首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of the RNA of satellite tobacco necrosis virus (STNV) with phosphomonoesterase followed by heat denaturation and treatment with polynucleotide kinase in the presence of [gamma-32P]ATP yields a STNV [5'-32P]RNA containing a homogeneous 5' terminus. Analyses of this STNV [5'-32P]RNA yield the sequence of the first 42 nucleotides from the 5'terminus of STNV RNA. This nucleotide sequence contains the translation initiation AUG codon starting at position 30 from the 5' terminus as indicated by match of subsequent nucleotides with the genetic code assignments for the N-terminal amino acids of STNV coat protein in the 5'-terminal sequence ppAGUAAAGACAGGAAACUU-UACUGACUAACAUGGCAAAACAAC. An interesting feature of this sequence is its potential to form a hairpin loop structure involving perfect Watson-Crick base pairing between the first seven nucleotides and nucleotides at positions 16--22.  相似文献   

2.
The 3' terminus of the strand (minus strand) complementary to poliovirion RNA (plus strand) has been examined to see whether this sequence extends to the 5'-nucleotide terminus of the plus strand, or whether minus-strand synthesis terminates prematurely, perhaps due to the presence of a nonreplicated nucleotide primer for initiation of plus-strand synthesis. The 3' terminus was labeled with 32P using [5'-32P]pCp and RNA ligase, and complete RNase digests were performed with RNases A, T1, and U2. 32P-oligonucleotides were analyzed for size by polyacrylamide-urea gel electrophoresis. The major oligonucleotide products formed were consistent with the minus strand containing 3' ends complementary and flush with the 5' end of the plus strand. However, a variable proportion of the isolated minus strands from different preparations were heterogeneous in length and appeared to differ from each other by the presence of one, two, or three 3'-terminal A residues.  相似文献   

3.
Short DNA chains were purified from phage T7 infected E. coli cells and 5' ends were labeled with 32P. By an alkali-treatment, pNp's rich in pAp and pCp were liberated from the T7 short DNA chains. After digestion of the [5'-32P] short DNA with the 3' to 5' exonuclease of T4 DNA polymerase, [5'-32P] mono- to pentaribonucleotides tipped with a deoxyribonucleotide residue at their 3' ends were isolated. 5' terminal ribonucleotides were; exclusively AMP in the penta- and the tetraribonucleotides, mostly CMP in the triribonucleotide and mainly CMP and AMP in di- and monoribonucleotides. The 5' terminal dinucleotide of the penta- and the tetraribonucleotides was pApC. The nucleotide sequence of the tetraribonucleotide was mainly pApCpCpN and some pApCpApN, where N was mainly A and C. These results indicate that oligoribonucleotides shorter than trinucleotide may result from in vivo degradation of the tetra- and pentaribonucleotides. A possibility that the tetra- and pentaribonucleotides with a 5' triphosphate terminus are the intact primers for the discontinuous T7 DNA replication is discussed.  相似文献   

4.
A new procedure for T specific cleavage of DNA fragments utilizing photoreaction with spermine has been described. Irradiation of 3'-[32P]-end-labeled DNA fragments for 10-20 min with a germicidal lamp emitting mainly 254-nm light in the presence of 1 M spermine in distilled water resulted in a T specific cleavage of the DNA chains. This method does not require piperidine treatment. By contrast, when the DNA fragments were irradiated in the presence of methylamine under similar conditions, both G and T bands with the intensity of G greater than T have appeared. A similar but less selective T cleavage has also been observed in the irradiation of 5'-[32P]-end-labeled DNA fragments in the presence of spermine followed by brief heating of the photolysate in a loading buffer for gel electrophoresis. The T specific photoreaction with spermine and the G greater than T reaction with methylamine described here may be conveniently used in combination with the standard Maxam-Gilbert's reactions to provide independent confirmatory readings.  相似文献   

5.
Interferon-treated HeLa cells were incubated with [3H]uridine to label mRNA and were then exposed to the double-stranded RNA poly(inosinic acid).poly(cytidylic acid) (In.Cn). The incubation with In.Cn greatly enhanced the decay of mRNA. When the cells were incubated in this way in the presence of cycloheximide, which blocks ribosome movement along mRNA, extensive polysome degradation was detected in interferon-treated cells. Products of degradation of mRNA were recovered from monosomes which were presumably formed as a result of endonucleolytic breaks of mRNA. This endonucleolytic activity was correlated with the formation of 2',5'-oligo(A) by an enzyme induced by interferon and activated by double-stranded RNA; the 2',5'-oligo(A) was previously shown to activate an endonuclease in cell extracts. The 2',5'-oligo(A) levels in cells were measured by a competition-binding assay. Details of the procedure used are described, including synthesis of highly radioactive (2'-5')pppA3[32P]cytidine 3',5'-diphosphate, separation of 2',5'-oligo(A) binding from degrading activities, and specificity of the assay.  相似文献   

6.
Identification of a cytidine-specific ribonuclease from chicken liver   总被引:20,自引:0,他引:20  
Rapid RNA sequencing technology was used to determine if the base specificities of an RNase recently purified from chicken liver would prove useful for RNA sequence analysis. Escherichia coli 5 S [5'-32P]rRNA or yeast 5.8 S [5'-32P]rRNA was digested with the enzyme and this digest, along with digests derived from RNases of known specificity (U2, T1, T2) were subjected to electrophoresis through denaturing polyacrylamide slab gels. Following autoradiography, the banding patterns arising from the activity of each enzyme were compared, and the base specificity of the unknown RNase was established. The chicken liver RNase was found to have a marked preference for phosphodiester bonds containing cytidylic acid residues, a property which should make the enzyme useful for distinguishing between pyrimidines in RNA sequencing.  相似文献   

7.
Modulation of inositol phospholipid metabolism by polyamines.   总被引:4,自引:0,他引:4       下载免费PDF全文
At low concentrations of Mg2+, incorporation of 32P from [gamma-32P]ATP into phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) in plasma membranes isolated from human polymorphonuclear leucocytes was enhanced 2-4-fold by the polyamines spermidine and spermine. Polyamines had no effects on inositol phospholipid phosphorylation at high concentrations of Mg2+. At 1 mM-Mg2+, [32P]PIP2 synthesis was maximally enhanced by 2 mM-spermine and 5 mM-spermidine, whereas putrescine only slightly enhanced synthesis. Spermine decreased the EC50 (concn. for half-maximal activity) for Mg2+ in [32P]PIP2 synthesis from 5 mM to 0.5 mM. Spermine did not modulate the Km for ATP for [32P]PIP or [32P]PIP2 synthesis. Spermine also decreased the EC50 for PI in [32P]PIP synthesis. In contrast, spermine elevated the apparent Vmax, without affecting the EC50 for PIP, for [32P]PIP2 synthesis. Spermine and spermidine also inhibited the hydrolysis of [32P]PIP2 by phosphomonoesterase activity. Therefore polyamines appear to activate inositol phospholipid kinases by eliminating the requirements for super-physiological concentrations of Mg2+. Polyamine-mediated inhibition of polyphosphoinositide hydrolysis would serve to potentiate further their abilities to promote the accumulation of polyphosphoinositides in biological systems.  相似文献   

8.
[5'-32P]pdT8d(-)dT7, containing an AP (apurinic/apyrimidinic) site in the ninth position, and [d(-)-1',2'-3H, 5'-32P]DNA, containing AP sites labelled with 3H in the 1' and 2' positions of the base-free deoxyribose [d(-)] and with 32P 5' to this deoxyribose, were used to investigate the yields of the beta-elimination and delta-elimination reactions catalysed by spermine, and also the yield of hydrolysis, by the 3'-phosphatase activity of T4 polynucleotide kinase, of the 3'-phosphate resulting from the beta delta-elimination. Phage-phi X174 RF (replicative form)-I DNA containing AP (apurinic) sites has been repaired in five steps: beta-elimination, delta-elimination, hydrolysis of 3'-phosphate, DNA polymerization and ligation. Spermine, in one experiment, and Escherichia coli formamidopyrimidine: DNA glycosylase, in another experiment, were used to catalyse the first and second steps (beta-elimination and delta-elimination). These repair pathways, involving a delta-elimination step, may be operational not only in E. coli repairing its DNA containing a formamido-pyrimidine lesion, but also in mammalian cells repairing their nuclear DNA containing AP sites.  相似文献   

9.
S S David  B E Haley 《Biochemistry》1999,38(26):8492-8500
Creatine kinase (CK) will autoincorporate radiolabel from [gamma32P]ATP and has thus been reported to be autophosphorylated. Also, in contrast to normal brain enzyme, CK in Alzheimer-diseased brain homogenate shows greatly decreased activity, abolished photolabeling with [32P]8N3ATP, and no detectable autoincorporation of radiolabel by [gamma32P]ATP. Surprisingly, our studies with both human brain and purified CK showed that [alpha32P]ATP, [gamma32P]ATP, [alpha32P]ADP, [2,8H3]ATP, [gamma32P]2',3'-O-(2,4, 6-trinitrophenyl)-ATP, and [gamma32P]benzophenone-gammaATP all autoincorporate radiolabel into CK with good efficiency. This demonstrates that the gamma-phosphate and the 2' and 3' hydroxyls are not involved in the covalent linkage and that all three phosphates, the ribose and base of the ATP molecule are retained upon autoincorporation (nucleotidylation). Treatment with NaIO3 to break the 2'-3' linkage effected total loss of radiolabel indicating that nucleotidylation resulted in opening of the ribose ring at the C1' position. Nucleotidylation with increasing [alpha32P]ATP at 37 degrees C gives an approximate k0.5 of 125 microM and saturates at 340 microM nucleotide. Modification of 8-10% of the copy numbers occurs at saturation, and CK activity is inhibited to approximately the same degree. Low micromolar levels of native substrates such as ADP, ATP, and phosphocreatine substantially reduce [alpha32P]ATP nucleotidylation. In contrast, AMP, GTP, GMP, NADH, and creatine did not effectively reduce nucleotidylation. When [alpha32P]ATP-nucleotidylated or [alpha32P]8N3ATP-photolabeled CK is treated with trypsin a single, identical radiolabeled peptide (V279-R291) is generated that comigrates on reverse phase HPLC and Tris-tricine electrophoresis. Nucleotidylation into this peptide was prevented 86% by the presence of ATP. We conclude that CK is nucleotidylated within the active site by modification at the C1'position and that autophosphorylation of this enzyme does not occur.  相似文献   

10.
Y S Ahn  Y C Choi  I L Goldknopf  H Busch 《Biochemistry》1985,24(25):7296-7302
A 125-kilodalton (kDa) phosphoprotein was isolated from nucleoli of Novikoff hepatoma cells in the presence of various inhibitors of proteases, alkaline phosphatase, and RNase. This protein was the most highly phosphorylated protein found thus far in the nucleolus. The half-life of [32P]phosphate in the 125-kDa phosphoprotein was approximately 60 min. Amino acid analysis of the protein showed it had a high serine content (15.5 mol %), a high glutamine plus glutamic acid content (15.5 mol %), and a high lysine content (10.3 mol %). Phosphoserine was the only phosphorylated amino acid identified. After alkaline hydrolysis of the 32P-labeled protein, ribonucleotides were found which accounted for approximately 8.5% of the [32P]phosphate. After cytidine 3',5'-[32P]diphosphate ([32P]pCp) labeling by RNA ligase, several oligoribonucleotide sequences were purified including GGGCOH and GGGGCOH. The binding of oligonucleotides to peptides was stable under denaturing fractionation conditions including 6 M urea treatment and incubation at 100 degrees C for 10 min in sodium dodecyl sulfate and beta-mercaptoethanol. Furthermore, when nucleotide-peptide complex was treated with ribonuclease T2 followed by snake venom phosphodiesterase, the junctional nucleotide pCp was released. These results suggest that one or more ribonucleotides are covalently bound to the 125-kDa phosphoprotein.  相似文献   

11.
Spermidine and spermine stimulate the activity of T4-DNA ligase   总被引:2,自引:0,他引:2  
When the ability of T4-DNA ligase from E. coli NM 989 to form higher molecular weight polymers from linearized plasmid pJDB 207 was followed, it was observed that physiological concentrations (0.5 to 1.0 mM) of spermidine and spermine greatly stimulated the formation of these polymers. The effect had a strict specificity since 1,3-diaminopropane, putrescine (1,4-diaminobutane) and N1-acetylspermidine neither stimulated nor inhibited this activity of DNA ligase. The structural analogues of spermidine, methyl bis(guanylhydrazone) and 1,1'-[(methylethanediylidene)dinitrilo]bis(3-aminoguanidine) totally abolished the stimulatory effect of spermidine on T4-DNA ligase without affecting the enzyme's basal activity.  相似文献   

12.
Polyamines are known to have a role in cell proliferation, differentiation, and protein synthesis. During pregnancy, major changes in polyamine levels occur in maternal serum, amniotic fluid, and placental tissue. Polyamine-activated phosphorylation has recently been proposed as a mechanism by which polyamines may regulate metabolic processes in target tissues. Polyamine-activated protein phosphorylation has not been studied in placenta. Homogenate membrane and cytosol fractions from human placenta were subjected to an endogenous protein phosphorylation assay using [gamma-32P]ATP in the presence and absence of the polyamines, spermine and spermidine, and the diamine, putrescine. Protein phosphorylation was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. When compared to basal levels, spermine (10(-3) M) significantly (P less than 0.001) stimulated 32P incorporation into phosphoproteins having molecular weights of 55,000 and 105,000. At this concentration spermidine and putrescine failed to stimulate phosphorylation. Half-maximal 32P incorporation was observed with 3.7 +/- 1.25 X 10(-4) M spermine. Polylysine enhanced the phosphorylation of phosphoproteins of the same molecular weight as those enhanced by spermine. Heparin and high Mg2+ inhibited spermine-induced phosphorylation. cAMP and Ca2+ did not stimulate phosphorylation of the spermine-dependent phosphoproteins. Spermine, however, acted as an antagonist for cAMP-dependent phosphorylation of a Mr 45,000 phosphoprotein.  相似文献   

13.
2-Azidoadenosine was synthesized from 2-chloroadenosine by sequential reaction with hydrazine and nitrous acid and then bisphosphorylated with pyrophosphoryl chloride to form 2-azidoadenosine 3',5'-bisphosphate. The bisphosphate was labeled in the 5'-position using the exchange reaction catalyzed by T4 polynucleotide kinase in the presence of [gamma-32P]ATP. Polynucleotide kinase from a T4 mutant which lacks 3'-phosphatase activity (ATP:5'-dephosphopolynucleotide 5'-phosphotransferase, EC 2.7.1.78) was required to facilitate this reaction. 2-Azidoadenosine 3',5'-[5'-32P]bisphosphate can serve as an efficient donor in the T4 RNA ligase reaction and can replace the 3'-terminal adenosine of yeast tRNAPhe with little effect on the amino acid acceptor activity of the tRNA. In addition, we show that the modified tRNAPhe derivative can be photochemically cross-linked to the Escherichia coli ribosome.  相似文献   

14.
Guanylyltransferase, an enzyme that catalyzes formation of mRNA 5'-terminal caps, was isolated from HeLa cell nuclei. The partially purified preparation, after incubation with [alpha-32P]GTP, yielded a single radiolabeled polypeptide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The guanylylated product was stable at neutral and alkaline pHs and had a pI of 4 by isoelectric focusing. An apparent molecular weight of approximately 68,000 was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. The formation of a covalently linked, radiolabeled GMP-protein complex and the associated release of PPi required the presence of [alpha-32P]GTP and divalent cations and incubation between pH 7 and 9. Reaction with [beta-32P]GTP, [alpha-32P]CTP, [alpha-32P]UTP, or [alpha-32P]ATP did not label the approximately 68,000-dalton polypeptide. Phosphoamide linkage of the GMP-enzyme complex was indicated by its sensitivity to cleavage by acidic hydroxylamine or HCl and not by NaOH or alkaline phosphatase. Both formation of the GMP-enzyme intermediate and synthesis of cap structures of type GpppApG from GTP and ppApG were remarkably temperature independent; the rates of enzyme activity at 0 to 4 degrees C were 30% or more of those obtained at 37 degrees C. Radiolabeled GMP-enzyme complex, isolated by heparin-Sepharose chromatography from reaction mixtures, functioned effectively as a GMP donor for cap synthesis with 5'-diphosphorylated oligo- and polynucleotide acceptors. Alternatively, protein-bound GMP could be transferred to PPi to form GTP. The formation of a guanylylated enzyme intermediate appears to be characteristic of viral and cellular guanylyltransferases that modify eucaryotic mRNA 5' termini.  相似文献   

15.
G F Gerard 《Biochemistry》1981,20(2):256-265
The mechanism of action of the ribonuclease H (RNase H) activity associated with Moloney murine leukemia virus RNA-directed DNA polymerase (RNase H I) and the two-subunit (alpha beta) form of avian myeloblastosis virus DNA polymerase were compared by utilizing the model substrate (A)n.(dT)n and polyacrylamide gel electrophoresis in 7 M urea to analyze digestion products. Examination on 25% polyacrylamide gels revealed that a larger proportion of the RNase H I oligonucleotide products generated by limited digestion of [3H](A)(1100).(dT)n were acid insoluble (15-26 nucleotides long) than acid soluble (less than 15 nucleotides long), while the opposite was true for products generated by alpha beta RNase H. RNase H I was capable of attacking RNA in RNA.DNA in the 5' to 3' and 3' to 5' directions, as demonstrated by the use of [3H,3'- or 5'-32P](A)(380).(dT)n and cellulose--[3H](A)n.(dT)n. Both RNase H I and alpha beta RNase H degraded [3H]-(A)n.(dT)n with a partially processive mechanism, based upon classical substrate competition experiments and analyses of the kinetics of degradation of [3H,3'- or 5'-32P](A)(380).(dT)n. That is, both enzymes remain bound to a RNA.DNA substrate through a finite number of hydrolytic events but dissociate before the RNA is completely degraded. Both RNase H I and alpha beta RNase H were capable of degrading [14C](A)n in [3H](C)n-[14C](A)n-[32P](dA)n.(dT)n, suggesting that retroviral RNase H is capable of removing the tRNA primer at the 5' terminus of minus strand DNA at the appropriate time during retroviral DNA synthesis in vitro.  相似文献   

16.
Incubation of rat liver nuclear envelopes with [gamma-32P]ATP resulted in the synthesis of phosphatidylinositol-[4-32P]phosphate (PIP). Degradation of endogenously labeled PIP was observed upon the dilution of the labeled ATP with an excess of unlabeled ATP. This degradation was most rapid in the presence of EDTA, and was inhibited by MgCl2 and CaCl2. To further characterize the degradative activity, phosphatidylinositol[4-32P]phosphate and phosphatidylinositol [4,5-32P]bisphosphate (PIP2) were synthesized and isolated from erythrocyte plasma membranes. The 32P-labeled phospholipids were then resuspended in 0.4% Tween 80, a detergent that did not inhibit degradation of endogenously labeled PIP, and mixed with nuclear envelopes. [32P]PIP and [32P]PIP2 were degraded at rates of 2.25 and 0.04 nmol min-1 mg nuclear envelope protein-1, respectively. Only 32P was released from phosphatidyl[2-3H]inositol-[4-32P]phosphate, indicating that hydrolysis of PIP was due to a phosphomonoesterase activity (EC 3.1.3.36) in nuclear envelopes. Similarly, anion-exchange chromatographic analysis of the water-soluble products released from [32P]PIP indicated that inorganic phosphate was the sole 32P-labeled product. Hydrolysis of PIP was most rapid at neutral pH, and was not affected by inhibitors of acid phosphatase or alkaline phosphatase. Hydrolysis of PIP was also not inhibited by nonspecific phosphatase substrates, such as glycerophosphate, p-nitrophenylphosphate, AMP, or glucose 6-phosphate. Hydrolysis was stimulated by putrescine, and was inhibited by inositol 2-phosphate, spermidine, spermine, and neomycin.  相似文献   

17.
[3H]Inositol-labelled GH3 rat anterior pituitary tumour cells were permeabilized with digitonin and were incubated at 37 degrees C in the presence of ATP and Mg2+. [3H]Polyphosphoinositide breakdown and [3H]inositol phosphate production were stimulated by hydrolysis-resistant GTP analogues and by Ca2+. Of the nucleotides tested, guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) was the most effective stimulus. Activation by GTP gamma S appeared to be mediated by a guanine nucleotide-binding (G) protein as GTP gamma S-stimulated [3H]inositol phosphate production was inhibited by other nucleotides with a potency order of GTP = GDP = guanosine 5'-[beta-thio]diphosphate greater than ITP greater than GMP greater than UTP = CTP = adenosine 5'-[gamma-thio]triphosphate. The stimulatory effects of 10 microM-GTP gamma S on [3H]inositol phosphate levels were reversed by spermine and spermidine with IC50 values of approx. 0.25 and 2 mM respectively. Putrescine was inhibitory only at higher concentrations. Similarly, GTP gamma S-induced decreases in [3H]polyphosphoinositide levels were reversed by 2.5 mM-spermine. The inhibitory effects of spermine were not overcome by supramaximal concentrations of GTP gamma S. In contrast, [3H]inositol phosphate production stimulated by addition of 0.3-0.6 mM-Ca2+ to incubation media was only partially inhibited by spermine (5 mM), and spermine was not inhibitory when added Ca2+ was increased to 1 mM. These data show that polyamines, particularly spermine, inhibit phospholipase C-catalysed polyphosphoinositide hydrolysis with a marked selectivity towards the stimulatory effects of GTP gamma S.  相似文献   

18.
Direct photoaffinity labeling with radioactively labeled adenosine 3'-phosphate 5'-phosphosulfate (PAPS) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography was used to identify PAPS binding proteins in a Golgi membrane preparation of bovine adrenal medulla. [3'-32P]PAPS was synthesized from adenosine 5'-phosphosulfate (APS) and [gamma-32P]ATP using APS kinase prepared from yeast and was purified by reverse-phase ion pair high performance liquid chromatography. Upon irradiation with UV light, [3'-32P]PAPS, as well as [35S]PAPS under conditions which minimized sulfotransferase-catalyzed incorporation of 35SO4 from [35S]PAPS into proteins, bound selectively to a 34-kDa protein of the Golgi membrane preparation. PAPS binding to the 34-kDa protein was strongly inhibited by the presence of 50 microM atractyloside. The 34-kDa PAPS binding protein therefore appears to be similar to the mitochondrial ATP/ADP translocator with regard to both molecular weight and inhibition by atractyloside of adenine nucleotide binding. Photoaffinity labeling will be useful in the purification and functional identification of the 34-kDa protein.  相似文献   

19.
The oligonucleotide [5'-32P]pdT8d(-)dTn, containing an apurinic/apyrimidinic (AP) site [d(-)], yields three radioactive products when incubated at alkaline pH: two of them, forming a doublet approximately at the level of pdT8dA when analysed by polyacrylamide-gel electrophoresis, are the result of the beta-elimination reaction, whereas the third is pdT8p resulting from beta delta-elimination. The incubation of [5'-32P]pdT8d(-)dTn, hybridized with poly(dA), with E. coli endonuclease III yields two radioactive products which have the same electrophoretic behaviour as the doublet obtained by alkaline beta-elimination. The oligonucleotide pdT8d(-) is degraded by the 3'-5' exonuclease activity of T4 DNA polymerase as well as pdT8dA, showing that a base-free deoxyribose at the 3' end is not an obstacle for this activity. The radioactive products from [5'-32P]pdT8d(-)dTn cleaved by alkaline beta-elimination or by E. coli endonuclease III are not degraded by the 3'-5' exonuclease activity of T4 DNA polymerase. When DNA containing AP sites labelled with 32P 5' to the base-free deoxyribose labelled with 3H in the 1' and 2' positions is degraded by E. coli endonuclease VI (exonuclease III) and snake venom phosphodiesterase, the two radionuclides are found exclusively in deoxyribose 5-phosphate and the 3H/32P ratio in this sugar phosphate is the same as in the substrate DNA. When DNA containing these doubly-labelled AP sites is degraded by alkaline treatment or with Lys-Trp-Lys, followed by E. coli endonuclease VI (exonuclease III), some 3H is found in a volatile compound (probably 3H2O) whereas the 3H/32P ratio is decreased in the resulting sugar phosphate which has a chromatographic behaviour different from that of deoxyribose 5-phosphate. Treatment of the DNA containing doubly-labelled AP sites with E. coli endonuclease III, then with E. coli endonuclease VI (exonuclease III), also results in the loss of 3H and the formation of a sugar phosphate with a lower 3H/32P ratio that behaves chromatographically as the beta-elimination product digested with E. coli endonuclease VI (exonuclease III). From these data, we conclude that E. coli endonuclease III cleaves the phosphodiester bond 3' to the AP site, but that the cleavage is not a hydrolysis leaving a base-free deoxyribose at the 3' end as it has been so far assumed. The cleavage might be the result of a beta-elimination analogous to the one produced by an alkaline pH or Lys-Trp-Lys. Thus it would seem that E. coli 'endonuclease III' is, after all, not an endonuclease.  相似文献   

20.
A latent endoribonuclease, RNase L, binds to and is activated by (2'-5')oligoadenylates ((2'-5')(A)n, n = 2-15). Binding to a labeled derivative of (2'-5')(A)n, [32P](2'-5')(A)3pCp, is detected as a protein-ligand complex observed following nondenaturing polyacrylamide gel electrophoresis. One major binding complex and two minor binding complexes are readily seen in cytoplasmic extracts from Ehrlich ascites tumor cells, murine tissue extracts and rabbit liver tissue extracts. At least one of the more rapidly migrating complexes appears to be a proteolytic degradation product of the larger [32P](2'-5')(A)3pCp binding protein. Cell and tissue extracts containing [32P](2'-5')(A)3pCp binding activity can be immobilized onto nitrocellulose filters and [32P](2'-5')(A)3pCp binding activity detected using a simple, rapid, economical affinity blot assay. Detection of [32P](2'-5')(A)3pCp binding proteins following electrophoresis on nondenaturing polyacrylamide gels and the affinity blot assay significantly improve and simplify the analysis of (2'-5')(A)n binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号