首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoproteomics deals with the identification and quantification of thousands of phosphopeptides. Localizing the phosphorylation site is however much more difficult than establishing the identity of a phosphorylated peptide. Further, recent findings have raised doubts of the validity of the site assignments in large-scale phosphoproteomics data sets. To improve methods for site localization, we made use of a synthetic phosphopeptide library and SILAC-labeled peptides from whole cell lysates and analyzed these with high-resolution tandem mass spectrometry on an LTQ Orbitrap Velos. We validated gas-phase phosphate rearrangement reactions during collision-induced dissociation (CID) and used these spectra to devise a quantitative filter that by comparing signal intensities of putative phosphorylated fragment ions with their nonphosphorylated counterparts allowed us to accurately pinpoint which fragment ions contain a phosphorylated residue and which ones do not. We also evaluated higher-energy collisional dissociation (HCD) and found this to be an accurate method for correct phosphorylation site localization with no gas-phase rearrangements observed above noise level. Analyzing a large set of HCD spectra of SILAC-labeled phosphopeptides, we identified a novel fragmentation mechanism that generates a phosphorylation site-specific neutral loss derived x-ion, which directly pinpoints the phosphorylated residue. Together, these findings significantly improve phosphorylation site localization confidence.  相似文献   

2.
Reversible phosphorylation is one of the most important posttranslational modifications of cellular proteins. Mass spectrometry is a widely used technique in the characterization of phosphorylated proteins and peptides. Similar to nonmodified peptides, sequence information for phosphopeptides digested from proteins can be obtained by tandem mass analysis using either electrospray ionization or matrix assisted laser desorption/ionization (MALDI) mass spectrometry. However, the facile loss of neutral phosphoric acid (H3PO4) or HPO3 from precursor ions and fragment ions hampers the precise determination of phosphorylation site, particularly if more than one potential phosphorylation site or concensus sequence is present in a given tryptic peptide. Here, we investigated the fragmentation of phosphorylated peptides under laser-induced dissociation (LID) using a MALDI-time-of-flight mass spectrometer with a curved-field reflectron. Our data demonstrated that intact fragments bearing phosphorylated residues were produced from all tested peptides that contain at least one and up to four phosphorylation sites at serine, threonine, or tyrosine residues. In addition, the LID of phosphopeptides derivatized by N-terminal sulfonation yields simplified MS/MS spectra, suggesting the combination of these two types of spectra could provide an effective approach to the characterization of proteins modified by phosphorylation.  相似文献   

3.
Mass spectrometers that provide high mass accuracy such as FT-ICR instruments are increasingly used in proteomic studies. Although the importance of accurately determined molecular masses for the identification of biomolecules is generally accepted, its role in the analysis of shotgun proteomic data has not been thoroughly studied. To gain insight into this role, we used a hybrid linear quadrupole ion trap/FT-ICR (LTQ FT) mass spectrometer for LC-MS/MS analysis of a highly complex peptide mixture derived from a fraction of the yeast proteome. We applied three data-dependent MS/MS acquisition methods. The FT-ICR part of the hybrid mass spectrometer was either not exploited, used only for survey MS scans, or also used for acquiring selected ion monitoring scans to optimize mass accuracy. MS/MS data were assigned with the SEQUEST algorithm, and peptide identifications were validated by estimating the number of incorrect assignments using the composite target/decoy database search strategy. We developed a simple mass calibration strategy exploiting polydimethylcyclosiloxane background ions as calibrant ions. This strategy allowed us to substantially improve mass accuracy without reducing the number of MS/MS spectra acquired in an LC-MS/MS run. The benefits of high mass accuracy were greatest for assigning MS/MS spectra with low signal-to-noise ratios and for assigning phosphopeptides. Confident peptide identification rates from these data sets could be doubled by the use of mass accuracy information. It was also shown that improving mass accuracy at a cost to the MS/MS acquisition rate substantially lowered the sensitivity of LC-MS/MS analyses. The use of FT-ICR selected ion monitoring scans to maximize mass accuracy reduced the number of protein identifications by 40%.  相似文献   

4.
One of the challenges associated with large-scale proteome analysis using tandem mass spectrometry (MS/MS) and automated database searching is to reduce the number of false positive identifications without sacrificing the number of true positives found. In this work, a systematic investigation of the effect of 2MEGA labeling (N-terminal dimethylation after lysine guanidination) on the proteome analysis of a membrane fraction of an Escherichia coli cell extract by 2-dimensional liquid chromatography MS/MS is presented. By a large-scale comparison of MS/MS spectra of native peptides with those from the 2MEGA-labeled peptides, the labeled peptides were found to undergo facile fragmentation with enhanced a1 or a1-related (a(1)-17 and a(1)-45) ions derived from all N-terminal amino acids in the MS/MS spectra; these ions are usually difficult to detect in the MS/MS spectra of nonderivatized peptides. The 2MEGA labeling alleviated the biased detection of arginine-terminated peptides that is often observed in MALDI and ESI MS experiments. 2MEGA labeling was found not only to increase the number of peptides and proteins identified but also to generate enhanced a1 or a1-related ions as a constraint to reduce the number of false positive identifications. In total, 640 proteins were identified from the E. coli membrane fraction, with each protein identified based on peptide mass and sequence match of one or more peptides using MASCOT database search algorithm from the MS/MS spectra generated by a quadrupole time-of-flight mass spectrometer. Among them, the subcellular locations of 336 proteins are presently known, including 258 membrane and membrane-associated proteins (76.8%). Among the classified proteins, there was a dramatic increase in the total number of integral membrane proteins identified in the 2MEGA-labeled sample (153 proteins) versus the unlabeled sample (77 proteins).  相似文献   

5.
Fully acetylated methyl x-deoxy-x-fluoro-alpha-D-glucopyranosides have been studied using electron impact and ammonia chemical ionisation mass spectrometry. Mass analysed metastable ion kinetic energy spectroscopy (MIKE), collisional activation (CID), and accelerated voltage scanning have been used to evaluate complete fragmentation schemes. Characteristic differences in the fragmentation of positional isomers were noted on analysis of the spectra, and these make it possible to determine the location of fluorine in the molecules studied. Collisionally activated fragmentation of [M-OCH3]+ ions, produced by electron impact, provides an alternative method for localisation of the fluorine atoms. To the contrary, MIKE and CID spectra of [M + NH4]+ cluster ions produced by chemical ionisation did not afford such structural information.  相似文献   

6.
Protein phosphorylation modulates a myriad of biological functions, and its regulation is vital for proper cellular activity. Mass spectrometry is the enabling tool for phosphopeptide analysis, where recent instrumentation advances in both speed and sensitivity in linear ion trap and orbitrap technologies may yield more comprehensive phosphoproteomic analyses in less time. Protein phosphorylation analysis by MS relies on structural information derived through controlled peptide fragmentation. Compared with traditional, ion-trap-based collision-induced dissociation (CID), a more recent type of fragmentation termed HCD (higher energy collisional dissociation) provides beam type CID tandem MS with detection of fragment ions at high resolution in the orbitrap mass analyzer. Here we compared HCD to traditional CID for large-scale phosphorylation analyses of murine brain under three separate experimental conditions. These included a same-precursor analysis where CID and HCD scans were performed back-to-back, separate analyses of a phosphotyrosine peptide immunoprecipitation experiment, and separate whole phosphoproteome analyses. HCD generally provided higher search engine scores with more peptides identified, thus out-performing CID for back-to-back experiments for most metrics tested. However, for phosphotyrosine IPs and in a full phosphoproteome study of mouse brain, the greater acquisition speed of CID-only analyses provided larger data sets. We reconciled our results with those in direct contradiction from Nagaraj N, D'Souza RCJ et al. (J. Proteome Res. 9:6786, 2010). We conclude, for large-scale phosphoproteomics, CID fragmentation with rapid detection in the ion trap still produced substantially richer data sets, but the back-to-back experiments demonstrated the promise of HCD and orbitrap detection for the future.  相似文献   

7.
Protein and peptide mass analysis and amino acid sequencing by mass spectrometry is widely used for identification and annotation of post-translational modifications (PTMs) in proteins. Modification-specific mass increments, neutral losses or diagnostic fragment ions in peptide mass spectra provide direct evidence for the presence of post-translational modifications, such as phosphorylation, acetylation, methylation or glycosylation. However, the commonly used database search engines are not always practical for exhaustive searches for multiple modifications and concomitant missed proteolytic cleavage sites in large-scale proteomic datasets, since the search space is dramatically expanded. We present a formal definition of the problem of searching databases with tandem mass spectra of peptides that are partially (sub-stoichiometrically) modified. In addition, an improved search algorithm and peptide scoring scheme that includes modification specific ion information from MS/MS spectra was implemented and tested using the Virtual Expert Mass Spectrometrist (VEMS) software. A set of 2825 peptide MS/MS spectra were searched with 16 variable modifications and 6 missed cleavages. The scoring scheme returned a large set of post-translationally modified peptides including precise information on modification type and position. The scoring scheme was able to extract and distinguish the near-isobaric modifications of trimethylation and acetylation of lysine residues based on the presence and absence of diagnostic neutral losses and immonium ions. In addition, the VEMS software contains a range of new features for analysis of mass spectrometry data obtained in large-scale proteomic experiments. Windows binaries are available at http://www.yass.sdu.dk/.  相似文献   

8.
The dominant ions in MS/MS spectra of peptides, which have been fragmented by low-energy CID, are often b-, y-ions and their derivatives resulting from the cleavage of the peptide bonds. However, MS/MS spectra typically contain many more peaks. These can result not only from isotope variants and multiply charged replicates of the peptide fragmentation products but also from unknown fragmentation pathways, sample-specific or systematic chemical contaminations or from noise generated by the electronic detection system. The presence of this background complicates spectrum interpretation. Besides dramatically prolonged computation time, it can lead to incorrect protein identification, especially in the case of de novo sequencing algorithms. Here, we present an algorithm for detection and transformation of multiply charged peaks into singly charged monoisotopic peaks, removal of heavy isotope replicates, and random noise. A quantitative criterion for the recognition of some noninterpretable spectra has been derived as a byproduct. The approach is based on numerical spectral analysis and signal detection methods. The algorithm has been implemented in a stand-alone computer program called MS Cleaner that can be obtained from the authors upon request.  相似文献   

9.
We present a comprehensive, sensitive, and highly specific negative ion electrospray LC/MS method for identifying all structural classes of glucosinolates in crude plant extracts. The technique is based on the observation of simultaneous maxima in the abundances of the m/z 96 and 97 ions, generated by programmed cone voltage fragmentation, in the mass chromatogram. The abundance ratios lie in the range 1:2-1:4 ([m/z 96]/[m/z 97]). Examination of the corresponding full-scan mass spectra allows individual glucosinolates of all structural classes to be identified rapidly and with confidence. The use of linearly programmed cone voltage fragmentation enhances characteristic fragment ions without compromising the abundance of the analytically important [M - H]- ion and its associated (and analytically useful) sulfur isotope peaks. Detection limits are in the low nanogram range for full-scan, programmed cone voltage spectra. Comparison of the technique with LC/MS/MS methods (product ion, precursor ion, and constant neutral loss scans) has shown that the sensitivity and selectivity of the programmed cone voltage method is superior. Data obtained on a variety of plant extracts confirmed that the methodology was robust and reliable.  相似文献   

10.
Researchers have several options when designing proteomics experiments. Primary among these are choices of experimental method, instrumentation and spectral interpretation software. To evaluate these choices on a proteome scale, we compared triplicate measurements of the yeast proteome by liquid chromatography tandem mass spectrometry (LC-MS/MS) using linear ion trap (LTQ) and hybrid quadrupole time-of-flight (QqTOF; QSTAR) mass spectrometers. Acquired MS/MS spectra were interpreted with Mascot and SEQUEST algorithms with and without the requirement that all returned peptides be tryptic. Using a composite target decoy database strategy, we selected scoring criteria yielding 1% estimated false positive identifications at maximum sensitivity for all data sets, allowing reasonable comparisons between them. These comparisons indicate that Mascot and SEQUEST yield similar results for LTQ-acquired spectra but less so for QSTAR spectra. Furthermore, low reproducibility between replicate data acquisitions made on one or both instrument platforms can be exploited to increase sensitivity and confidence in large-scale protein identifications.  相似文献   

11.
Although genome databases have become the key for proteomic analyses, de novo sequencing remains essential for the study of organisms whose genomes have not been completed. In addition, post-translational modifications present a challenge in database searching. Recognition of the b or y-ion series in a peptide MS/MS spectrum as well as identification of the b1 - and yn-1 -ions can facilitate de novo analyses. Therefore, it is valuable to identify either amino-acid terminus. In previous work, we have demonstrated that peptides modified at the epsilon-amino group of lysine as a t-butyl peroxycarbamate derivative undergo free radical promoted peptide backbone fragmentation under low-energy collision-induced dissociation (CID) conditions. Here we explore the chemistry of the N-terminal amino group modified as a t-butyl peroxycarbamate. The conversion of N-terminal amines to peroxycarbamates of simple amino acids and peptides was studied with aryl t-butyl peroxycarbonates. ESI-MS/MS analysis of the peroxycarbamate adducts gave evidence of a product ion corresponding to the neutral loss of the N-terminal side chain (R), thus identifying this residue. Further fragmentation (MS3) of product ions formed by N-terminal residue side-chain loss (-R) exhibited an m/z shift of the b-ions equal to the neutral loss of R, therefore labeling the b-ion series. The study was extended to the analysis of a protein tryptic digest where the SALSA algorithm was used to identify spectra containing these neutral losses. The method for N-terminus identification presented here has the potential for improvement of de novo analyses as well as in constraining peptide mass mapping database searches.  相似文献   

12.
Twelve naturally occurring glucosinolates displaying alkenyl, hydroxylated, methylsulphinyl, aromatic and indole side chains were investigated by both negative and positive ion electrospray ionisation-tandem mass spectrometry (ESI-MS/MS). In order to resolve the MS/MS spectra obtained from the anion and cation molecular ions of glucosinolates, the different fragments were investigated by MSn experiments using an ion trap spectrometer. The MS3 spectra obtained permitted possible fragmentation schemes to be proposed. These were supported by accurate mass measurements of some characteristic diagnostic ions with the help of a quadrupole time-of-flight instrument. The negative ion ESI-MS/MS behaviour of the different glucosinolates investigated in this study confirmed previously described patterns and revealed new interesting structural informative fragments. Some are common to all the glucosinolates and others are highly specific for a type of variable side chain. The positive ion ESI-MS/MS fragments obtained from the [MNa+Na]+ or [MK+K]+ molecular ions did not provide complementary specific diagnostic ions. Nevertheless, when compared with the negative ion mode, the daughter ions appeared more homogenous and with a better relative abundance for all of the 12 compounds studied. Moreover, the positive ion mode appeared to be more efficient than the negative mode for the study of methoxylated glucosinolates and should be useful to detect the glucosinolates present as organic salts in crude plant extracts.  相似文献   

13.
Recent advances in MS instrumentation and progresses in phosphopeptide enrichment, in conjunction with more powerful data analysis tools, have facilitated unbiased characterization of thousands of site‐specific phosphorylation events. Combined with stable isotope labeling by amino acids in cell culture metabolic labeling, these techniques have made it possible to quantitatively evaluate phosphorylation changes in various physiological states in stable cell lines. However, quantitative phosphoproteomics in primary cells and tissues remains a major technical challenge due to the lack of adequate techniques for accurate quantification. Here, we describe an integrated strategy allowing for large scale quantitative profiling of phosphopeptides in complex biological mixtures. In this technique, the mixture of proteolytic peptides was subjected to phosphopeptide enrichment using a titania affinity column, and the purified phosphopeptides were subsequently labeled with iTRAQ reagents. After further fractionation by strong‐cation exchange, the peptides were analyzed by LC‐MS/MS on an Orbitrap mass spectrometer, which collects CID and high‐energy collisional dissociation (HCD) spectra sequentially for peptide identification and quantitation. We demonstrate that direct phosphopeptide enrichment of protein digests by titania affinity chromatography substantially improves the efficiency and reproducibility of phosphopeptide proteomic analysis and is compatible with downstream iTRAQ labeling. Conditions were optimized for HCD normalized collision energy to balance the overall peptide identification and quantitation using the relative abundances of iTRAQ reporter ions. Using this approach, we were able to identify 3557 distinct phosphopeptides from HeLa cell lysates, of which 2709 were also quantified from HCD scans.  相似文献   

14.
Data analysis and interpretation remain major logistical challenges when attempting to identify large numbers of protein phosphorylation sites by nanoscale reverse-phase liquid chromatography/tandem mass spectrometry (LC-MS/MS) (Supplementary Figure 1 online). In this report we address challenges that are often only addressable by laborious manual validation, including data set error, data set sensitivity and phosphorylation site localization. We provide a large-scale phosphorylation data set with a measured error rate as determined by the target-decoy approach, we demonstrate an approach to maximize data set sensitivity by efficiently distracting incorrect peptide spectral matches (PSMs), and we present a probability-based score, the Ascore, that measures the probability of correct phosphorylation site localization based on the presence and intensity of site-determining ions in MS/MS spectra. We applied our methods in a fully automated fashion to nocodazole-arrested HeLa cell lysate where we identified 1,761 nonredundant phosphorylation sites from 491 proteins with a peptide false-positive rate of 1.3%.  相似文献   

15.
Positive ion mass spectra were obtained from several coumarin oral anticoagulants (phenprocoumon, warfarin, acenocoumarol and dicoumarol) and derivatives by liquid chromatography—thermospray mass spectrometry (LC—TSP-MS) and liquid chromatography—electron impact mass spectrometry (LC—EI-MS) to assess the use of LC—MS methods for the determination of these compounds in biological materials. LC—TSP mass spectra showed a single [M + 1]+ ion with no fragmentation; LC—EI mass spectra showed fragment ions which were similar in mass and relative intensities to those obtained by conventional EI-MS. These data should serve as a basis for the development of LC—MS methods for the qualitative and quantitative analysis of coumarin anticoagulants in biological samples. LC—TSP-MS was applied to the determination of phenprocoumon in a plasma extract from an anticoagulated patient.  相似文献   

16.
Unambiguous identification of tandem mass spectra is a cornerstone in mass-spectrometry-based proteomics. As the study of post-translational modifications (PTMs) by means of shotgun proteomics progresses in depth and coverage, the ability to correctly identify PTM-bearing peptides is essential, increasing the demand for advanced data interpretation. Several PTMs are known to generate unique fragment ions during tandem mass spectrometry, the so-called diagnostic ions, which unequivocally identify a given mass spectrum as related to a specific PTM. Although such ions offer tremendous analytical advantages, algorithms to decipher MS/MS spectra for the presence of diagnostic ions in an unbiased manner are currently lacking. Here, we present a systematic spectral-pattern-based approach for the discovery of diagnostic ions and new fragmentation mechanisms in shotgun proteomics datasets. The developed software tool is designed to analyze large sets of high-resolution peptide fragmentation spectra independent of the fragmentation method, instrument type, or protease employed. To benchmark the software tool, we analyzed large higher-energy collisional activation dissociation datasets of samples containing phosphorylation, ubiquitylation, SUMOylation, formylation, and lysine acetylation. Using the developed software tool, we were able to identify known diagnostic ions by comparing histograms of modified and unmodified peptide spectra. Because the investigated tandem mass spectra data were acquired with high mass accuracy, unambiguous interpretation and determination of the chemical composition for the majority of detected fragment ions was feasible. Collectively we present a freely available software tool that allows for comprehensive and automatic analysis of analogous product ions in tandem mass spectra and systematic mapping of fragmentation mechanisms related to common amino acids.In mass spectrometry (MS)-based proteomics, protein mixtures are digested into peptides using standard proteases such as trypsin or Lys-C (1). The complex peptide mixture is separated via liquid chromatography (LC) directly coupled to MS, and the eluting peptide ions are electrosprayed into the vacuum of the mass spectrometer, where a peptide mass spectrum is recorded (2). In the mass spectrometer, selected peptide ions are fragmented, most commonly through the collision of peptide molecular ions with inert gas molecules in a technique referred to as either collision-induced dissociation (CID)1 or collisionally activated dissociation (3, 4). During this energetic collision, some of the deposited kinetic energy is converted into internal energy, which results in peptide bond breakage and fragmentation of the molecular peptide ion into sequence-specific ions (5). Identification of the analyzed peptide is then performed by scanning the measured peptide mass and list of fragment masses against a protein sequence database (6). Overall this approach provides a rapid and sensitive means of determining the primary sequence of peptides.During the fragmentation step, various types of fragment ions can be observed in the MS/MS spectrum. Their occurrence depends on the primary sequence of the investigated peptide, the amount of internal energy deposited, how the energy was introduced, the charge state, and other factors (7). Low-energy dissociation conditions as observed in ion trap CID mainly generate fragment ions containing sequence-specific amino acid information about the investigated peptides (8). This occurs because the energy deposited during this fragmentation method primarily facilitates the fragmentation of precursor ions yielding single peptide bond fragmentation between individual amino acids (9).With faster activation methods, such as beam-type/quadrupole CID (10), generated fragments can undergo further collisions. Multiple bonds can thereby be fragmented, giving rise to internal sequence ions, which in combination with regular b- and y-type cleavage produce specific amino-immonium ions (11). These immonium ions appear in the very low m/z range of the MS/MS spectrum, and for the majority of naturally occurring amino acids such immonium ions are unique for that particular residue (12, 13). Exceptions for this are the leucine/isoleucine and lysine/glutamine pairs, which produce immonium ions with the same chemical mass. Overall, immonium ions can confirm the presence of certain amino acid residues in a peptide, whereas information regarding the position or the stoichiometry of these amino acid residues cannot be ascertained. Because tryptic peptides on average contain 9 to 12 amino acids, they frequently contain many different residues; as a result, the analytical information hidden in the regular amino acid immonium ions might be limited. However, immonium ions can be used to support peptide sequence assignment during proteomic database searching (14).Contrary to the 20 naturally occurring residues, many amino acids can be modified by various post-translational modifications (PTMs), and these PTM-bearing residues can themselves generate unique immonium ions—the so-called diagnostic ions. The two most prominent examples are phosphorylation of tyrosine and acetylation of lysine residues (15), which generate diagnostic ions at m/z = 216.0424 and m/z = 126.0917, respectively. Thus, the presence of these unique ions in a MS/MS spectrum can unequivocally identify the sequenced peptide as harboring a given PTM. Evidently, knowledge regarding modification-specific diagnostic ions is of great importance for the identification and validation of modified peptides in MS-based proteomics (16, 17). Additionally, such PTM-specific information can be informative in targeted proteomics approaches facilitating MS/MS precursor ion scanning (18) and become valuable in post-acquisition analysis involving extracted ion chromatograms for specific m/z values. Moreover, information regarding diagnostic ions can be a powerful addition to analytical approaches such as selected reaction monitoring, a targeted technique that relies on ion-filtering capabilities to comprehensively study peptides and PTMs (19).Currently only a minor subset of modified amino acids has been investigated for diagnostic ions, primarily because of the lack of unbiased methods for mapping such ions in large-scale proteomics experiments. The identification of diagnostic ions is a labor-intensive endeavor, requiring manual interpretation of large numbers of MS/MS spectra for proper validation of low-mass fragmentation ions. As a result, most studies on diagnostic ions have been performed on a few selected synthetic peptides, as the interrogation of larger biological datasets has not been feasible (15, 20).Here we describe a proteomic approach utilizing a novel algorithm based upon binning of tandem mass spectra for fast and automated mapping of analogously occurring product ions. The developed algorithm is completely independent of instrument type and fragmentation technique employed, but it performs more favorably under experimental conditions that augment the generation of immonium ions. As a result, the performance of the algorithm is benchmarked on data derived from LTQ Orbitrap Velos and Q Exactive mass spectrometers, which exhibit improved HCD performance (2123). HCD has proven to be a powerful fragmentation technique, particularly for PTM analysis (24, 25), as no low mass detection cutoff is observed as compared with fragmentation experiments on ion trap mass spectrometers (26). Moreover, the beam-type energy deposited during HCD fragmentation allows for improved generation of both immonium and other sequence-related ions relative to CID (27, 28). Additionally, HCD experiments are performed at very high resolution, yielding high mass accuracy (<10 ppm) on all detected fragment ions, which allows the algorithm to utilize very narrow mass binning and hence easily determine the exact chemical composition of any novel detected ions.Briefly, the algorithm takes all significantly identified MS/MS spectra and bins them together in discrete mass bins. As commonly occurring ions, such as immonium and diagnostic ions, will have same chemical composition and consequently the same m/z, they will cluster in the same mass bins, whereas sequence-specific fragment ions will scatter across the binned mass range. For validation of the presented approach, we mapped known and novel diagnostic ions from a variety of PTM-bearing amino acids, demonstrating the sensitivity and specificity of the method. Moreover, we demonstrate that mass spectral binning additionally can be employed for automated mapping of composition-specific neutral losses from large-scale proteomic experiments.  相似文献   

17.
A novel, MS-based approach for the relative quantification of proteins, relying on the derivatization of primary amino groups in intact proteins using isobaric tag for relative and absolute quantitation (iTRAQ) is presented. Due to the isobaric mass design of the iTRAQ reagents, differentially labeled proteins do not differ in mass; accordingly, their corresponding proteolytic peptides appear as single peaks in MS scans. Because quantitative information is provided by isotope-encoded reporter ions that can only be observed in MS/MS spectra, we analyzed the fragmentation behavior of ESI and MALDI ions of peptides generated from iTRAQ-labeled proteins using a TOF/TOF and/or a QTOF instrument. We observed efficient liberation of reporter ions for singly protonated peptides at low-energy collision conditions. In contrast, increased collision energies were required to liberate the iTRAQ label from lysine side chains of doubly charged peptides and, thus, to observe reporter ions suitable for relative quantification of proteins with high accuracy. We then developed a quantitative strategy that comprises labeling of intact proteins by iTRAQ followed by gel electrophoresis and peptide MS/MS analyses. As proof of principle, mixtures of five different proteins in various concentration ratios were quantified, demonstrating the general applicability of the approach presented here to quantitative MS-based proteomics.  相似文献   

18.
Guo J  Prokai L 《Journal of Proteomics》2011,74(11):2360-2369
Posttranslational carbonylation of proteins by the covalent attachment of the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) is a biomarker of oxidative stress. Tandem mass spectrometry (MS/MS) has become an essential tool for characterization of this modification. Chemical tagging methods have been used to facilitate the immunoaffinity-based enrichment or even quantification of HNE-modified peptides and proteins. With MS/MS spectra of the untagged modified peptides considered as references, a comparative evaluation is presented focusing on the impact of affinity-tagging with four carbonyl-specific reagents (2,4-dinitrophenyl hydrazine, biotin hydrazide, biotinamidohexanoic acid hydrazide and N'-aminooxymethylcarbonyl-hydrazino D-biotin) on collision-induced dissociation of the tagged HNE-carbonylated peptides. Our study has shown that chemical labeling may not be carried out successfully for all the peptides and with all the reagents. The attachment of a tag usually cannot circumvent the occurrence of strong neutral losses observed with untagged species and, in addition, fragmentation of the introduced tag may also happen. Chemical tagging of certain peptides may, nevertheless, afford more sequence ions upon MS/MS than the untagged carbonylated peptide, especially when Michael addition of the lipid peroxidation product occurs on cysteine residues. Therefore, tagging may increase the confidence of identifications of HNE-modified peptides by database searches.  相似文献   

19.
A major limitation in identifying peptides from complex mixtures by shotgun proteomics is the ability of search programs to accurately assign peptide sequences using mass spectrometric fragmentation spectra (MS/MS spectra). Manual analysis is used to assess borderline identifications; however, it is error-prone and time-consuming, and criteria for acceptance or rejection are not well defined. Here we report a Manual Analysis Emulator (MAE) program that evaluates results from search programs by implementing two commonly used criteria: 1) consistency of fragment ion intensities with predicted gas phase chemistry and 2) whether a high proportion of the ion intensity (proportion of ion current (PIC)) in the MS/MS spectra can be derived from the peptide sequence. To evaluate chemical plausibility, MAE utilizes similarity (Sim) scoring against theoretical spectra simulated by MassAnalyzer software (Zhang, Z. (2004) Prediction of low-energy collision-induced dissociation spectra of peptides. Anal. Chem. 76, 3908-3922) using known gas phase chemical mechanisms. The results show that Sim scores provide significantly greater discrimination between correct and incorrect search results than achieved by Sequest XCorr scoring or Mascot Mowse scoring, allowing reliable automated validation of borderline cases. To evaluate PIC, MAE simplifies the DTA text files summarizing the MS/MS spectra and applies heuristic rules to classify the fragment ions. MAE output also provides data mining functions, which are illustrated by using PIC to identify spectral chimeras, where two or more peptide ions were sequenced together, as well as cases where fragmentation chemistry is not well predicted.  相似文献   

20.
Phospholipids, including ether phospholipids, are composed of numerous isomeric and isobaric species that have the same backbone and acyl chains. This structural resemblance results in similar fragmentation patterns by collision-induced dissociation of phospholipids regardless of class, yielding complicated MS/MS spectra when isobaric species are analyzed together. Furthermore, the presence of isobaric species can lead to misassignment of species when made solely based on their molecular weights. In this study, we used normal-phase HPLC for ESI-MS/MS analysis of phospholipids from bovine heart mitochondria. Class separation by HPLC eliminates chances for misidentification of isobaric species from different classes of phospholipids. Chromatography yields simple MS/MS spectra without interference from isobaric species, allowing clear identification of peaks corresponding to fragmented ions containing monoacylglycerol backbone derived from losing one acyl chain. Using these fragmented ions, we characterized individual and isomeric species in each class of mitochondrial phospholipids, including unusual species, such as PS, containing an ether linkage and species containing odd-numbered acyl chains in cardiolipin, PS, PI, and PG. We also characterized monolysocardiolipin and dilysocardiolipin, the least abundant but nevertheless important mitochondrial phospholipids. The results clearly show the power of HPLC-MS/MS for identification and characterization of phospholipids, including minor species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号