首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu  Jiankang  Mori  Akitane 《Neurochemical research》1999,24(11):1479-1497
Stress may contribute to aging acceleration and age-related degenerative diseases. Stress and adaptation to stress require numerous homeostatic adjustments including hormones, neurotransmitters, oxidants, and other mediators. The stress-induced hormones, neurotransmitters, and oxidants all have beneficial, but also harmful effects if out of balance. Therefore, the homeostasis of stress and adaptation should be governed by the hormone balance, neurotransmitter balance, and oxidant balance, as well as the interactions among these substances. The imbalance and the over-interaction of these balances may ultimately cause increased oxidant generation and oxidative damage to biomolecules. This increased oxidative damage may add to the oxidant burden associated with normal aerobic metabolism, which in itself, generates oxidants, causes accumulation of oxidative damage in mitochondria, and contributes to normal aging. Therefore, the stress-associated increase of oxidative damage may, in part, contribute to stress-associated aging acceleration and age-related neurodegenerative diseases.  相似文献   

2.
Cardiac mitochondrial bioenergetics, oxidative stress, and aging   总被引:2,自引:0,他引:2  
Mitochondria have been a central focus of several theories of aging as a result of their critical role in bioenergetics, oxidant production, and regulation of cell death. A decline in cardiac mitochondrial function coupled with the accumulation of oxidative damage to macromolecules may be causal to the decline in cardiac performance with age. In contrast, regular physical activity and lifelong caloric restriction can prevent oxidative stress, delay the onset of morbidity, increase life span, and reduce the risk of developing several pathological conditions. The health benefits of life long exercise and caloric restriction may be, at least partially, due to a reduction in the chronic amount of mitochondrial oxidant production. In addition, the available data suggest that chronic exercise may serve to enhance antioxidant enzyme activities, and augment certain repair/removal pathways, thereby reducing the amount of oxidative tissue damage. However, the characterization of age-related changes to cardiac mitochondria has been complicated by the fact that two distinct populations of mitochondria exist in the myocardium: subsarcolemmal mitochondria and interfibrillar mitochondria. Several studies now suggest the importance of studying both mitochondrial populations when attempting to elucidate the contribution of mitochondrial dysfunction to myocardial aging. The role that mitochondrial dysfunction and oxidative stress play in contributing to cardiac aging will be discussed along with the use of lifelong exercise and calorie restriction as countermeasures to aging. superoxide anion; longevity; postmitotic; calorie restriction; subsarcolemmal, interfibrillar, exercise  相似文献   

3.
Renal fibrosis is the common pathological feature in a variety of chronic kidney diseases. Aging is highly associated with the progression of renal fibrosis. Among several determinants, mitochondrial dysfunction plays an important role in aging. However, the underlying mechanisms of mitochondrial dysfunction in age‐related renal fibrosis are not elucidated. Herein, we found that Wnt/β‐catenin signaling and renin–angiotensin system (RAS) activity were upregulated in aging kidneys. Concomitantly, mitochondrial mass and functions were impaired with aging. Ectopic expression of Klotho, an antagonist of endogenous Wnt/β‐catenin activity, abolished renal fibrosis in d ‐galactose (d ‐gal)‐induced accelerated aging mouse model and significantly protected renal mitochondrial functions by preserving mass and diminishing the production of reactive oxygen species. In an established aging mouse model, dickkopf 1, a more specific Wnt inhibitor, and the mitochondria‐targeted antioxidant mitoquinone restored mitochondrial mass and attenuated tubular senescence and renal fibrosis. In a human proximal tubular cell line (HKC‐8), ectopic expression of Wnt1 decreased biogenesis and induced dysfunction of mitochondria, and triggered cellular senescence. Moreover, d ‐gal triggered the transduction of Wnt/β‐catenin signaling, which further activated angiotensin type 1 receptor (AT1), and then decreased the mitochondrial mass and increased cellular senescence in HKC‐8 cells and primary cultured renal tubular cells. These effects were inhibited by AT1 blocker of losartan. These results suggest inhibition of Wnt/β‐catenin signaling and the RAS could slow the onset of age‐related mitochondrial dysfunction and renal fibrosis. Taken together, our results indicate that Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction.  相似文献   

4.
Protective effect of the inhibition of the renin-angiotensin system on aging   总被引:16,自引:0,他引:16  
Experimental studies indicate that chronic long-term inhibition of the renin-angiotensin system (RAS) can prevent most of the deleterious effects due to aging in the cardiovascular system and in the kidney of the normal mouse and rat. In this review, all the information available on this subject provided by several studies performed by our research group during the last years is been described. Treatment was initiated either after weaning or at 12 months of age that is about half the normal life span of the rat. A converting enzyme inhibitor: enalapril or an angiotensin II type 1 (AT1) receptor blocker: losartan were used to inhibit the RAS. Cognitive behaviour, emotionality, and locomotor activity were also determined at 10 and 18 months of age in treated since weaning and untreated control rats to elucidate the participation of angiotensin II in memory disfunction. A similar observation was obtained in animals treated from 12 to 18 months of age. Results have demonstrated a significant protective effect on the function and the structure of the cardiovascular system, the kidney and the brain in all the treated animals. Damage observed at 12 months of age was not very significant, but treatment stop further deterioration that was evident in untreated animals. The similarity of the results detected with either enalapril or losartan treatment, clearly indicates that most of the effects are exerted through AT1 receptors. Analysis of the nitric oxide and antioxidant enzymes systems suggest that the protective effect is related to an antioxidant action of the RAS inhibitors and a reduced formation of reactive oxygen species. AngII inhibition might produce changes in the mechanisms of oxidative stress specially at the mitochondrial level. Prevention of mitochondrial decrease and/or damage would be related with the delay of the normal aging process.  相似文献   

5.
Mitochondrial oxidative decay, which is a major contributor to aging, is accelerated by many common micronutrient deficiencies. One major mechanism is inhibition of the pathway of heme biosynthesis in mitochondria, which causes a deficit of heme-a. Heme-a, only found in Complex IV, is selectively diminished, resulting in oxidant leakage and accelerated mitochondrial decay, which leads to DNA damage, neural decay, and aging. We emphasize those deficiencies, which appear to cause damage through this mechanism, particularly minerals such as iron (25% of menstruating women ingest <50% of the RDA) or zinc (10% of the population ingest <50% of the RDA). Several vitamin deficiencies, such as biotin or pantothenic acid, also increase mitochondrial oxidants through this mechanism. Additionally, other minerals such as magnesium and manganese that play a role in mitochondrial metabolism, but do not affect heme directly, are discussed. An optimum intake of micronutrients could tune up metabolism and give a marked increase in health, particularly for the poor, elderly, and obese, at little cost.  相似文献   

6.
Taurine chloramine (TN-Cl) is one of the most abundant compounds generated by activated neutrophils. In contrast to HOCl, which causes necrosis, TN-Cl is a potent inducer of apoptosis in tumor cells. Here we show that the apoptosis induced by TN-Cl in human B lymphoma cells is dependent upon oxidant-mediated mitochondrial damage, a decrease in mitochondrial membrane potential, and caspase-9 activation. Further, we show that TN-Cl is taken up into the cells and is concentrated in the mitochondria, where it induces opening of the permeability transition pore and mitochondrial swelling. Identical activity is seen upon treatment of isolated mitochondria with TN-Cl and is blocked by the permeability transition pore inhibitors bongkrekic acid and cyclosporin A, as well as by the sulfhydryl-reducing agent tris(2-carboxyethyl)-phosphine. The data suggest that TN-Cl causes apoptosis through direct damage to the mitochondria.  相似文献   

7.
Knowledge of location and intracellular subcompartmentalization is essential for the understanding of redox processes, because oxidants, owing to their reactive nature, must be generated close to the molecules modified in both signaling and damaging processes. Here we discuss known redox characteristics of various mitochondrial microenvironments. Points covered are the locations of mitochondrial oxidant generation, characteristics of antioxidant systems in various mitochondrial compartments, and diffusion characteristics of oxidants in mitochondria. We also review techniques used to measure redox state in mitochondrial subcompartments, antioxidants targeted to mitochondrial subcompartments, and methodological concerns that must be addressed when using these tools.  相似文献   

8.
Leakage of mitochondrial oxidants contributes to a variety of harmful conditions ranging from neurodegenerative diseases to cellular senescence. We describe here, however, a physiological and heretofore unrecognized role for mitochondrial oxidant release. Mitochondrial metabolism of pyruvate is demonstrated to activate the c-Jun N-terminal kinase (JNK). This metabolite-induced rise in cytosolic JNK1 activity is shown to be triggered by increased release of mitochondrial H(2)O(2). We further demonstrate that in turn, the redox-dependent activation of JNK1 feeds back and inhibits the activity of the metabolic enzymes glycogen synthase kinase 3beta and glycogen synthase. As such, these results demonstrate a novel metabolic regulatory pathway activated by mitochondrial oxidants. In addition, they suggest that although chronic oxidant production may have deleterious effects, mitochondrial oxidants can also function acutely as signaling molecules to provide communication between the mitochondria and the cytosol.  相似文献   

9.
Altered redox dynamics contribute to physiological aging and Parkinson’s disease (PD). This is reflected in the substantia nigra (SN) of PD patients as lowered antioxidant levels and elevated oxidative damage. Contrary to this observation, we previously reported that non-SN regions such as caudate nucleus and frontal cortex (FC) exhibited elevated antioxidants and lowered mitochondrial and oxidative damage indicating constitutive protective mechanisms in PD brains. To investigate whether the sub-cellular distribution of antioxidants could contribute to these protective effects, we examined the distribution of antioxidant/oxidant markers in the neuropil fractions [synaptosomes, non-synaptic mitochondria and cytosol] of FC from PD (n = 9) and controls (n = 8). In the control FC, all the antioxidant activities [Superoxide dismutase (SOD), glutathione (GSH), GSH peroxidase (GPx), GSH-S-transferase (GST)] except glutathione reductase (GR) were the highest in cytosol, but several fold lower in mitochondria and much lower in synaptosomes. However, FC synaptosomes from PD brains had significantly higher levels of GSH (p = 0.01) and related enzymes [GPx (p = 0.02), GR (p = 0.06), GST (p = 0.0001)] compared to controls. Conversely, mitochondria from the FC of PD cases displayed elevated SOD activity (p = 0.02) while the GSH and related enzymes were relatively unaltered. These changes in the neuropil fractions were associated with unchanged or lowered oxidative damage. Further, the mitochondrial content in the synaptosomes of both PD and control brains was ≥five-fold lower compared to the non-synaptic mitochondrial fraction. Altered distribution of oxidant/antioxidant markers in the neuropil fractions of the human brain during aging and PD has implications for (1) degenerative and protective mechanisms (2) distinct antioxidant mechanisms in synaptic terminals compared to other compartments.  相似文献   

10.
It is postulated that antioxidant properties of American ginseng root mediate its cardioprotective actions. The antioxidant capabilities of the American ginseng root have been demonstrated previously, however, the berry of the American ginseng has not yet been evaluated. In this study, we tested the American ginseng berry extract (AGBE) for its antioxidant effects in cell-free chemical systems using H(2)O(2)/FeSO(4) to generate hydroxyl radicals which were measured by a fluorescent probe, 2', 7'-dichlorofluorescin diacetate (DCFH/DA). Xanthine/xanthine oxidase was used to generate superoxide anion, which was measured by a fluorescent probe dihydroethidium (DHE). We found that AGBE decreased fluorescence significantly, suggesting that AGBE scavenges oxygen free radicals. We further tested whether AGBE (0.1-1 mg/ml) can protect cardiomyocytes from oxidative injury induced by exogenous or endogenous oxidants. Cells were exposed to either H(2)O(2) or antimycin A (a mitochondrial electron transport chain site III inhibitor that augments mitochondrial oxidant production). The resulting oxidant stress was measured using DCFH/DA and the cell death was assessed using propidium iodide staining. Pretreatment with AGBE (1 mg/ml) significantly attenuated DCF fluorescence by 49% or 85% and reduced cell death by 59% or 63% in cells exposed to H(2)O(2) or antimycin A, respectively. When the effects of extracts from berry and root of American ginseng were compared in cardiomyocytes exposed to antimycin A, we observed that AGBE conferred greater antioxidant protection at the same dose. We conclude that AGBE is a potent antioxidant that protects cardiomyocytes against oxidant-mediated injury and this protection is partly mediated by its free radical scavenging properties.  相似文献   

11.
Cardiac mitochondria are composed of two distinct subpopulations: one beneath the sarcolemma (subsarcolemmal mitochondria: SSM), and another along the myofilaments (interfibrillary mitochondria: IFM). Previous studies suggest a preferential loss of IFM function with age; however, the age-related changes in oxidative stress in these mitochondrial subpopulations have not been examined. To this end, the changes in mitochondrial antioxidant capacity, oxidant output, and oxidative damage to Complex IV in IFM and SSM from young and old rats were studied. Results show no apparent differences in any parameters examined between IFM and SSM from young rats. However, relative to young, only IFM from old rats had a significantly higher rate of oxidant production and a decline in mitochondrial ascorbate levels and GSH redox status. The age-related decline in mitochondrial antioxidant capacity in IFM was accompanied by a marked loss in glutaredoxin and GSSG reductase activities, suggesting a diminished reductive capacity in IFM with age. Moreover, the loss in Complex IV activity was limited to the IFM of old rats, which was accompanied by a 4-fold increase in 4-hydroxynonenal-modified Complex IV. Thus, mitochondrial decay is not uniform and further indicates that myofibrils may be uniquely under oxidative stress in the aging heart.  相似文献   

12.
The relationship between oxidants and organismal aging was first articulated through the free radical theory of aging. One of the major predictions of the free radical theory of aging is that oxidative stress shortens organisms’ lifespan because of an increased level of oxidants, which are damaging to macromolecules. However, challenging the role of oxidants in age‐related diseases, there is now sufficient evidence that antioxidant supplements do not provide significant health benefits. Interestingly, in addition to an increase in oxidant‐mediated macromolecules damage, there is convincing experimental data to support the role of senescent cells in the process of aging. Here, the current knowledge regarding the role of oxidants and cellular senescence in organismal aging is reviewed and it is proposed that, in addition to the role of oxidants as inducers of macromolecular damage, oxidants may also function as regulators of signaling pathways involved in the establishment of cellular senescence. If this role for oxidants is established, it may be necessary to modify the free radical theory of aging from “Organisms age because cells accumulate reactive oxygen species‐dependent damage over time” to: “Organisms age because cells accumulate oxidants’‐dependent damage and oxidants’‐dependent senescent characteristics over time.”  相似文献   

13.
The mainstay of asthma therapy, glucocorticosteroids (GCs) have among their therapeutic effects the inhibition of inflammatory cytokine production and induction of eosinophil apoptosis. In the absence of prosurvival cytokines (e.g., GM-CSF), eosinophils appear to be short-lived, undergoing apoptosis over 96 h in vitro. In a dose-dependent manner, GC further enhances apoptosis, while prosurvival cytokines inhibit apoptosis and antagonize the effect of GC. The mechanisms of eosinophil apoptosis, its enhancement by GC, and antagonism of GC by GM-CSF are not well-understood. As demonstrated in this study, baseline apoptosis of eosinophils resulted from oxidant-mediated mitochondrial injury that was significantly enhanced by GC. Mitochondrial injury was detected by early and progressive loss of mitochondrial membrane potential and the antioxidant protein, Mn superoxide dismutase (SOD). Also observed was the activation/translocation of the proapoptotic protein, Bax, to mitochondria. Underscoring the role of oxidants was the inhibition of mitochondrial changes and apoptosis with culture in hypoxia, or pretreatment with a flavoprotein inhibitor or a SOD mimic. GCs demonstrated early (40 min) and late (16 h) activation of proapoptotic c-Jun NH2-terminal kinase (JNK) and decreased the antiapoptotic protein X-linked inhibitor of apoptosis, a recently demonstrated inhibitor of JNK activation. Similarly, inhibition of JNK prevented GC-enhanced mitochondrial injury and apoptosis. Importantly, GM-CSF prevented GC-induced loss of X-linked inhibitor of apoptosis protein, late activation of JNK, and mitochondrial injury even in the face of unchanged oxidant production, loss of MnSOD, and early JNK activation. These data demonstrate that oxidant-induced mitochondrial injury is pivotal in eosinophil apoptosis, and is enhanced by GC-induced prolonged JNK activation that is in turn inhibited by GM-CSF.  相似文献   

14.
Lifelong caloric restriction (CR) reduces the rate of mitochondrial oxidant production and the accumulation of oxidized proteins and prevents some of the age-associated decline in 20S proteasome activity. However, few studies have investigated how rapidly the beneficial effects of CR take place. We investigated whether 2 mo of CR in 6-mo-old rats would be of sufficient duration to elicit these beneficial changes. Mitochondrial oxidant production was significantly diminished in the CR rats compared with the ad libitum-fed animals. Short-term CR also caused a significant decrease in mitochondrial superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities, but there were no differences in cytosolic SOD and GPX activities, whereas mitochondrial and cytosolic catalase (CAT) activity was increased with CR. However, protein carbonyl content was significantly elevated in both the mitochondrial and cytosolic fractions from CR rats. Of the three major 20S proteasome activities (chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide hydrolase), the peptidylglutamyl-peptide hydrolase activity was significantly elevated in the CR animals, possibly because of the fact that there were more oxidized proteins to be degraded. Although fewer oxidants were produced in the CR animals, it is possible that the ability to scavenge oxidants was transiently suppressed because of the reduction in mitochondrial antioxidant enzyme activities, which may explain the observed increases in carbonyl content.  相似文献   

15.
The renal and cardiac benefits of renin-angiotensin system (RAS) inhibition in hypertension exceed those attributable to blood pressure reduction, and seem to involve mitochondrial function changes. To investigate whether mitochondrial changes associated with RAS inhibition are related to changes in nitric oxide (NO) metabolism, four groups of male Wistar rats were treated during 2 wk with a RAS inhibitor, enalapril (10 mg x kg(-1) x day(-1); Enal), or a NO synthase (NOS) inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME) (1 mg x kg(-1) x day(-1)), or both (Enal+L-NAME), or were untreated (control). Blood pressure and body weight were lower in Enal than in control. Electron transfer through complexes I to III and cytochrome oxidase activity were significantly lower, and uncoupling protein-2 content was significantly higher in kidney mitochondria isolated from Enal than in those from control. All of these changes were prevented by L-NAME cotreatment and were accompanied by a higher production/bioavailability of kidney NO. L-NAME abolished mitochondrial NOS activity but failed to inhibit extra-mitochondrial kidney NOS, underscoring the relevance of mitochondrial NO in those effects of enalapril that were suppressed by L-NAME cotreatment. In Enal, kidney mitochondria H(2)O(2) production rate and MnSOD activity were significantly lower than in control, and these effects were not prevented by L-NAME cotreatment. These findings may clarify the role of NO in the interactions between RAS and mitochondrial metabolism and can help to unravel the mechanisms involved in renal protection by RAS inhibitors.  相似文献   

16.
This study was designed to test the hypothesis that improved mitochondrial biogenesis could help reducing ischemic cerebral injury. We found that levels of proliferator-activated receptor γ coactivator 1α and nuclear respiratory factor-1, mitochondrial DNA content and other markers of mitochondrial biogenesis and function were reduced in primary mouse cortical neurons under oxygen-glucose deprivation (OGD). The glycogen synthase kinase-3 (GSK-3) inhibitor SB216763 activated an efficient mitochondrial biogenesis program in control cortical neurons and counteracted the OGD-mediated mitochondrial biogenesis impairment. This was accompanied by the activation of an antioxidant response that reduced mitochondrial reactive oxygen species generation and ischemic neuronal damage. The in vitro effects of SB216763 were mimicked by two other structurally unrelated GSK-3 inhibitors. The protective effects of SB216763 on OGD-mediated neuronal damage were abolished in the presence of diverse mitochondrial inhibitors. Finally, when systemically administered in vivo, SB216763 reduced the infarct size and recovered the loss of mitochondrial DNA in mice subjected to permanent middle cerebral artery occlusion. We conclude that GSK-3 inhibition by SB216763 might pave the way of novel promising therapies aimed at stimulating the renewal of functional mitochondria and reducing reactive oxygen species-mediated damage in ischemic stroke.  相似文献   

17.
Vitamin E is a major chain-breaking antioxidant which is able to reduce liver oxidative damage without modifying aerobic capacity in T(3)-treated rats. We investigated whether vitamin E has similar effects in hyperthyroid state induced by cold exposure. Cold exposure increased aerobic capacity and O(2) consumption in homogenates and mitochondria and tissue mitochondrial protein content. Vitamin E did not modify aerobic capacity and mitochondrial protein content of cold liver, but increased ADP-stimulated respiration of liver preparations. Succinate-supported H(2)O(2) release rates were increased by cold during basal and stimulated respiration, whereas the pyruvate/malate-supported ones increased only during basal respiration. Vitamin administration to cold-exposed rats decreased H(2)O(2) release rates with both substrates during basal respiration. This effect reduced ROS flow from mitochondria to cytosol, limiting liver oxidative damage. Cold exposure also increased mitochondrial capacity to remove H(2)O(2), which was reduced by vitamin treatment, showing that the antioxidant also lowers H(2)O(2) production rate. The different effects of cold exposure and vitamin treatment on H(2)O(2) generation were also found in the presence of respiration inhibitors. Although this can suggest that the cold and vitamin induce opposite changes in mitochondrial content of autoxidizable electron carriers, it is likely that vitamin effect is due to its capacity to scavenge superoxide radical. Finally, vitamin E reduced mitochondrial oxidative damage and susceptibility to oxidants, and prevented Ca(2+)-induced swelling elicited by cold. In the whole, our results suggest that vitamin E is able to maintain aerobic capacity and attenuate oxidative stress of hepatic tissue in cold-exposed rats modifying mitochondrial population characteristics.  相似文献   

18.
We have identified a group of nutrients that can directly or indirectly protect mitochondria from oxidative damage and improve mitochondrial function and named them “mitochondrial nutrients”. The direct protection includes preventing the generation of oxidants, scavenging free radicals or inhibiting oxidant reactivity, and elevating cofactors of defective mitochondrial enzymes with increased Michaelis–Menten constant to stimulate enzyme activity, and also protect enzymes from further oxidation, and the indirect protection includes repairing oxidative damage by enhancing antioxidant defense systems either through activation of phase 2 enzymes or through increase in mitochondrial biogenesis. In this review, we take α-lipoic acid (LA) as an example of mitochondrial nutrients by summarizing the protective effects and possible mechanisms of LA and its derivatives on age-associated cognitive and mitochondrial dysfunction of the brain. LA and its derivatives improve the age-associated decline of memory, improve mitochondrial structure and function, inhibit the age-associated increase of oxidative damage, elevate the levels of antioxidants, and restore the activity of key enzymes. In addition, co-administration of LA with other mitochondrial nutrients, such as acetyl-l-carnitine and coenzyme Q10, appears more effective in improving cognitive dysfunction and reducing oxidative mitochondrial dysfunction. Therefore, administrating mitochondrial nutrients, such as LA and its derivatives in combination with other mitochondrial nutrients to aged people and patients suffering from neurodegenerative diseases, may be an effective strategy for improving mitochondrial and cognitive dysfunction.  相似文献   

19.
Effect of DL-alpha-lipoic acid on mitochondrial enzymes in aged rats.   总被引:2,自引:0,他引:2  
Mitochondrial dysfunction appears to contribute to some of the loss of function accompanying ageing. Mitochondria from aged tissue use oxygen inefficiently impairing ATP synthesis and results in increased oxidant production. A high flux of oxidants not only damages mitochondria, but other important cell biomolecules as well. In the present investigation, the levels of lipid peroxidation, oxidized glutathione, non-enzymatic antioxidants and the activities of mitochondrial enzymes were measured in liver and kidney mitochondria of young and aged rats before and after lipoic acid supplementation. In both liver and kidney increase in the levels of mitochondrial lipid peroxidation and oxidized glutathione and decrease in the levels of antioxidants and the activities of mitochondrial enzymes were observed in aged rats. DL-alpha-lipoic acid supplemented aged rats showed a decrease in the levels of lipid peroxidation and oxidized glutathione and increase in the levels of reduced glutathione, vitamins C and E and the activities of mitochondrial enzymes like isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, NADH-dehydrogenase and cytochrome-c-oxidase. Thus, lipoic acid reverses the age-associated decline in endogenous low molecular weight antioxidants and mitochondrial enzymes and, therefore, may lower the increased risk of oxidative damage that occurs during ageing. From our results it can be concluded that lipoic acid supplementation enhances the activities of mitochondrial enzymes and antioxidant status and thereby protects mitochondria from ageing.  相似文献   

20.
Nitric oxide and peroxynitrite interactions with mitochondria   总被引:8,自引:0,他引:8  
Nitric oxide (*NO) and peroxynitrite (ONOO-) avidly interact with mitochondrial components, leading to a range of biological responses spanning from the modulation of mitochondrial respiration, mitochondrial dysfunction to the signaling of apoptotic cell death. Physiological levels of *NO primarily interact with cytochrome c oxidase, leading to a competitive and reversible inhibition of mitochondrial oxygen uptake. In turn, this leads to alterations in electrochemical gradients, which affect calcium uptake and may regulate processes such as mitochondrial transition pore (MTP) opening and the release of pro-apoptotic proteins. Large or persistent levels of *NO in mitochondria promote mitochondrial oxidant formation. Peroxynitrite formed either extra- or intra-mitochondrially leads to oxidative damage, most notably at complexes I and II of the electron transport chain, ATPase, aconitase and Mn-superoxide dismutase. Mitochondrial scavenging systems for peroxynitrite and peroxynitrite-derived radicals such as carbonate (CO3*-) and nitrogen dioxide radicals (*NO2) include cytochrome c oxidase, glutathione and ubiquinol and serve to partially attenuate the reactions of these oxidants with critical mitochondrial targets. Detection of nitrated mitochondrial proteins in vivo supports the concept that mitochondria constitute central loci of the toxic effects of excess reactive nitrogen species. In this review we will provide an overview of the biochemical mechanisms by which *NO and ONOO- regulate or alter mitochondrial functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号