首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various sulfate-reducing bacteria of the genera Desulfovibrio and Desulfomicrobium were tested and compared for enzymatic reduction of chromate. Our study demonstrated that the ability to reduce chromate is widespread among sulfate-reducing bacteria. Among them, Desulfomicrobium norvegicum reduced Cr(VI) with the highest reaction rate. This strain grew in the presence of up to 500 μM chromate, but Cr(VI) reduction in the absence of sulfate was not associated with growth. The presence of chromate induced morphological changes and leakage of periplasmic proteins into the medium. The ability of isolated polyheme cytochromes c from sulfate- and sulfur-reducing bacteria to reduce chromate was also analyzed. Tetraheme cytochrome c 3(M r. 13,000) from Desulfomicrobium norvegicum showed twice as much activity as either tetraheme cytochrome c 3 from Desulfovibrio vulgaris strain Hildenborough or triheme cytochrome c 7 from Desulfuromonas acetoxidans. Results with cytochromes c 3 and other c-type cytochromes altered by site-directed mutagenesis indicated that negative redox potential hemes are crucial for metal reductase activity. The present study also demonstrated that the (Fe) hydrogenase from sulfate-reducing bacteria could reduce chromate. Received: 14 April 2000 / Received revision: 6 July 2000 / Accepted: 9 July 2000  相似文献   

2.
Hydrogenases in sulfate-reducing bacteria function as chromium reductase   总被引:6,自引:0,他引:6  
The ability of sulfate-reducing bacteria (SRB) to reduce chromate VI has been studied for possible application to the decontamination of polluted environments. Metal reduction can be achieved both chemically, by H2S produced by the bacteria, and enzymatically, by polyhemic cytochromes c3. We demonstrate that, in addition to low potential polyheme c-type cytochromes, the ability to reduce chromate is widespread among [Fe], [NiFe], and [NiFeSe] hydrogenases isolated from SRB of the genera Desulfovibrio and Desulfomicrobium. Among them, the [Fe] hydrogenase from Desulfovibrio vulgaris strain Hildenborough reduces Cr(VI) with the highest rate. Both [Fe] and [NiFeSe] enzymes exhibit the same Km towards Cr(VI), suggesting that Cr(VI) reduction rates are directly correlated with hydrogen consumption rates. Electron paramagnetic resonance spectroscopy enabled us to probe the oxidation by Cr(VI) of the various metal centers in both [NiFe] and [Fe] hydrogenases. These experiments showed that Cr(VI) is reduced to paramagnetic Cr(III), and revealed inhibition of the enzyme at high Cr(VI) concentrations. The significant decrease of both hydrogenase and Cr(VI)-reductase activities in a mutant lacking [Fe] hydrogenase demonstrated the involvement of this enzyme in Cr(VI) reduction in vivo. Experiments with [3Fe-4S] ferredoxin from Desulfovibrio gigas demonstrated that the low redox [Fe-S] (non-heme iron) clusters are involved in the mechanism of metal reduction by hydrogenases.  相似文献   

3.
We report the 1H, 13C, and 15N chemical shift assignments of both oxidized and reduced forms of an abundant periplasmic c-type cytochrome, designated ApcA, isolated from the acidophilic gram-negative facultatively anaerobic metal-reducing alphaproteobacterium Acidiphilium cryptum. These resonance assignments prove that ApcA is a monoheme cytochrome c 2 and the product of the Acry_2099 gene. An absence of resonance peaks in the NMR spectra for the 21N-terminal residues suggests that a predicted N-terminal signal sequence is cleaved. We also describe the preparation and purification of the protein in labeled form from laboratory cultures of A. cryptum growing on 13C- and 15N- labeled substrates.  相似文献   

4.
Washed cell suspensions of Desulfovibrio vulgaris rapidly reduced Cr(VI) to Cr(III) with H2 as the electron donor. The c3 cytochrome from this organism functioned as a Cr(VI) reductase. D. vulgaris may have advantages over previously described Cr(VI) reducers for the bioremediation of Cr(VI)-contaminated waters.  相似文献   

5.
The reduction of Cr(VI) by the metal-reducing bacterium Shewanella oneidensis MR-1 was evaluated, to determine the potential for exploiting Cr(VI) bioreduction as a means of treating chromate conversion coating (CCC) waste streams. Inclusion of Cr(VI) at concentrations ≥1 mM inhibited aerobic growth of S. oneidensis, but that organism was able to reduce Cr(VI) at a concentration of up to 1 mM under anaerobic, nongrowth conditions. S. oneidensis reduced Cr(VI) in the presence of common CCC constituents, with the exception of ferricyanide, when these CCC constituents were included at concentrations typical of CCC waste streams. Ferricyanide inhibited neither aerobic growth nor metabolism under aerobic, nitrate- or iron-reducing conditions, suggesting that the ferricyanide-depended inhibition of Cr(VI) reduction is not due to broad metabolic inhibition, but is specific to Cr(VI) reduction. Results indicate that under some conditions, the activities of metal-reducing bacteria, such as S. oneidensis, could be exploited for the removal of Cr(VI) from CCC waste streams under appropriate conditions.  相似文献   

6.
A pseudomonad (CRB5) isolated from a decommissioned wood preservation site reduced toxic chromate [Cr(VI)] to an insoluble Cr(III) precipitate under aerobic and anaerobic conditions. CRB5 tolerated up to 520 mg of Cr(VI) liter−1 and reduced chromate in the presence of copper and arsenate. Under anaerobic conditions it also reduced Co(III) and U(VI), partially internalizing each metal. Metal precipitates were also found on the surface of the outer membrane and (sometimes) on a capsule. The results showed that chromate reduction by CRB5 was mediated by a soluble enzyme that was largely contained in the cytoplasm but also found outside of the cells. The crude reductase activity in the soluble fraction showed a Km of 23 mg liter−1 (437 μM) and a Vmax of 0.98 mg of Cr h−1 mg of protein−1 (317 nmol min−1 mg of protein−1). Minor membrane-associated Cr(VI) reduction under anaerobiosis may account for anaerobic reduction of chromate under nongrowth conditions with an organic electron donor present. Chromate reduction under both aerobic and anaerobic conditions may be a detoxification strategy for the bacterium which could be exploited to bioremediate chromate-contaminated or other toxic heavy metal-contaminated environments.  相似文献   

7.
Bacteria can reduce toxic and carcinogenic Cr(VI) to insoluble and less toxic Cr(III). Thermus scotoductus SA-01, a South African gold mine isolate, has been shown to be able to reduce a variety of metals, including Cr(VI). Here we report the purification to homogeneity and characterization of a novel chromate reductase. The oxidoreductase is a homodimeric protein, with a monomer molecular mass of approximately 36 kDa, containing a noncovalently bound flavin mononucleotide cofactor. The chromate reductase is optimally active at a pH of 6.3 and at 65 degrees C and requires Ca(2+) or Mg(2+) for activity. Enzyme activity was also dependent on NADH or NADPH, with a preference for NADPH, coupling the oxidation of approximately 2 and 1.5 mol NAD(P)H to the reduction of 1 mol Cr(VI) under aerobic and anaerobic conditions, respectively. The K(m) values for Cr(VI) reduction were 3.5 and 8.4 microM for utilizing NADH and NADPH as electron donors, respectively, with corresponding V(max) values of 6.2 and 16.0 micromol min(-1) mg(-1). The catalytic efficiency (k(cat)/K(m)) of chromate reduction was 1.14 x 10(6) M(-1) s(-1), which was >50-fold more efficient than that of the quinone reductases and >180-fold more efficient than that of the nitroreductases able to reduce Cr(VI). The chromate reductase was identified to be encoded by an open reading frame of 1,050 bp, encoding a single protein of 38 kDa under the regulation of an Escherichia coli sigma(70)-like promoter. Sequence analysis shows the chromate reductase to be related to the old yellow enzyme family, in particular the xenobiotic reductases involved in the oxidative stress response.  相似文献   

8.
Cr(VI) (chromate) is a toxic, soluble environmental contaminant. Bacteria can reduce chromate to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of interest. Genetic and protein engineering of suitable enzymes can improve bacterial bioremediation. Many bacterial enzymes catalyze one-electron reduction of chromate, generating Cr(V), which redox cycles, generating excessive reactive oxygen species (ROS). Such enzymes are not appropriate for bioremediation, as they harm the bacteria and their primary end product is not Cr(III). In this work, the chromate reductase activities of two electrophoretically pure soluble bacterial flavoproteins—ChrR (from Pseudomonas putida) and YieF (from Escherichia coli)—were examined. Both are dimers and reduce chromate efficiently to Cr(III) (kcat/Km = ~2 × 104 M−1·s−1). The ChrR dimer generated a flavin semiquinone during chromate reduction and transferred >25% of the NADH electrons to ROS. However, the semiquinone was formed transiently and ROS diminished with time. Thus, ChrR probably generates Cr(V), but only transiently. Studies with mutants showed that ChrR protects against chromate toxicity; this is possibly because it preempts chromate reduction by the cellular one-electron reducers, thereby minimizing ROS generation. ChrR is thus a suitable enzyme for further studies. During chromate reduction by YieF, no flavin semiquinone was generated and only 25% of the NADH electrons were transferred to ROS. The YieF dimer may therefore be an obligatory four-electron chromate reducer which in one step transfers three electrons to chromate and one to molecular oxygen. As a mutant lacking this enzyme could not be obtained, the role of YieF in chromate protection could not be directly explored. The results nevertheless suggest that YieF may be an even more suitable candidate for further studies than ChrR.  相似文献   

9.
Bacillus strain QC1-2, isolated from a chromium-polluted zone, was selected by its high ability to both tolerate and reduce hexavalent chromium [Cr(VI)] to less-toxic trivalent chromium [Cr(III)]. Cell suspensions of strain QC1-2 rapidly reduced Cr(VI), in both aerobic and anaerobic conditions, to Cr(III) which remained in the supernatant. Cr(VI) reduction was dependent on the addition of glucose but sulfate, an inhibitor of chromate transport, had no effect. Studies with permeabilized cells and cell extracts showed that the Cr(VI) reductase of strain QC1-2 is a soluble NADH-dependent enzyme.  相似文献   

10.
The present study was aimed to localize and characterize hexavalent chromate [Cr(VI)] reductase activity of the extreme alkaliphilic Amphibacillus sp. KSUCr3 (optimal growth pH 10.5). The resting cells were able to reduce about 62 % of the toxic heavy metal Cr(VI) at initial concentration of 200 μM within 30 min. Cell permeabilization resulted in decrease of Cr(VI) reduction in comparison to untreated cells. Enzymatic assays of different sub-cellular fractions of Amphibacillus sp. KSUCr3 demonstrated that the Cr(VI) reductase was mainly associated with the membranous fraction and expressed constitutively. In vitro studies of the crude enzyme indicated that copper ion was essential for Cr(VI) reductase activity. In addition, Ca2? and Mn2? slightly stimulated the chromate reductase activity. Glucose was the best external electron donor, showing enhancement of the enzyme activity by about 3.5-fold. The K (m) and V (max) determined for chromate reductase activity in the membranous fraction were 23.8 μM Cr(VI) and 72 μmol/min/mg of protein, respectively. Cr(VI) reductase activity was maximum at 40 °C and pH 7.0 and it was significantly inhibited in the presence of disulfide reducers (2-mercaptoethanol), ion chelating agent (EDTA), and respiratory inhibitors (CN and Azide). Complete reduction of 100 and 200 μM of Cr(VI) by membrane associated enzyme were observed within 40 and 180 min, respectively. However, it should be noted that biochemical characterization has been done with crude enzyme only, and that final conclusion can only be drawn with the purified enzyme.  相似文献   

11.
Abstract

Industrial activities discharge a large amount of wastes containing hexavalent chromium [Cr(VI)] into the environment, which poses a threat to human health. Microorganisms can be used as efficient tools for Cr(VI) remediation. In this study, the Cr(VI) removal capacity of Aspergillus niger was evaluated. A. niger could tolerate and reduce Cr(VI) by nearly 100% at concentrations ranging from 10 to 50?mg/L. Overall, almost 97% of the Cr(VI) removal was caused by extracellular reduction whereas 3% was caused by accumulation. Extracellular reduction was mediated by non-enzymatic cell secretions, whereas extracellular accumulated Cr formed precipitates on the hyphal surfaces and was partially absorbed on the cell wall. Cr(VI) also entered the cell and was reduced by the strong chromate reductase activity in cell-free extracts and then accumulated within the cell. These data suggest that A. niger, which has the capacity to remove Cr(VI) by reduction and accumulation, can be a useful tool for Cr(VI) remediation.  相似文献   

12.
Cr(VI) (chromate) is a widespread environmental contaminant. Bacterial chromate reductases can convert soluble and toxic chromate to the insoluble and less toxic Cr(III). Bioremediation can therefore be effective in removing chromate from the environment, especially if the bacterial propensity for such removal is enhanced by genetic and biochemical engineering. To clone the chromate reductase-encoding gene, we purified to homogeneity (>600-fold purification) and characterized a novel soluble chromate reductase from Pseudomonas putida, using ammonium sulfate precipitation (55 to 70%), anion-exchange chromatography (DEAE Sepharose CL-6B), chromatofocusing (Polybuffer exchanger 94), and gel filtration (Superose 12 HR 10/30). The enzyme activity was dependent on NADH or NADPH; the temperature and pH optima for chromate reduction were 80°C and 5, respectively; and the Km was 374 μM, with a Vmax of 1.72 μmol/min/mg of protein. Sulfate inhibited the enzyme activity noncompetitively. The reductase activity remained virtually unaltered after 30 min of exposure to 50°C; even exposure to higher temperatures did not immediately inactivate the enzyme. X-ray absorption near-edge-structure spectra showed quantitative conversion of chromate to Cr(III) during the enzyme reaction.  相似文献   

13.
The chromate reductase purified from Pseudomonas ambigua was found to be homologous with several nitroreductases. Escherichia coli DH5α and Vibrio harveyi KCTC 2720 nitroreductases were chosen for the present study, and their chromate-reducing activities were determined. A fusion between glutathione S-transferase (GST) and E. coli DH5α NfsA (GST-EcNfsA), a fusion between GST and E. coli DH5α NfsB (GST-EcNfsB), and a fusion between GST and V. harveyi KCTC 2720 NfsA (GST-VhNfsA) were prepared for their overproduction and easy purification. GST-EcNfsA, GST-EcNFsB, and GST-VhNFsA efficiently reduced nitrofurazone and 2,4,6-trinitrotoluene (TNT) as their nitro substrates. The Km values for GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA for chromate reduction were 11.8, 23.5, and 5.4 μM, respectively. The Vmax values for GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA were 3.8, 3.9, and 10.7 nmol/min/mg of protein, respectively. GST-VhNfsA was the most effective of the three chromate reductases, as determined by each Vmax/Km value. The optimal temperatures of GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA for chromate reduction were 55, 30, and 30°C, respectively. Thus, it is confirmed that nitroreductase can also act as a chromate reductase. Nitroreductases may be used in chromate remediation. GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA have a molecular mass of 50 kDa and exist as a monomer in solution. Thin-layer chromatography showed that GST-EcNfsA, GST-EcNfsB, and GST-VhNfsA contain FMN as a cofactor. GST-VhNfsA reduced Cr(VI) to Cr(III). Cr(III) was much less toxic to E. coli than Cr(VI).  相似文献   

14.
Kinetic parameters and the role of cytochrome c3 in sulfate, Fe(III), and U(VI) reduction were investigated in Desulfovibrio vulgaris Hildenborough. While sulfate reduction followed Michaelis-Menten kinetics (Km = 220 μM), loss of Fe(III) and U(VI) was first-order at all concentrations tested. Initial reduction rates of all electron acceptors were similar for cells grown with H2 and sulfate, while cultures grown using lactate and sulfate had similar rates of metal loss but lower sulfate reduction activities. The similarities in metal, but not sulfate, reduction with H2 and lactate suggest divergent pathways. Respiration assays and reduced minus oxidized spectra were carried out to determine c-type cytochrome involvement in electron acceptor reduction. c-type cytochrome oxidation was immediate with Fe(III) and U(VI) in the presence of H2, lactate, or pyruvate. Sulfidogenesis occurred with all three electron donors and effectively oxidized the c-type cytochrome in lactate- or pyruvate-reduced, but not H2-reduced cells. Correspondingly, electron acceptor competition assays with lactate or pyruvate as electron donors showed that Fe(III) inhibited U(VI) reduction, and U(VI) inhibited sulfate loss. However, sulfate reduction was slowed but not halted when H2 was the electron donor in the presence of Fe(III) or U(VI). U(VI) loss was still impeded by Fe(III) when H2 was used. Hence, we propose a modified pathway for the reduction of sulfate, Fe(III), and U(VI) which helps explain why these bacteria cannot grow using these metals. We further propose that cytochrome c3 is an electron carrier involved in lactate and pyruvate oxidation and is the reductase for alternate electron acceptors with higher redox potentials than sulfate.  相似文献   

15.

Background

In order to study the mechanism of U(VI) reduction, the effect of deleting c-type cytochrome genes on the capacity of Geobacter sulfurreducens to reduce U(VI) with acetate serving as the electron donor was investigated.

Results

The ability of several c-type cytochrome deficient mutants to reduce U(VI) was lower than that of the wild type strain. Elimination of two confirmed outer membrane cytochromes and two putative outer membrane cytochromes significantly decreased (ca. 50–60%) the ability of G. sulfurreducens to reduce U(VI). Involvement in U(VI) reduction did not appear to be a general property of outer membrane cytochromes, as elimination of two other confirmed outer membrane cytochromes, OmcB and OmcC, had very little impact on U(VI) reduction. Among the periplasmic cytochromes, only MacA, proposed to transfer electrons from the inner membrane to the periplasm, appeared to play a significant role in U(VI) reduction. A subpopulation of both wild type and U(VI) reduction-impaired cells, 24–30%, accumulated amorphous uranium in the periplasm. Comparison of uranium-accumulating cells demonstrated a similar amount of periplasmic uranium accumulation in U(VI) reduction-impaired and wild type G. sulfurreducens. Assessment of the ability of the various suspensions to reduce Fe(III) revealed no correlation between the impact of cytochrome deletion on U(VI) reduction and reduction of Fe(III) hydroxide and chelated Fe(III).

Conclusion

This study indicates that c-type cytochromes are involved in U(VI) reduction by Geobacter sulfurreducens. The data provide new evidence for extracellular uranium reduction by G. sulfurreducens but do not rule out the possibility of periplasmic uranium reduction. Occurrence of U(VI) reduction at the cell surface is supported by the significant impact of elimination of outer membrane cytochromes on U(VI) reduction and the lack of correlation between periplasmic uranium accumulation and the capacity for uranium reduction. Periplasmic uranium accumulation may reflect the ability of uranium to penetrate the outer membrane rather than the occurrence of enzymatic U(VI) reduction. Elimination of cytochromes rarely had a similar impact on both Fe(III) and U(VI) reduction, suggesting that there are differences in the routes of electron transfer to U(VI) and Fe(III). Further studies are required to clarify the pathways leading to U(VI) reduction in G. sulfurreducens.  相似文献   

16.
Industrial wastewater is often polluted by Cr(VI) compounds, presenting a serious environmental problem. This study addresses the removal of toxic, mutagenic Cr(VI) by means of microbial reduction to Cr(III), which can then be precipitated as oxides or hydroxides and extracted from the aquatic system. A strain of Staphylococcus epidermidis L-02 was isolated from a bacterial consortium used for the remediation of a chromate-contaminated constructed wetland system. This strain reduced Cr(VI) by using pyruvate as an electron donor under anaerobic conditions. The aims of the present study were to investigate the specific rate of Cr(VI) reduction by the strain L-02, the effects of chromate and nitrate (available as electron acceptors) on the strain, and the interference of chromate and nitrate reduction processes. The presence of Cr(VI) decreased the growth rate of the bacterium. Chromate and nitrate reduction did not occur under sterile conditions but was observed during tests with the strain L-02. The presence of nitrate increased both the specific Cr(VI) reduction rate and the cell number. Under denitrifying conditions, Cr(VI) reduction was not inhibited by nitrite, which was produced during nitrate reduction. The average specific rate of chromate reduction reached 4.4 μmol Cr 1010 cells−1 h−1, but was only 2.0 μmol Cr 1010 cells−1 h−1 at 20 °C. The maximum specific rate was as high as 8.8–9.8 μmol Cr 1010 cells−1 h−1. The role of nitrate in chromate reduction is discussed.  相似文献   

17.
《Process Biochemistry》2007,42(10):1475-1479
A Gram-positive moderately halophilic chromate reducing bacterial strain was isolated from effluents of tanneries, and identified as Nesterenkonia sp. strain MF2 by phenotypic characterization and 16S rRNA analysis. The strain could tolerate up to 600 mM of chromate and completely reduced 0.2 mM highly toxic and soluble Cr(VI) (as CrO42−) into almost non-toxic and insoluble Cr(III) in 24 h under aerobic condition.The maximum chromate removal was exhibited in 1.5 M NaCl at 35 °C and pH 8.0. Initial Cr(VI) concentration until 0.4 mM did not have a significant effect on Cr(VI) reduction. The isolate was capable of chromate reduction in the presence of various concentrations of salts. The chromate reduction corresponded with growth of bacteria and reached a maximum level at the end of exponential phase.  相似文献   

18.
Hexavalent chromium contamination is a serious problem due to its high toxicity and carcinogenic effects on the biological systems. The enzymatic reduction of toxic Cr(VI) to the less toxic Cr(III) is an efficient technology for detoxification of Cr(VI)-contaminated industrial effluents. In this regard, a chromate reductase enzyme from a novel Ochrobactrum sp. strain Cr-B4, having the ability to detoxify Cr(VI) contaminated sites, has been partially purified and characterized. The molecular mass of this chromate reductase was found to be 31.53 kD, with a specific activity 14.26 U/mg without any addition of electron donors. The temperature and pH optima for chromate reductase activity were 40°C and 8.0, respectively. The activation energy (Ea) for the chromate reductase was found to be 34.7 kJ/mol up to 40°C and the activation energy for its deactivation (Ed) was found to be 79.6 kJ/mol over a temperature range of 50–80°C. The frequency factor for activation of chromate reductase was found to be 566.79 s?1, and for deactivation of chromate reductase it was found to be 265.66 × 103 s?1. The reductase activity of this enzyme was affected by the presence of various heavy metals and complexing agents, some of which (ethylenediamine tetraacetic acid [EDTA], mercaptoethanol, NaN3, Pb2+, Ni2+, Zn2+, and Cd2+) inhibited the enzyme activity, while metals like Cu2+ and Fe3+ significantly enhanced the reductase activity. The enzyme followed Michaelis–Menten kinetics with Km of 104.29 µM and a Vmax of 4.64 µM/min/mg.  相似文献   

19.
Hexavalent chromium is a serious and widespread environmental pollutant. Although many bacteria have been identified that can transform highly water-soluble and toxic Cr(VI) to insoluble and relatively non-toxic Cr(III), bacterial bioremediation of Cr(VI) pollution is limited by a number of issues, in particular chromium toxicity to the remediating cells. To address this we sought to develop an immobilized enzymatic system for Cr(VI) remediation. To identify novel Cr(VI) reductase enzymes we first screened cell extracts from an Escherichia coli library of soluble oxidoreductases derived from a range of bacteria, but found that a number of these enzymes can reduce Cr(VI) indirectly, via redox intermediates present in the crude extracts. Instead, activity assays for 15 candidate enzymes purified as His6-tagged proteins identified E. coli NemA as a highly efficient Cr(VI) reductase (kcat/KM  = 1.1×105 M−1s−1 with NADH as cofactor). Fusion of nemA to the polyhydroxyalkanoate synthase gene phaC from Ralstonia eutropha enabled high-level biosynthesis of functionalized polyhydroxyalkanoate granules displaying stable and active NemA on their surface. When these granules were combined with either Bacillus subtilis glucose dehydrogenase or Candida boidinii formate dehydrogenase as a cofactor regenerating partner, high levels of chromate transformation were observed with only low initial concentrations of expensive NADH cofactor being required, the overall reaction being powered by consumption of the cheap sacrificial substrates glucose or formic acid, respectively. This system therefore offers promise as an economic solution for ex situ Cr(VI) remediation.  相似文献   

20.
A transposon insertion mutant has been identified in a Desulfovibrio desulfuricans G20 mutant library that does not grow in the presence of 2 mM U(VI) in lactate-sulfate medium. This mutant has also been shown to be deficient in the ability to grow with 100 μM Cr(VI) and 20 mM As(V). Experiments with washed cells showed that this mutant had lost the ability to reduce U(VI) or Cr(VI), providing an explanation for the lower tolerance. A gene encoding a cyclic AMP (cAMP) receptor protein (CRP) was identified as the site of the transposon insertion. The remainder of the mre operon (metal reduction) contains genes encoding a thioredoxin, thioredoxin reductase, and an additional oxidoreductase whose substrate has not been predicted. Expression studies showed that in the mutant, the entire operon is downregulated, suggesting that the CRP may be involved in regulating expression of the whole operon. Exposure of the cells to U(VI) resulted in upregulation of the entire operon. CdCl2, a specific inhibitor of thioredoxin activity, inhibits U(VI) reduction by washed cells and inhibits growth of cells in culture when U(VI) is present, confirming a role for thioredoxin in U(VI) reduction. The entire mre operon was cloned into Escherichia coli JM109 and the transformant developed increased U(VI) resistance and the ability to reduce U(VI) to U(IV). The oxidoreductase protein (MreG) from this operon was expressed and purified from E. coli. In the presence of thioredoxin, thioredoxin reductase, and NADPH, this protein was shown to reduce both U(VI) and Cr(VI), providing a mechanism for the cytoplasmic reduction of these metals.Previous studies have shown that soluble U(VI) can be reduced to the less-soluble U(IV) by pure cultures of bacteria (19, 20, 25). This process can be useful for in situ reduction, which results in uranium precipitation and therefore decreased mobility in groundwater (8, 33). Desulfovibrio desulfuricans G20 and Desfulovibrio vulgaris, neither of which can use U(VI) as a respiratory electron acceptor, have been shown to directly reduce U(VI) (19, 24), and the mechanism for U(VI) reduction has been addressed. A purified hydrogenase and periplasmic cytochrome c3 from cell extracts of D. vulgaris will reduce U(VI) to U(IV) with hydrogen as the electron donor (19), suggesting that cytochrome c3 of D. vulgaris may be directly involved in U(VI) reduction. When a cytochrome c3 mutant of D. desulfuricans G20 was generated, it would not reduce U(VI) with H2 as the electron donor (25); however, growth and U(VI) reduction occurred with lactate as the electron donor, although at lower rates than the wild type. Cytochrome c3 was also found to be bound to insoluble U(IV), providing further evidence that this protein may be involved in U(VI) reduction (24). Electron microscopic images showed that reduced U(IV) was not only present in the periplasm but also in the cytoplasm (28), indicating that the periplasmic cytochrome c3 may be only partially responsible for the in vivo U(VI) reduction process, with an additional pathway in the cytoplasm.In order to identify this additional mechanism, transposon insertion mutants were generated. This mutant library has also been used to identify genes involved in sediment fitness (10, 21) and syntrophic growth (16). In this study, the mutants were screened for loss of U(VI) resistance. A mutant was identified that was sensitive to U(VI) and would not grow with 2 mM U(VI) or reduce it in suspensions of washed cells. This was the only mutant identified that would not reduce U(VI) in both tests. The disrupted operon (named mre, for metal reduction) was characterized, and it is shown here that the mechanism for the U(VI) reduction process involves at least three genes, including thioredoxin, thioredoxin reductase, and an additional metal oxidoreductase. Some or all of these components are likely also responsible for Cr(VI) and As(V) reduction by this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号