首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnetic resonance imaging (MRI) has long been used clinically and experimentally as a diagnostic tool to obtain three-dimensional, high-resolution images of deep tissues. These images are enhanced by the administration of contrast agents such as paramagnetic Gd(III) complexes. Herein, we describe the preparation of a series of multimodal imaging agents in which paramagnetic Gd(III) complexes are conjugated to a fluorescent tetrapyrrole, namely, a porphyrazine (pz). Zinc metalated pzs conjugated to one, four, or eight paramagnetic Gd(III) complexes are reported. Among these conjugates, Zn-Pz-8Gd(III) exhibits an ionic relaxivity four times that of the monomeric Gd(III) agent, presumably because of increased molecular weight and a molecular relaxivity that is approximately thirty times larger, while retaining the intense electronic absorption and emission of the unmodified pz. Unlike current clinical MR agents, Zn-Pz-1Gd(III) is taken up by cells. This probe demonstrates intracellular fluorescence by confocal microscopy and provides significant contrast enhancement in MR images, as well as marked phototoxicity in assays of cellular viability. These results suggest that pz agents possess a new potential for use in cancer imaging by both MRI and near-infrared (NIR) fluorescence, while acting as a platform for photodynamic therapy.  相似文献   

2.
Lanthanide DOTA-tetraglycinate (LnDOTA-(gly)4 ) complexes contain four magnetically equivalent amide protons that exchange with protons of bulk water. The rate of this base catalyzed exchange process has been measured using chemical exchange saturation transfer (CEST) NMR techniques as a function of solution pH for various paramagnetic LnDOTA-(gly)4 complexes to evaluate the effects of lanthanide ion size on this process. Complexes with Tb(III), Dy(III), Tm(III) and Yb(III) were chosen because these ions induce large hyperfine shifts in all ligand protons, including the exchanging amide protons. The magnitude of the amide proton CEST exchange signal differed for the four paramagnetic complexes in order, Yb>Tm>Tb>Dy. Although the Dy(III) complex showed the largest hyperfine shift as expected, the combination of favorable chemical shift and amide proton CEST linewidth in the Tm(III) complex was deemed most favorable for future in vivo applications where tissue magnetization effects can interfere. TmDOTA-(gly)4 at various concentrations was encapsulated in the core interior of liposomes to yield lipoCEST particles for molecular imaging. The resulting nanoparticles showed less than 1% leakage of the agent from the interior over a range of temperatures and pH. The pH versus amide proton CEST curves differed for the free versus encapsulated agents over the acidic pH regions, consistent with a lower proton permeability across the liposomal bilayer for the encapsulated agent. Nevertheless, the resulting lipoCEST nanoparticles amplify the CEST sensitivity by a factor of ∼104 compared to the free, un-encapsulated agent. Such pH sensitive nano-probes could prove useful for pH mapping of liposomes targeted to tumors.  相似文献   

3.
A new approach to enzyme-responsive MRI agents based on the use of liposomes loaded with a high number of paramagnetic metal complexes (Gd-HPDO3A) is presented. It relies on the disruption of low relaxivity aggregates formed by liposomes and a macromolecular substrate that is selectively cleaved by the enzyme of interest. The interaction of anionic liposomes composed of POPC:CHOL:DPGS and the cationic protein protamine yields a poorly soluble supramolecular assembly endowed with a low relaxivity. The action of the serine protease trypsin causes the digestion of protamine and the consequent de-assembly of the supramolecular adduct. The process is accompanied by an overall relaxation enhancement of solvent water protons as consequence of the dissolution of the aggregated liposomes. The observed increase of relaxivity is linearly dependent on the enzyme concentration.An illustrative example of the possible use of the herein presented responsive agent has been reported. It consists of the entrapment of the supramolecular assembly in alginate microcapsules that have often been used as envelopes for in vivo applications of stem cells and pancreatic islets. The change in the observed longitudinal relaxation rate R1 (leading to an hyperintense signal in the corresponding MR images) may act as a sensor of the protease activity in the biological environment in which the capsules is located.  相似文献   

4.
Macromolecular gadolinium (Gd)(III) complexes have a prolonged blood circulation time and can preferentially accumulate in solid tumors, depending on the tumor blood vessel hyperpermeability, resulting in superior contrast enhancement in magnetic resonance (MR) cardiovascular imaging and cancer imaging as shown in animal models. Unfortunately, safety concerns related to these agents' slow elimination from the body impede their clinical development. Polydisulfide Gd(III) complexes have been designed and developed as biodegradable macromolecular magnetic resonance imaging (MRI) contrast agents to facilitate the clearance of Gd(III) complexes from the body after MRI examinations. These novel agents can act as macromolecular contrast agents for in vivo imaging and excrete rapidly as low-molecular-weight agents. The rationale and recent development of the novel biodegradable contrast agents are reviewed here. Polydisulfide Gd(III) complexes have relatively long blood circulation time and gradually degrade into small Gd(III) complexes, which are rapidly excreted via renal filtration. These agents result in effective and prolonged in vivo contrast enhancement in the blood pool and tumor tissue in animal models, yet demonstrate minimal Gd(III) tissue retention as the clinically used low-molecular-weight agents. Structural modification of the agents can readily alter the contrast-enhancement kinetics. Polydisulfide Gd(III) complexes are promising for further clinical development as safe, effective, biodegradable macromolecular MRI contrast agents for cardiovascular and cancer imaging, and for evaluation of therapeutic response.  相似文献   

5.
The relaxometric properties of two biotinylated paramagnetic liposomes with different lipophilic complexes have been investigated by water proton nuclear magnetic resonance dispersion. The proton relaxivity was found to have a peak at the proton Larmor frequencies generally used in MRI, and to be largely affected by the residence lifetime of the water molecule in the coordination site of the metal chelate. The measurements also indicate that a local motion in the nanosecond time scale, i.e. much faster than the rotational time of the whole liposome, is effective. Possible explanations for this behavior are discussed, that may provide guidelines for the design of second-generation paramagnetic liposomes as contrast agents.  相似文献   

6.
Acute nodularin-induced hepatotoxicity was assessed in vivo, in rats using magnetic resonance (MR) techniques, including MR imaging (MRI), MR spectroscopy (MRS), and electron paramagnetic resonance (EPR) oximetry. Nodularin is a cyclic hepatotoxin isolated from the cyanobacterium Nodularia spumigena. Three hours following the intraperitoneal (i.p.) administration of nodularin (LD50), a region of 'damage', characterized by an increase in signal intensity, was observed proximal to the porta hepatis (PH) region in T2-weighted MR images of rat liver. Image analysis of these regions of apparent 'damage' indicated a statistically significant increase in signal intensity around the PH region following nodularin administration, in comparison with controls and regions peripheral to the PH region. An increase in signal intensity was also observed proximal to the PH region in water chemical shift selective images (CSSI) of nodularin-treated rat livers, indicating that the increased signal observed by MRI is an oedematous response to the toxin. Microscopic assessment (histology and electron microscopy) and serum liver enzyme function tests (aminotransferase (ALT) and aspartate ALT (AST)) confirmed the nodularin-induced tissue injury observed by MRI. In vivo and in vitro MRS was used to detect alterations in metabolites, such as lipids, Glu+Gln, and choline, during the hepatotoxic response (2-3 h post-exposure). Biochemical assessment of perchloric acid extracts of nodularin-treated rat livers were used to confirm the MRS results. In vivo EPR oximetry was used to monitor decreasing hepatic pO2 (approximately 2-fold from controls) 2-3 h following nodularin exposure. In vivo MR techniques (MRI, MRS and EPR oximetry) are able to highlight effects that may not have been evident in single end point studies, and are ideal methods to follow tissue injury progression in longitudinally, increasing the power of a study through repeated measures, and decreasing the number of animals to perform a similar study using histological or biochemical techniques.  相似文献   

7.
Abstract

The blood pool is among body compartments of a special interest for imaging using magnetic resonance (MR) and computed tomography (CT), since with the help of selective blood-pool contrast agents blood perfusion and various cardiac parameters as well as a status of the blood flow and vascular system in any organ can be evaluated. Blood pool-specific imaging agents can also provide minimally invasive angiography, image guidance of minimally invasive procedures, oncologic imaging of angiogenesis, ascertaining organ blood volume, and identifying hemorrhage. Particulate contrast agents (such as liposomes and micelles) whose distribution is limited to the blood pool, should have a size larger than fenestrated capillaries (> 10 nm), contain the reporter (paramagnetic or radiopaque) moiety structurally incorporated within the particulate, and be able to stay in the blood long enough to obtain clinically useful images. We describe here a new generation of long-circulating Gd-loaded liposomes and iodine-loaded micelles to provide an efficient blood pool MR and CT imaging, respectively. In this study, we developed the optimized protocol to prepare a liposomal MR contrast agent with high relaxivity and narrow size distribution. Liposomes were loaded with Gadolinium (Gd) via so called polychelating amphiphilic polymer (PAP) that represents a low-molecular-weight DTPA-polylysine linked via its N-terminus to a lipid anchor, NGPE-PE. Gd-containing liposomes were additionally modified with PEG to provide the longevity in vivo. We demonstrated also that upon the intravenous administration in rabbits and dogs, a new preparation causes prolonged decrease in the blood Tl value, permits to obtain sharp and clear MR images of the vasculature, and may be considered as a potential contrast agent for MRI of the blood pool. In addition, to prepare micellar contrast agents for CT blood-pool imaging, we synthesized an iodine-containing amphiphilic block-copolymer consisting of methoxypoly(ethyleneglycol) and polyl?,N-(triiodobenzoyl)]-L-lysine. In aqueous solutions, it forms stable micelles with an average diameter of 80 nm and an iodine content of 35–40% wt. Iodine-containing micelles were intravenously injected into rats and rabbits at a dose of 170 mg I/kg and produced significant and sustained enhancement of the blood pool (aorta and heart), liver and spleen for a period of at least 3 hours providing clear and informative CT images.  相似文献   

8.
Gd(III) complexes are under intense scrutiny as contrast agents for magnetic resonance imaging (MRI). They act by enhancing tissutal proton relaxation rates. Much has already been done in order to get an in-depth understanding of the relationships between structure, dynamics, and contrastographic ability of these paramagnetic complexes. Their potential in the assessment of flow, perfusion, and capillary permeability has already been established. The next challenges are in the field of molecular imaging applications, which would allow the attainment of early diagnosis based on the recognition of specific reporters of the onset of the pathological state. To this end, Gd(III) complexes have to be endowed with improved targeting capabilities by conjugating suitable recognition synthons on their surfaces. Small peptides are candidates of choice for the attainment of this goal. Moreover, the intrinsic low sensitivity of the NMR techniques implies the need to deliver large amounts of contrast agents to the target in order to get its visualization in the resulting images. Highly efficient delivery systems have been identified, which bring a great promise for the development of innovative diagnostic agents based on Gd(III) complexes.  相似文献   

9.
The synthesis of poly[N,N‐bis(3‐aminopropyl)glycine] (PAPGly) dendrons Gd‐based contrast agents (GdCAs) via an orthogonal protection of the different functional groups and an activation/coupling strategy wherein a specific number of synthetic steps add a generation to the existing dendron has been described. The aim of this protocol is to build up two different generations of dendrons ( G‐0 or dendron's core, and G‐1 ) with peripheral NH2 groups to conjugate a 1,4,7,10‐tetraazacyclododecane‐1,4,7‐triacetic acid (DO3A) derivative and afterwards to chelate with Gd3+ paramagnetic ions. These complexes, which have a well‐defined molecular weight, are of relevance to MRI as an attempt to gain higher 1H relaxivity by slowing down the rotation of molecule compared to monomeric Gd(III) complexes used as contrast agents and to increase the number of paramagnetic centers present in one molecular structure. From the study of their water 1H longitudinal relaxation rate at different magnetic fields (NMRD, Nuclear Magnetic Relaxation Dispersion) and by evaluating the variable temperature 17O‐NMR data we determined the parameters characterizing the water exchange rate and the rotational correlation time of each complex, both affecting 1H relaxivity. Furthermore, these two novel PAPGly GdCAs were objects of i) an in vivo study to determine their biodistributions in healthy C57 mice at several time points, and ii) the Dynamic Contrast‐Enhanced MRI (DCE‐MRI) approach to assess their contrast efficiency measured in the tumor region of C57BL/6 mice transplanted subcutaneously with B16‐F10 melanoma cells. The aim of the comparison of these two dendrons GdCAs, having different molecular weights (MW), is to understand how MW and relaxivity may influence the contrast enhancement capabilities in vivo at low magnetic field (1 T). Significant contrast enhancement was observed in several organs (vessel, spleen and liver), already at 5 min post‐injection, for the investigated CAs. Moreover, these CAs induced a marked contrast enhancement in the tumor region, thanks to the enhanced permeability retention effect of those macromolecular structures.  相似文献   

10.
Abstract

Liposomes are spheres composed of relatively non-toxic and biodegradable lipids which are useful for entrapping a variety of drugs, decreasing drug toxicity and targeting. For a number of years we have evaluated the use of liposomes as MR contrast agents. We have prepared and tested contrast agents entrapped within the internal aqueous space of liposomes as well as liposomes incorporating lipophilic contrast agents in the lipid bilayer. When chelates such as Gd-DTPA are entrapped within the internal aqueous space of lipid vesicles, delivery is primarily to the Kupffer cells and clearance is slow. Manganese ions entrapped within lipid vesicles cause more enhancement per micromole of paramagnetic ion than gadolinium. Lipophilic derivatives of manganese EDTA chelates when incorporated into liposomes confer the greatest hepatic enhancement per micromole of metal ion and have favorable clearance kinetics. An apparently hepatocyte specific liposomal MR contrast agent has been prepared based upon a lipophilic derivative of manganese EDTA, which enhances the liver and increases liver/tumor contrast to noise more than most other contrast agents per micromole of metal ion. The agent has very high relaxivity, Rl over 30 and R2 over 40 per micromole of manganese. Cardiac imaging shows pronounced blood pool enhancement with potential for myocardial perfusion imaging. Membrane bound lipophilic paramagnetic chelates hold promise as improved liposomal contrast agents for MR.  相似文献   

11.
Interactions of paramagnetic metal complexes with their biological environment can modulate their magnetic resonance imaging (MRI) contrast–enhancing properties in different ways, and this has been widely exploited to create responsive probes that can provide biochemical information. We survey progress in two rapidly growing areas: the MRI detection of biologically important metal ions, such as calcium, zinc, and copper, and the use of transition metal complexes as smart MRI agents. In both fields, new imaging technologies, which take advantage of other nuclei (19F) and/or paramagnetic contact shift effects, emerge beyond classical, relaxation-based applications. Most importantly, in vivo imaging is gaining ground, and the promise of molecular MRI is becoming reality, at least for preclinical research.  相似文献   

12.
The water permeability of various liposome membranes has been determined at 298 K by measuring the NMR longitudinal water proton relaxation rate of vesicles encapsulating the clinically approved Gd-HPDO3A complex (HPDO3A = 10-(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid). Two basic formulations based on DPPC (dipalmitoylphosphatidylcholine) and POPC (palmitoyl-oleylphosphatidylcholine) phospholipids were selected and investigated. Furthermore, the permeability changes caused by the membrane incorporation of amphiphiles like cholesterol and/or metal complexes of interest for designing improved liposome-based MRI contrast agents, were also investigated. The incorporation of cholesterol and metal complexes bearing C18 saturated chains in POPC-based liposomes reduces the water diffusivity across the membrane bilayer. On the contrary, the incorporation of a macrocyclic metal complex bearing four C12 alkylic chains, one for each coordination arm of the ligand, considerably enhances the water permeability in DPPC-based liposomes. Finally, it is reported that the permeability of POPC-based bilayer is increased when the liposomes are subjected to an osmotic stress.  相似文献   

13.
The biomonitoring of individuals exposed to chromium(VI) by inhalation is often based on determinations of chromium in body fluids such as blood, plasma or urine, or on assessments of DNA damage in non-lung surrogate tissues such as peripheral blood lymphocytes. These techniques are of some use as biomarkers of internal exposure or biological effect, mainly in the case of soluble chromium(VI) compounds, but they provide at best only indirect information about chromium(VI) concentrations in the main target organ of interest – the lung. An urgent need exists for a non-invasive technique to permit the visualization and quantification of chromium(VI) in the lung of exposed humans. This study details the development of a lung imaging technique based on the detection of paramagnetic chromium using magnetic resonance imaging (MRI). The intracellular reductive conversion of chromium(VI) is a crucial bioactivation step in its carcinogenicity, and the MRI method described here relies on the conversion of non-paramagnetic (MRI ‘silent’) chromium(VI) to detectable paramagnetic species such as chromium(III). Initial studies with chromium(III) revealed that a range of 2.5–5 μg chromium(III) instilled in rat lung is considered to be the lower limit of detection of this method. It was possible to demonstrate the presence of 30 μg chromium(VI) in our post-mortem rat model. The ultimate objective of this work is to determine whether this technique has applicability to the biomonitoring of chromium(VI) inhalation exposures that result in internalized lung doses in human subjects.  相似文献   

14.
The biomonitoring of individuals exposed to chromium(VI) by inhalation is often based on determinations of chromium in body fluids such as blood, plasma or urine, or on assessments of DNA damage in non-lung surrogate tissues such as peripheral blood lymphocytes. These techniques are of some use as biomarkers of internal exposure or biological effect, mainly in the case of soluble chromium(VI) compounds, but they provide at best only indirect information about chromium(VI) concentrations in the main target organ of interest - the lung. An urgent need exists for a non-invasive technique to permit the visualization and quantification of chromium(VI) in the lung of exposed humans. This study details the development of a lung imaging technique based on the detection of paramagnetic chromium using magnetic resonance imaging (MRI). The intracellular reductive conversion of chromium(VI) is a crucial bioactivation step in its carcinogenicity, and the MRI method described here relies on the conversion of non-paramagnetic (MRI 'silent') chromium(VI) to detectable paramagnetic species such as chromium(III). Initial studies with chromium(III) revealed that a range of 2.5-5 μg chromium(III) instilled in rat lung is considered to be the lower limit of detection of this method. It was possible to demonstrate the presence of 30 μg chromium(VI) in our post-mortem rat model. The ultimate objective of this work is to determine whether this technique has applicability to the biomonitoring of chromium(VI) inhalation exposures that result in internalized lung doses in human subjects.  相似文献   

15.
BACKGROUND: Evaluation of lymphedema and lymph node metastasis in humans has relied primarily on invasive or radioactive modalities. While noninvasive technologies such as magnetic resonance imaging (MRI) offer the potential for true three-dimensional imaging of lymphatic structures, invasive modalities, such as optical fluorescence microscopy, provide higher resolution and clearer delineation of both lymph nodes and lymphatic vessels. Thus, contrast agents that image lymphatic vessels and lymph nodes by both fluorescence and MRI may further enhance our understanding of the structure and function of the lymphatic system. Recent applications of bimodal (fluorescence and MR) contrast agents in mice have not achieved clear visualization of lymphatic vessels and nodes. Here the authors describe the development of a nanoparticulate contrast agent that is taken up by lymphatic vessels to draining lymph nodes and detected by both modalities. METHODS: A unique nanoparticulate contrast agent composed of a polyamidoamine dendrimer core conjugated to paramagnetic contrast agents and fluorescent probes was synthesized. Anesthetized mice were injected with the nanoparticulates in the hind footpads and imaged by MR and fluorescence microscopy. High resolution MR and fluorescence images were obtained and compared to traditional techniques for lymphatic visualization using Evans blue dye. RESULTS: Lymph nodes and lymphatic vessels were clearly observed by both MRI and fluorescence microscopy using the bimodal nanoparticulate contrast agent. Characteristic tail-lymphatics were also visualized by both modalities. Contrast imaging yielded a higher resolution than the traditional method employing Evans blue dye. MR data correlated with fluorescence and Evans blue dye imaging. CONCLUSION: A bimodal nanoparticulate contrast agent facilitates the visualization of lymphatic vessels and lymph nodes by both fluorescence microscopy and MRI with strong correlation between the two modalities. This agent may translate to applications such as the assessment of malignancy and lymphedema in humans and the evaluation of lymphatic vessel function and morphology in animal models.  相似文献   

16.
Novel cyclen-based phenylboronate ligands and their corresponding Eu(3+) complexes have been examined as glucose sensors using chemical exchange saturation transfer (CEST) MR imaging for detection. Two isomeric bis-phenylboronate complexes, Eu(4) and Eu(10), and a mono-phenylboronate complex, Eu(12), had been prepared and characterized by UV and circular dichroism spectroscopy, mass spectrometry, and CEST imaging. Both the free ligands and their Eu(3+) complexes bind to simple sugars, but their selectivity and binding affinities vary with sugar structure. Interestingly, the free ligands, 4 and 10, are selective for fructose over glucose, but this selectivity order switches in the respective Eu(3+) complexes. Of the complexes examined, Eu(4) shows the highest selectivity and binding affinity for glucose (2275 +/- 266 M(-)(1) at pH 10.2 and 339 +/- 29 M(-)(1) at pH 7). Glucose acts as a "capping"moiety in the Eu(4).glucose binary complex and modulates water exchange between a single Eu(3+)-bound water molecule and bulk water, an effect that can be detected by CEST imaging. Thus, Eu(4) represents a new class of metabolite-specific imaging agents that may allow mapping of metabolites by MRI of the bulk water signal.  相似文献   

17.
18.
1,4,7,10-Tetrakis{[N-(1H-imidazol-2-yl)carbamoyl]methyl}-1,4,7,10-tetraazacyclododecane (dotami), a tetra(1H-imidazol-2-yl) derivative of the well-studied octadentate 1,4,7,10-tetrakis[(carbamoyl)methyl]-1,4,7,10-tetraazacyclododecane (dotam) ligand, was synthesized by reaction of 1,4,7,10-tetraazacyclododecane with N-(1H-imidazol-2-yl)chloroacetamide in high yield. Its tricationic thulium complex was isolated as a water-soluble chloride salt. The detection of the mildly acidic amide and amine protons by direct proton NMR in aqueous solution was unsuccessful, but such exchangeable protons could be detected via their chemical exchange-dependent saturation transfer (CEST) effect. The observed CEST effect was distinctly different from that found for respective dotam complexes and is, therefore, ascribed to exchangeable protons associated with the imidazole substituent.  相似文献   

19.
Three amphiphilic DTPA bisamide derivatives containing long-chain phenylalanine esters (with 14, 16 and 18 carbon atoms in the alkyl chain) were synthesized and their corresponding gadolinium(III) complexes were prepared. The attempts to form paramagnetic micelles carrying the gadolinium(III) complexes yielded unstable or polydisperse micelles implying that the presence of the bulky aromatic side groups in the amphiphilic Gd-DTPA bisamide complexes results in an inefficient packing of the paramagnetic complex into micelles. All complexes were efficiently incorporated into liposomes consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), yielding stable and monodisperse paramagnetic liposomes. All liposomes had a comparable size, typically between 120 and 160 nm. As a result of the reduced mobility of the gadolinium(III) complexes, solutions of these supramolecular structures show a higher relaxivity than solutions of Gd-DTPA. However, the relaxivity gain is lower compared to compounds consisting of purely aliphatic chains of the same length, most likely due to the less efficient packing or increased local mobility of the gadolinium(III) complex. In the case of the Gd-DTPA bisamide complex with 18 carbon atoms, the immobilization inside the liposomal structure is less effective, probably because the aliphatic chains of the complex are longer than the alkyl chains of the DPPC host, resulting in a relatively high local mobility. The paramagnetic liposomes containing the Gd-DTPA bisamide complexes with 14 carbon atoms showed the highest relaxivity because the optimal length match between the hydrophobic chains of the DPPC and the ligand allowed very efficient packing of the paramagnetic complex into the liposome.  相似文献   

20.
Pacemakers and other cardiac implantable electronic devices (CIEDs) have long been considered an absolute contraindication to magnetic resonance imaging (MRI), a crucial and growing imaging modality. In the last 20 years, protocols have been developed to allow MR scanning of CIED patients with a low complication rate. However, this practice has remained limited to a relatively small number of centers, and many pacemaker patients continue to be denied access to clinically indicated imaging. The introduction of MRI conditional pacemakers has provided a widely applicable and satisfactory solution to this problem. Here, the interactions of pacemakers with the MR environment, the results of MR scanning in patients with conventional CIEDs, the development and clinical experience with MRI conditional devices, and future directions are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号