首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in soil organic carbon (SOC) storage have the potential to affect global climate; hence identifying environments with a high capacity to gain or lose SOC is of broad interest. Many cross-site studies have found that SOC-poor soils tend to gain or retain carbon more readily than SOC-rich soils. While this pattern may partly reflect reality, here we argue that it can also be created by a pair of statistical artifacts. First, soils that appear SOC-poor purely due to random variation will tend to yield more moderate SOC estimates upon resampling and hence will appear to accrue or retain more SOC than SOC-rich soils. This phenomenon is an example of regression to the mean. Second, normalized metrics of SOC change—such as relative rates and response ratios—will by definition show larger changes in SOC at lower initial SOC levels, even when the absolute change in SOC does not depend on initial SOC. These two artifacts create an exaggerated impression that initial SOC stocks are a major control on SOC dynamics. To address this problem, we recommend applying statistical corrections to eliminate the effect of regression to the mean, and avoiding normalized metrics when testing relationships between SOC change and initial SOC. Careful consideration of these issues in future cross-site studies will support clearer scientific inference that can better inform environmental management.  相似文献   

2.
Research in the soil of the tropics mostly has demonstrated the decline of soil organic carbon (SOC) after conversion of primary forest to plantation and cultivated lands. This paper illustrates the dynamics of SOC on the island of Java, Indonesia, from 1930 to 2010. We used 2002 soil profile observations containing organic carbon (C) analysis in the topsoil, which were collected by the Indonesian Center for Agricultural Land Resources Research & Development from 1923 to 2007. Results show the obvious decline of SOC values from around 2% in 1930–1940 to 0.8% in 1960–1970. However, there has been an increase of SOC content since 1970, with a median level of 1.1% in the year 2000. Our analysis suggests that the human influence and agricultural practices on SOC in Java have been a stronger influence than the environmental factors. SOC for the top 10 cm has shown a net accumulation rate of 0.2–0.3 Mg C ha?1 yr?1 during the period 1990–2000. These findings give rise to optimism for increased soil C sequestration in the tropics.  相似文献   

3.
The great whales (baleen and sperm whales), through their massive size and wide distribution, influence ecosystem and carbon dynamics. Whales directly store carbon in their biomass and contribute to carbon export through sinking carcasses. Whale excreta may stimulate phytoplankton growth and capture atmospheric CO2; such indirect pathways represent the greatest potential for whale-carbon sequestration but are poorly understood. We quantify the carbon values of whales while recognizing the numerous ecosystem, cultural, and moral motivations to protect them. We also propose a framework to quantify the economic value of whale carbon as populations change over time. Finally, we suggest research to address key unknowns (e.g., bioavailability of whale-derived nutrients to phytoplankton, species- and region-specific variability in whale carbon contributions).  相似文献   

4.
Beta diversity can provide insights into the processes that regulate communities subjected to frequent disturbances, such as flood pulses, which control biodiversity in floodplains. However, little is known about which processes structure beta diversity of amphibians in floodplains. Here, we tested the influence of flood pulses on the richness, composition, and beta diversity of amphibians in Amazonian floodplain environments. We also evaluated indicator species for each environment. We established linear transects in three environments: low várzea, high várzea, and macrophyte rafts. Species richness decreased and beta diversity increased according to the susceptibility of habitats to flood pulses. Indicator species differed among environments according to forest succession promoted by the flood pulse. The decrease in species richness between high and low várzea is due to non‐random extinctions. The higher rates of species turnover between várzeas and macrophyte rafts are driven by the colonization of species adapted to open areas. Our results highlight that the maintenance of complex environments is needed to protect biodiversity in floodplains.  相似文献   

5.
The world's soils contain about 1500 Gt of organic carbon to a depth of 1m and a further 900 Gt from 1--2m. A change of total soil organic carbon by just 10% would thus be equivalent to all the anthropogenic CO2 emitted over 30 years. Warming is likely to increase both the rate of decomposition and net primary production (NPP), with a fraction of NPP forming new organic carbon. Evidence from various sources can be used to assess whether NPP or the rate of decomposition has the greater temperature sensitivity, and, hence, whether warming is likely to lead to an increase or decrease in soil organic carbon.Evidence is reviewed from laboratory-based incubations, field measurements of organic carbon storage, carbon isotope ratios and soil respiration with either naturally varying temperatures or after experimentally increasing soil temperatures. Estimates of terrestrial carbon stored at the Last Glacial Maximum are also reviewed. The review concludes that the temperature dependence of organic matter decomposition can be best described as: d(T) = exp[3.36 (T – 40)/(T + 31.79)] where d(T) is the normalised decomposition rate at temperature T (in °C). In this equation, decomposition rate is normalised to 1 at 40 °C.The review concludes by simulating the likely changes in soil organic carbon with warming. In summary, it appears likely that warming will have the effect of reducing soil organic carbon by stimulating decomposition rates more than NPP. However, increasing CO2 is likely to simultaneously have the effect of increasing soil organic carbon through increases in NPP. Any changes are also likely to be very slow. The net effect of changes in soil organic carbon on atmospheric CO2 loading over the next decades to centuries is, therefore, likely to be small.  相似文献   

6.
Hendrey  G. R.  Long  S. P.  McKee  I. F.  Baker  N. R. 《Photosynthesis research》1997,51(3):179-184
Rapid and irregular variations of atmospheric CO2 concentrations (ca) occur in nature but are often very much more pronounced and frequent when artificially enriching CO2 concentrations in simulating the future atmosphere. Therefore, there is the danger that plant responses at elevated CO2 in fumigation experiments might reflect the increased frequency and amplitude of fluctuation in concentration as well as the increase in average concentration. Tests were conducted to determine whether the photosynthetic process could sense such fluctuations in ca. Instantaneous chlorophyll fluorescence (Ft) was monitored for wheat leaves (Triticum aestivum cv. Hereward) exposed to ca oscillating symmetrically by 225 mol mol-1 about a ca set point concentration of 575 or 650 mol mol-1. No Ft response was detected to half-cycle step changes in ca lasting less than two seconds, but at half-cycles of two seconds or longer, the response of Ft was pronounced. In order to determine the in vivo linear electron transport rate (J) the O2 concentration was maintained at 21 mmol mol-1 to eliminate photorespiration. J which is directly proportional to the rate of CO2 uptake under these conditions, was not significantly changed at half-cycles of 30 s or less but was decreased by half-cycles of 60 s or longer. It was inferred that if duration of an oscillation is less than 1 minute and is symmetrical with respect to mean CO2 concentration, then there is no effect on current carbon uptake, but oscillations of 1 minute or more decrease photosynthetic CO2 uptake in wheat.  相似文献   

7.
J F Flood  A J Silver  J E Morley 《Peptides》1990,11(2):265-270
The usual paradigm in which peptides are tested for their effect on food intake involves measuring intake of readily available food. In the lever press apparatus, the subjects must "work" to get food. Such work has traditionally been used as a means of measuring motivation. Mice were trained to press a lever for milk reinforcement. After achieving a stable level of performance, we tested the effects of gastrin-related peptide (GRP), bombesin (BBS) and cholecystokinin octapeptide (CCK-8) on lever pressing. All three peptides suppressed lever pressing for milk reinforcement. Prefeeding mice with milk increased the suppression of lever pressing to a greater extent in peptide-treated mice than in saline-treated mice. As the duration of prefeeding increased, lever pressing decreased. When mice were required to make more lever presses to obtain milk, both saline- and CCK-8-treated mice increased their lever pressing. However, saline-treated mice pressed at a higher rate than CCK-8-treated mice. Unlike the results obtained with saline and CCK-8, administration of a known gustatory adversant, lithium chloride, suppressed lever pressing to the same degree in mice fed or not fed prior to training. The results are consistent with the hypothesis that these peptides act as satiety agents.  相似文献   

8.

Soil aggregates govern soil organic carbon (SOC) sequestration. But, sparse understanding about the process leads to inaccuracy in predicting potential of soil to stabilize C in warming world. We appraised effects of 43 years of fertilization on relative temperature sensitivity of SOC decomposition (Q10) in soil aggregates to know whether SOC quality or quantity governs Q10. Treatments were: fallow, control, 100% recommended dose of nitrogen (N), N and phosphorus (NP), N, P and potassium (NPK), and NPK + farmyard manure (FYM) (NPK + FYM). Macroaggregates, microaggregates and silt + clay (s + c) fractions were incubated for 16 weeks at 25, 35 and 45 °C, SOC quality (R0) and Q10 were computed. SOC mineralization from macro- and micro- aggregates were 34 and 28% higher than s + c across the treatments. The s + c fraction of NPK + FYM had ~ 41, 40 and 24% higher C decay rate than NPK plots at 25, 35 and 45 °C, respectively. For s + c fraction Q10 increased over other aggregates. Mean Q10 of s + c fraction was ~ 18.3 and 17.5% higher than macro and micro-aggregate-C, respectively. R0 was the lowest for NPK + FYM, suggesting long-term manuring with balanced NPK significantly enhance recalcitrance of C. We observed Q10 of macroaggregates and s + c fraction is controlled by C quality but C quantity governs Q10 of microaggregates in Vertisol. Specifically, microaggregates of NPK + FYM were more temperature sensitive, and could be vulnerable to C loss. Hence, practices facilitating microaggregate formation should be avoided. Thus, we recommend manure application for facilitating C sequestration.

  相似文献   

9.
An important but little understood aspect of bioenergy production is its overall impact on soil carbon (C) and nitrogen (N) cycling. Increased energy production from biomass will inevitably lead to higher input of its by‐products to the soil as amendments or fertilizers. However, it is still unclear how these by‐products will influence microbial transformation processes in soil, and thereby its greenhouse gas (GHG) balance and organic C stocks. In this study, we assess C and N dynamics and GHG emissions following application of different bioenergy by‐products to soil. Ten by‐products were selected from different bioenergy chains: anaerobic digestion (manure digestates), first generation biofuel by‐products (rapeseed meal, distilled dried grains with solubles), second‐generation biofuel by‐products (nonfermentables from hydrolysis of different lignocellulosic materials) and pyrolysis (biochars). These by‐products were added at a constant N rate (150 kg N ha?1) to a sandy soil and incubated at 20 °C. After 60 days, >80% of applied C had been emitted as CO2 in the first‐generation biofuel residue treatments. For second‐generation biofuel residues this was approximately 60%, and for digestates 40%. Biochars were the most stable residues with the lowest CO2 loss (between 0.5% and 5.8% of total added C). Regarding N2O emissions, addition of first‐generation biofuel residues led to the highest total N2O emissions (between 2.5% and 6.0% of applied N). Second‐generation biofuel residues emitted between 1.0% and 2.0% of applied N, with the original feedstock material resulting in similar N2O emissions and higher C mineralization rates. Anaerobic digestates resulted in emissions <1% of applied N. The two biochars used in this study decreased N2O emissions below background values. We conclude that GHG dynamics of by‐products after soil amendment cannot be ignored and should be part of the lifecycle analysis of the various bioenergy production chains.  相似文献   

10.
It is often admitted that heat exchange in the airways is a major cause of exercise-induced asthma. Because a decrease in the inspiratory time/expiratory time ratio (TI/TE) decreases these exchanges, we postulated that it might decrease bronchoconstriction as well. Twenty-four asthmatic children, divided into three groups, underwent two exercise provocation tests, 24 hours apart (outdoor running for 6 min). The first test was identical for all the subjects. In the second test, the first group did not receive any instruction concerning breathing pattern. The second group was instructed to adopt equal inspiratory and expiratory times (TI/TE = 1). The third group had to adopt an expiratory time three times longer than inspiratory time (TI/TE = 1/3). The three groups displayed similar pulmonary function tests (FEV1 and FVC), cardiac frequency, and running performances. However, FEV1 significantly improved in the second session. This suggested that familiarization with the task and related psychological factors may influence asthma more than voluntary changes in TI/TE.This work was partly supported by the Institut National de la Santé et de la Recherche Médicale (CJF 89-09) and by the Institut Electricité Santé (grant No. 93 022 CS).  相似文献   

11.
Most investigations of biogenic habitat provision consider the promotion of local biodiversity by single species, yet habitat-forming species are often themselves components of diverse assemblages. Increased prevalence of anthropogenic changes to assemblages of habitat-forming species prompts questions about the importance of facilitator biodiversity to associated organisms. We used observational and short-term (30 days) manipulative studies of an intertidal seaweed system to test for the implications of changes in four components of biodiversity (seaweed species richness, functional group richness, species composition, and functional group composition) on associated small mobile invertebrate epifauna. We found that invertebrate epifauna richness and abundance were not influenced by changes in seaweed biodiversity. Invertebrate assemblage structure was in most cases not influenced by changes in seaweed biodiversity; only when algal assemblages were composed of monocultures of species with ‘foliose’ morphologies did we observe a difference in invertebrate assemblage structure. Correlations between algal functional composition and invertebrate assemblage structure were observed, but there was no correlation between algal species composition and invertebrate assemblage structure. These results suggest that changes in seaweed biodiversity are likely to have implications for invertebrate epifauna only under specific scenarios of algal change.  相似文献   

12.
Populations of the South American sea lion (SASL, Otaria byronia) have been intensely exploited for leather and oil in different parts of its distribution range throughout the 19th and 20th centuries, generating large changes in abundance. In Patagonia, the SASL population was reduced by more than 90% of its original abundance, and it began to recover after sealing ended. The aim of this work was to assess changes in size and shape of the skull related to changes in population abundance during the last 100 years. Using geometric morphometry techniques, we analyzed 145 individuals (68 males and 77 females) from Patagonia. Skulls were classified by sex, time period (harvest vs. postharvest), and decades of individual's birth. Results indicated that there were differences in skull size but not in shape discriminated by time period. Moreover, individuals of the postharvest period showed a decrease in the skull size during the last two decades, coinciding with the recovery in population abundance. Our results suggest the existence of a density-dependence response in somatic growth of SASL population of Patagonia.  相似文献   

13.
14.
In mofette fields, natural carbon dioxide springs, organisms have to stand extreme CO2 concentrations up to 100%. These hostile conditions are spatially small-scaled and further influenced by earth tides, wind and temperature. The present project investigated the influence of increased atmospheric CO2 concentration on spiders as representatives of above-ground organisms by means of pitfall traps in three mofette fields, differing in habitat conditions in the Plesná valley, eastern Cheb Basin, Czech Republic.Among the 71 recorded spider species four were rarely found in the Czech Republic. A canonical correspondence analysis revealed significant influences of environmental parameters on the spider assemblages. Two groups of spiders are clearly distinguishable, one being positively influenced by humidity and the second by temperature. A cluster analysis showed distinct and congruent results: spider assemblages of pitfall traps at spots with a mean CO2 concentration above 7.6% grouped close together and this grouping was independent of site. At >7.6% CO2 significantly fewer individuals and species were found in comparison to areas with lower CO2 concentration. Between 2.5 and 10% CO2, spiders indicated increased CO2 concentrations much more sensitively than endogeic organisms (Nematoda, Collembola) in a nearby mofette field. Unlike in nematodes, collembolans and plants, no mofettovageous or mofettophilous spiders were detected. In contrast to humidity, CO2 concentration and temperature, the vegetation cover was not among the factors, which significantly influenced spiders. This is explained by the fact that mofettophilous plants occurred at spots where almost no spiders could live. In a field experiment, most Pardosa pullata males tested passed a 30 cm long corridor with increased carbon dioxide concentration. These results and that of pitfall traps showed that relatively large and wandering specimens respectively were able to transit moderately hostile spots. Further experiments are necessary to find out if there is any active avoidance of high-CO2 areas by spiders.  相似文献   

15.
Do changes in floral odor cause speciation in sexually deceptive orchids?   总被引:8,自引:0,他引:8  
 We investigated differences in floral odor between two sympatric, closely related sexually deceptive orchid species, Ophrys fusca and O. bilunulata, which are specifically pollinated by Andrena nigroaenea and A. flavipes, respectively. We identified biologically active compounds by gas chromatography with electroantennographic detection using antennae of the pollinator bees. Alkanes, alkenes, aldehydes, and farnesyl hexanoate released electroantennographic reactions. The relative amounts of alkanes were mostly the same between the two orchid species, whereas the relative amounts of most alkenes were significantly different. On the grounds of these findings and behavioral experiments conducted in earlier studies, we suggest that the difference in relative amounts of alkenes is responsible for the selective attraction of pollinators in the two orchids. Speciation in this group of Ophrys orchids may be brought about by changes in pattern of alkenes, which lead to attraction of a different pollinator species and therefore reproductive isolation. Received November 22, 2001; accepted February 21, 2002 Published online: November 7, 2002 Addresses of the authors: Florian P. Schiestl* and Manfred Ayasse, Department of Evolutionary Biology, Institute of Zoology, University of Vienna, Althanstrasse 14, A-1090 Vienna. *Present address: Geobotanical Institute ETH, Zollikerstrasse 107, CH-8008 Zürich. (e-mail: schiestl@geobot.umnw.ethz.ch)  相似文献   

16.
Do changes in rainfall patterns affect semiarid annual plant communities?   总被引:1,自引:0,他引:1  
Question: Climate change models forecast a reduction in annual precipitation and more extreme events (less rainy days and longer drought periods between rainfall events), which may have profound effects on terrestrial ecosystems. Plant growth, population and community dynamics in dry environments are likely to be affected by these changes since productivity is already limited by water availability. We tested the effects of reduced precipitation and fewer rain events on three semiarid plant communities dominated by annual species. Location: Three semiarid plant communities from Almería province (SE Spain). Methods: Rain‐out shelters were set up in each community and watering quantity and frequency were manipulated from autumn to early summer. Plant productivity, cover and diversity were measured at the end of the experimental period. Results: We found that a 50% reduction in watering reduced productivity, plant cover and diversity in all three communities. However, neither the 25% reduction in watering nor changes in the frequency of watering events affected these parameters. Conclusions: The lack of response to small reductions in water could be due to the identity and resistance of the plant communities involved, which are adapted to rainfall variability characteristic of arid environments. Therefore, a rainfall reduction of 25% or less may not affect these plant communities in the short term, although higher reductions or long‐term changes in water availability would probably reduce productivity and diversity in these communities.  相似文献   

17.
Following the demonstration that the rate of evolutionary change in the amino acid sequences of cytochromes c of eukaryotic species was not constant either for a single line of phylogenetic descent during different evolutionary intervals or for separate lines of descent, the concept that neutral mutations account for the vast majority of the evolutionary variations could no longer be accepted. Previous studies had shown that all eukaryotic cytochromes c tested appeared to be functionally indistinguishable in their reaction with mitochondrial respiratory chain components. However, an examination of the kinetics at low ionic strength led to the discovery of a high affinity reaction of cytochrome c with cytochrome c oxidase that revealed large differences in activity between the cytochromes of the horse, baker's yeast and the protist Euglena. Observed Km values for this reaction of 10(-7) to 10(-8) M appear to represent actual dissociation constants, as demonstrated by direct binding studies of cytochrome c with purified cytochrome c oxidase. The high affinity reaction is sensitive to ionic strength and inhibited by ADP and ATP in the range of physiological concentrations, ATP being three times as effective as ADP. The possibility is discussed that this effect of ATP on cytochrome c binding to its oxidase could provide the basis of a mechanism for mitochondrial respiratory control. The demonstration of differences between cytochrome c of various species in this kinetic system opens the way to a systematic study of the possible evolutionary adaptations of cytochromes c to their oxidases.  相似文献   

18.
Climate change will exacerbate the degree of abiotic stress experienced by semi-arid ecosystems. While abiotic stress profoundly affects biotic interactions, their potential role as modulators of ecosystem responses to climate change is largely unknown. Using plants and biological soil crusts, we tested the relative importance of facilitative–competitive interactions and other community attributes (cover, species richness and species evenness) as drivers of ecosystem functioning along stress gradients in semi-arid Mediterranean ecosystems. Biotic interactions shifted from facilitation to competition along stress gradients driven by water availability and temperature. These changes were, however, dependent on the spatial scale and the community considered. We found little evidence to suggest that biotic interactions are a major direct influence upon indicators of ecosystem functioning (soil respiration, organic carbon, water-holding capacity, compaction and the activity of enzymes related to the carbon, nitrogen and phosphorus cycles) along stress gradients. However, attributes such as cover and species richness showed a direct effect on ecosystem functioning. Our results do not agree with predictions emphasizing that the importance of plant–plant interactions will be increased under climate change in dry environments, and indicate that reductions in the cover of plant and biological soil crust communities will negatively impact ecosystems under future climatic conditions.  相似文献   

19.
The carbon isotope composition (δ13C) of C3/C4 mixed grassland is reflected in the δ13C of diet, hair or faeces of grazers, if 13C discrimination (13Δ) between grassland vegetation and these tissues is known and constant. However, these relationships could be modified by selective grazing or differential digestibility of the C3 and C4 components, potentially creating a bias between grassland and grazer tissue δ13C. Importantly, these factors have never been studied in detail. We investigated the relation between δ13C of C3/C4 grassland vegetation and that of faeces and hair of sheep in a 3-year (2005–2007) experiment in the Inner Mongolian semi-arid steppe. The experiment employed six stocking rates (0.375–2.25 sheep ha?1 year?1; four replications), which allowed for a large variation in species composition, digestibility, and diet selection. Faecal-nitrogen content, a proxy for digestibility, decreased from 1.9% to 1.5% during the grazing period due to aging of the herbage. At the same time, the C3/C4 ratio decreased due to the later growth initiation of C4 species. 13Δ between diet and faeces (13ΔDF; 0.6‰) and between diet and hair (13ΔDH; ?3.9‰) were not influenced by stocking rate, period in the season or C3/C4 ratio. Moreover, faeces–hair discrimination (13ΔFH; ?4.3‰), which reflects differences between digestibility of the C3 and C4 components, did not vary along the different gradients. The δ13C of grassland vegetation can be estimated from the δ13C of sheep faeces and hair, provided that 13Δ was accounted for. This is useful for landscape- or regional-scale investigations or reconstruction of C3/C4 vegetation distribution from faeces and hair, which provide different temporal and spatial integration of grassland isotope signals.  相似文献   

20.
How long before a change in soil organic carbon can be detected?   总被引:3,自引:0,他引:3  
When planning sampling in an experiment where soil organic carbon (SOC) content is expected to change, it is necessary to know how many samples will need to be taken to demonstrate a change in SOC and after how long this change will be detectable. Much has been published on the number of samples required to demonstrate the minimum detectable difference in SOC, but less on how long it takes for this change to be detectable. In this paper, a model of SOC dynamics is used to estimate the minimum time taken for a change in total SOC content to become measurable under different carbon inputs, land uses and soil types. For free air carbon dioxide enrichment (FACE), and other experiments in which SOC is expected to increase, relationships between the percentage change in C inputs and the time taken to measure a change in SOC are presented, for two levels of sampling intensity corresponding to the maximum that is practically possible in most experiments (~100 samples) and that used regularly in field experiments (10–20 samples). In FACE experiments, where C inputs increase by a maximum of about 20–25%, SOC change could be detected with 90% confidence after about 6–10 years if a sampling regime allowing 3% change in background SOC level (probably requiring a very large number of samples) were used, but could not be detected at all if a sampling regime were used that allowed only a 15% change in background SOC to be detected. If increases in C inputs are much below 15%, it might not be possible to detect a change in soil C without an enormous number of samples. Relationships between the change in C inputs and the time taken to measure a change in SOC are robust over a range of soil types and land uses. The results demonstrate how models of SOC dynamics can be used to complement statistical power analyses for planning when, and how intensively, to sample soils during experiments. An advantage of the modelling approach demonstrated here is that estimates of the minimum time taken for a change in soil carbon to become detectable can be made, even before any detailed soil samples are taken, simply from estimates of the likely increase in carbon inputs to the soil (via expected changes in net primary production).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号