most likely corresponds to a cytoskeleton or membrane protein defect, protects from malaria by inhibiting invasion. It should be kept in mind that many of these red cell defects might protect individuals in the critical first 5 years of life by retarding the switch of HbF to adult hemoglobin, since the HbF containing red cells are less than hospitable to the parasite.  相似文献   

13.
Hereditary spherocytosis is an inherited red blood cell membrane disorder resulting from mutations of genes encoding erythrocyte membrane and cytoskeletal proteins. Few equipments can observe the structural characteristics of hereditary spherocytosis directly expect for atomic force microscopy In our study, we proved atomic force microscopy is a powerful and sensitive instrument to describe the characteristics of hereditary spherocytosis. Erythrocytes from hereditary spherocytosis patients were small spheroidal, lacking a well-organized lattice on the cell membrane, with smaller cell surface particles and had reduced valley to peak distance and average cell membrane roughness vs. those from healthy individuals. These observations indicated defects in the certain cell membrane structural proteins such as α- and β-spectrin, ankyrin, etc. Until now, splenectomy is still the most effective treatment for symptoms relief for hereditary spherocytosis. In this study, we further solved the mysteries of membrane nanostructure changes of erythrocytes before and after splenectomy in hereditary spherocytosis by atomic force microscopy. After splenectomy, the cells were larger, but still spheroidal-shaped. The membrane ultrastructure was disorganized and characterized by a reduced surface particle size and lower than normal Ra values. These observations indicated that although splenectomy can effectively relieve the symptoms of hereditary spherocytosis, it has little effect on correction of cytoskeletal membrane defects of hereditary spherocytosis. We concluded that atomic force microscopy is a powerful tool to investigate the pathophysiological mechanisms of hereditary spherocytosis and to monitor treatment efficacy in clinical practices. To the best of our knowledge, this is the first report to study hereditary spherocytosis with atomic force microscopy and offers important mechanistic insight into the underlying role of splenectomy.  相似文献   

14.
Congenital dyserythropoietic anemia type II or hereditary erythroblastic multinuclearity with positive acidified serum test (HEMPAS) is a genetic disease caused by membrane abnormality. Previously we have found that Band 3 and Band 4.5 are not glycosylated by lactosaminoglycans in HEMPAS erythrocytes, whereas normally these proteins have lactosaminoglycans (Fukuda, M. N., Papayannopoulou, T., Gordon-Smith, E. C., Rochant, H., and Testa, U. (1984) Br. J. Haematol. 56, 55-68). In order to find out where glycosylation of lactosaminoglycans stops, we have analyzed the carbohydrate structures of HEMPAS Band 3. By fast atom bombardment-mass spectrometry, methylation analysis, and hydrazinolysis followed by exoglycosidase treatments, the following structure was elucidated: (formula; see text) N-Linked glycopeptides synthesized in vitro by reticulocyte microsomes from HEMPAS were shown to be predominantly the above short oligosaccharide, whereas those from normal reticulocytes contain large molecular weight carbohydrates. The N-acetylglucosaminyltransferase II, which transfers N-acetylglucosamine to the C-2 position of the Man alpha 1----6Man beta 1----arm of the biantennary core structure, was therefore examined by using Man alpha 1----6(GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcol as an acceptor. N-Acetylglucosaminyltransferase II activity was demonstrated in the lymphocyte microsome fraction from normal individuals. However, this enzyme activity was found to be decreased in those from HEMPAS patients. These results suggest that the primary defect of HEMPAS lies in the lowered activity of N-acetylglucosaminyltransferase II.  相似文献   

15.
Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage, cell membrane blebbing and cell membrane phospholipid scrambling. Eryptotic cells are removed and thus prevented from undergoing hemolysis. Eryptosis is stimulated by Ca(2+) following Ca(2+) entry through unspecific cation channels. Ca(2+) sensitivity is enhanced by ceramide, a product of acid sphingomyelinase. Eryptosis is triggered by hyperosmolarity, oxidative stress, energy depletion, hyperthermia and a wide variety of xenobiotics and endogenous substances. Eryptosis is inhibited by nitric oxide, catecholamines and a variety of further small molecules. Erythropoietin counteracts eryptosis in part by inhibiting the Ca(2+)-permeable cation channels but by the same token may foster formation of erythrocytes, which are particularly sensitive to eryptotic stimuli. Eryptosis is triggered in several clinical conditions such as iron deficiency, diabetes, renal insufficiency, myelodysplastic syndrome, phosphate depletion, sepsis, haemolytic uremic syndrome, mycoplasma infection, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase-(G6PD)-deficiency, hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria, and Wilson's disease. Enhanced eryptosis is observed in mice with deficient annexin 7, cGMP-dependent protein kinase type I (cGKI), AMP-activated protein kinase AMPK, anion exchanger AE1, adenomatous polyposis coli APC and Klotho as well as in mouse models of sickle cell anemia and thalassemia. Eryptosis is decreased in mice with deficient phosphoinositide dependent kinase PDK1, platelet activating factor receptor, transient receptor potential channel TRPC6, janus kinase JAK3 or taurine transporter TAUT. If accelerated eryptosis is not compensated by enhanced erythropoiesis, clinically relevant anemia develops. Eryptotic erythrocytes may further bind to endothelial cells and thus impede microcirculation.  相似文献   

16.
The oxidative status of cells is determined by the balance between pro-oxidants and antioxidants. Pro-oxidants, referred to as reactive oxygen species (ROS), are classified into radicals and nonradicals. The radicals are highly reactive due to their tendency to accept or donate an electron and attain stability. When cells experience oxidative stress, ROS, which are generated in excess, may oxidize proteins, lipids and DNA - leading to cell death and organ damage. Oxidative stress is believed to aggravate the symptoms of many diseases, including hemolytic anemias. Oxidative stress was found in the beta-hemoglobinopathies (sickle cell anemia and thalassemia), glucose-6-phosphate dehydrogenase deficiency, hereditary spherocytosis, congenital dyserythropoietic anaemias and Paroxysmal Nocturnal Hemoglobinuria. Although oxidative stress is not the primary etiology of these diseases, oxidative damage to their erythroid cells plays a crucial role in hemolysis due to ineffective erythropoiesis in the bone marrow and short survival of red blood cells (RBC) in the circulation. Moreover, platelets and polymorphonuclear (PMN) white cells are also exposed to oxidative stress. As a result some patients develop thromboembolic phenomena and recurrent bacterial infections in addition to the chronic anemia. In this review we describe the role of oxidative stress and the potential therapeutic potential of anti-oxidants in various hemolytic anemias.  相似文献   

17.
Implantable cardiovascular devices such as prosthetic heart valves (PHVs) are widely applied clinical tools. Upon implantation, the patient can suffer from anemia as a result of red cell destruction and hemolysis can be more relevant whenever the patient is also affected by red cell disorders in which erythrocytes are more susceptible to mechanical stress such as hereditary spherocytosis (HS) and hereditary elliptocytosis (HE). Considering the typical morphological alterations observed in HS and HE, a study of the influence of cell geometry on the distribution of the shear stress on red cells in biological fluids was carried out. A numerical simulation of the loading caused by Reynolds shear stresses on a prolate spheroid was performed, with the ellipticity of the particle as the independent parameter. The average shear stress on a particle in the blood stream was found to depend on the particle's geometry, besides the stress field produced by the prosthetic device. The relevance of an increasing particle ellipticity on the global load is discussed. The model was applied to erythrocytes from implanted patients with HE or HS, enabling to explain the occurrence of moderate or severe anemia, respectively. The clinical data support the relevance of the proposed global parameter as erythrocyte trauma predictor with regard to the fluid dynamics of artificial organs.  相似文献   

18.
Microcytic hypochromic anemia is a common condition in clinical practice and alpha-thalassemia has to be considered as a differential diagnosis. Molecular diagnosis of alpha-thalassemia is possible by polymerase chain reaction. The aim of this study was to evaluate the frequency of alpha-gene numbers in subjects with microcytosis. In total, 276 subjects with microcytic hypochromic anemia [MCV<80fl; MCH<27pg] were studied. These include 125 with thalassemia trait, 48 with thalassemia major, 26 with sickle-cell thalassemia, 15 with E beta-thalassemia, 40 with iron-deficiency anemia, 8 with another hemolytic anemia, and 14 patients with no definite diagnosis. Genotyping for -alpha3.7 deletion, -alpha4.2 deletion, Hb Constant Spring, and a-triplications was done with polymerase chain reaction. The overall frequency of -alpha3.7 deletion in 276 individuals is 12.7%. The calculated allele frequency for a-thalassemia is 0.09. The subgroup analysis showed that co-inheritance of a-deletion is more frequent with the sickle-cell mutation than in other groups. We were able to diagnose 1/3 of unexplained cases of microcytosis as a-thalassemia carriers. The a-gene mutation is quite common in the Indian subcontinent. Molecular genotyping of a-thalassemia helps to diagnose unexplained microcytosis, and thus prevents unnecessary iron supplementation.  相似文献   

19.
Fresh human blood samples were collected from healthy controls and splenectomized and unsplenectomized patients with hereditary spherocytosis due to band 3 or ankyrin and spectrin deficiency. The erythrocytes were separated into age-related fractions using self-forming Percoll density gradients. Membrane proteins were analysed by 2D electrophoresis and identified by mass spectrometry. Annexin VII was present in reticulocytes but was then lost as the cells matured. A different pattern was found in band 3-deficient samples: annexin VII was in fact present in both mature and immature red cell membranes. Cytoskeletal anomalies may then influence the turn-over of annexin VII during erythrocyte maturation.  相似文献   

20.
The Ca2+-dependent adenosine triphosphatase activity associated with the plasma membrane of normal human erythrocytes is similar to that of erythrocytes from patients with hereditary spherocytosis. When spherocytic ghosts are compared to age-matched controls, however, they show a significantly decreased Ca2+-dependent adenosine triphosphatase activity. The role of the relative deficiency of Ca2+-dependent adenosine triphosphatase in spherocytic ghosts is discussed in the light of the effects of intracellular [Ca2+] on the deformability and the rigidity of the cell membrane. This enzyme may be involved in the molecular mechanism of hereditary spherocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号