首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Embryogenic tissues of tea were cocultivated withAgrobacterium tumefaciens LBA4404. The plasmid pBi121, which contains the neomycin phosphotransferase II (nptII) gene providing kanamycin resistance as a selectable marker and the β-glucuronidase (uidA) reporter gene, was used as binary vector. The highest transformation frequency (12 transformants/g fresh weight [FW] of treated embryogenic tissue) was obtained with 5-day-old tissues grown in liquid medium and cocultivated withAgrobacterium for 2 d in the same medium but containing 50 μM acetosyringone. There was improvement in the recovery of kanamycin-resistant tissues when tissues were first grown for 10 d on a medium containing 350 mg/L Timentin to prevent bacterial overgrowth, before application of the selection pressure. Resistant tissues obtained after 6 wk on kanamycin-selection medium showed stableuidA expression. Polymerase chain reaction demonstrated the presence of the transgenes, while Southern hybridization confirmed their integration into the genome. Transgenic plants were regenerated from transformed tissues within 4 mo after coculture.  相似文献   

2.
Brassinosteroids are of ubiquitous occurrence in plants and elicit a wide spectrum of physiological responses. In our study, brassinosteroids were isolated and identified in topmost dormant leaves of tea plants. Six brassinosteriods, i.e. 6-deoxocastasterone, 24-epibrassinolide,3-dehydroteasterone, typhasterol, 3-deoxotyphasterol and 28-homodolicholide, were isolated and identified by GC–MS. All the brassinosteroids identified belong to important components of early and late C6 oxidation pathways proposed for brassinosteroids biosynthesis in plants. It suggests that both pathways are operating in tea to produce brassinolide, the most active brassinosteroid biologically.  相似文献   

3.
There is no information on drought-modulated gene(s) in tea [Camellia sinensis (L.) O. Kuntze], a woody and perennial plant of commercial importance. Using differential display of mRNA, three drought-modulated expressed sequence tags (ESTs) were identified. Northern and BLAST analysis revealed that clonedr1 (droughtresponsive), induced only by drought but not by ABA, showed significant scores with PR-5 (pathogenesis related) family of PR-protein gene. Another clonedr2, repressed by drought but not by ABA, had nucleotide repeats for polyasparate that are also present in chicken calsequestrin-like mRNA. Clonedr3, responded similarly to clonedr2 but did not show significant homology with the reported genes, hence appears to be novel. Identification of these ESTs is an initial step to clone the full length genes and their promoters  相似文献   

4.
To determine the mechanism of aluminum (Al) detoxification in the roots of tea plants (Camellia sinensis (L.) Kuntze), the amounts of Al and Al-chelating compounds (fluoride (F), organic acids and catechins) were measured and the chemical forms of Al in root cell extracts were identified by the application of 27Al-nuclear magnetic resonance (NMR) spectroscopy. Tea plants were cultivated in nutrient solutions containing 0, 4, 1.0 and 4.0 mM of Al at pH 4.2 for approximately 10 weeks. The levels of soluble Al, water-soluble oxalate and citrate, but not F, malate or catechins in young roots increased with an increase in the concentration of Al in the treatment solution. The 27Al NMR spectra of root tips and cell sap extracted from root tips that had been treated with Al were almost identical and had four signals, with two (11 and 16 ppm) apparently corresponding to the known chemical shifts of Al-oxalate complexes. In the spectra of cell sap, the resonances at 11 and 16 ppm increased with an increase in the Al contents. These results suggest that the levels of Al-oxalate complexes increased in response to an increase in the Al level, implying that oxalate is a key Al-chelating compound in the mechanism of Al detoxification in the tea root.  相似文献   

5.
Various clones of tea [Camellia sinensis (L.) O. Kuntze] such as TTL-1, TTL-2, TTL-4, TTL-5, TTL-6, UPASI-2 and UPASI-3 planted in the field were subjected to soil moisture stress conditions by withholding irrigation. A control set of the same clones were maintained by watering regularly. The soil water content of the irrigated and non irrigated plants was monitored through the soil moisture status. The extent of effect of drought on tea plants were monitored through various physiological parameters such as shoot weight, leaf water potential, chlorophyll and carotenoid content, chlorophyll fluorescence (Fv/Fm), net photosynthetic rate, transpiration rate, stomatal conductance and biochemical parameters such as extent of proline accumulation and free radical generation. These parameters were studied on the 30 d of non irrigation and on the 5 d during recovery from drought. The plants recovered when re-irrigated after 30 d of non-irrigation, which suggests that permanent wilting did not occur due to non-irrigation up to 30 d. On the 30 d of non-irrigation the clones TTL-1, TTL-6 and UPASI-2 showed lesser reduction of shoot weight, leaf water potential, chlorophyll fluorescence, photosynthetic rate, transpiration rate and stomatal conductance and increased proline and lesser lipid peroxidation as compared to the other clones. From these results it can be concluded that the clones TTL-1, TTL-6 and UPASI-2 are comparatively more drought tolerant than the clones TTL-2, TTL-4, TTL-5 and UPASI-3.  相似文献   

6.
A system for in vitro clonal propagation has been developed in tea plants. Shoots obtained from primary explants were induced from terminal buds and axillary buds of mature field-grown plants. Cultures were initiated from both types of explants on Murashige and Skoog (MS) medium supplemented with 10% coconut milk (CM), 200 mg l-1 of yeast extract (YE), 1.4 M indoleacetic acid (IAA) and 17.8 M benzyladenine (BA). The shoot tips were multiplied on 1/2 strength MS medium containing 10% CM, 2.9 M IAA and 17.8 M BA. The larger shoots were separated after multiplication and rooted on 1/2 MS medium supplemented with 11.4 M ascorbic acid and 34.5 M indolebutyric acid (IBA). A pretreatment of the plants with an aqueous solution of 493 M IBA greatly increased the frequency of rooting. More than 60% of the rooted plants have been transferred to soil successfully.Abbreviations BA benzyladenine - IAA indoleacetic acid - IBA indolebutyric acid - YE yeast extract - CM coconut milk - MS Murashige and Skoog medium (1962)  相似文献   

7.
During the first 4 d after the removal of SO 4 2- from cultures of young barley plants, the net uptake of 15N-nitrate and the transport of labelled N to the shoot both decline. This occurred during a period in which there was no measurable change in plant growth rate and where the incorporation of [3H]leucine into membrane and soluble proteins was unaffected. Reduced N translocation was associated with six- to eightfold increases in the level of asparagine and two- to fourfold increases in glutamine in root tissue; during the first 4 d of SO 4 2- deprivation there were no corresponding increases in amides in leaf tissue. The provision of 1 mol · m–3 methionine halted, and to some extent reversed the decline in NO 3 - uptake and N translocation which occurred during continued SO 4 2- deprivation. This treatment had relatively little effect in lowering amide levels in roots. Experiments with excised root systems indicated that SO 4 2- deprivation progressively lowered the hydraulic conductivity, Lp, of roots; after 4 d the Lp of SO 4 2- -deprived excised roots was only 20% of that of +S controls. In the expanding leaves of intact plants, SO 4 2- deprivation for 5 d was found to lower stomatal conductance, transpiration and photosynthesis, in the order given, to 33%, 37% and 18% of control values. The accumulation of amides in roots is probably explained by a failure to export either the products of root nitrate assimilation or phloem-delivered amino-N. This may be correlated with the lowered hydraulic conductivity. Enhanced glutamine and-or asparagine levels probably repressed net uptake of NO 3 - and 13NO 3 - influx reported earlier (Clarkson et al. 1989, J. Exp. Bot. 40, 953–963). Attention is drawn to the similar hydraulic signals occurring in the early stages of several different types of mineral-nutrient stresses.Abbreviations Asn asparagine - Gln glutamine - Lp hydraulic conductivity J.L.K. is extremely grateful to the British Council for supporting his working visit to Long Ashton. We thank John Radin for helpful discussion and encouragement.  相似文献   

8.
To identify the chemical forms of aluminum (Al) transported from roots to shoots of tea plants (C. sinensis L.), 27Al-nuclear magnetic resonance and 19F NMR spectroscopy were used to analyze xylem sap.The concentration of Al in collected xylem sap was 0.29 mM, twice as high as that of F. Catechins were not detected in xylem sap. The concentration of malic acid in xylem sap was higher than that of citric acid, whereas the concentration of oxalic acid was negligible.There were two signals in the 27Al NMR spectra of xylem sap, a larger signal at 11 ppm and a smaller one at −1.5 ppm. The former signal was consistent with the peak for an Al-citrate model solution, suggesting that an Al-citrate complex was present in xylem sap. Although the latter signal at −1.5 ppm was thought to indicate the presence of an Al-F complex (at 1.7 ppm) in xylem sap, there was only one signal at −122 ppm in the 19F NMR spectrum of xylem sap, indicating that the main F complex in xylem sap was F.These results indicate that Al might be translocated as a complex with citrate, while Al-malate, Al-oxalate and Al-F complexes are not major Al complexes in xylem sap of tea plants.  相似文献   

9.
Embryogenic callus development, plant regeneration, and plant recovery were achieved from immature cotyledon explants of cultivated tea, when cultured on MS basal medium. The somatic embryo induction frequency was influenced when the medium was supplemented with 1 M auxin (NAA, NOA, 2,4-D, TPB, and PBOA) in combination with cytokinin (0.5 M BA, KIN) or 10% CM. The highest somatic embryo induction frequency was obtained using PBOA + BA or PBOA + KIN treatments. All auxins except 2,4-D stimulated rhizogenesis using 0.8% and l.5% agar concentrations, and differentiation of a characteristic swelling and friable callus from the exposed surface of the explant that remained nonembryogenic. Conversely, the novel auxins TPB and PBOA at 1 M concentration with 3% or 6% agar, produced somatic embryo induction, while at 0.8% and 1.5% produced nonembryogenic callus. Explants isolated proximal to the zygotic embryonal axis showed a greater somatic embryo induction frequency than did the distal explants. The embryogenic competence was maintained through repetitive embryogenesis for a period of over 18 months. The somatic embryos developed into plantlets when incubated on hormone-free medium. The conversion frequency was increased by 50% in MS medium containing 1 M Brassin and 0.8% agar. Concentration of agar at 3% and 6% decreased the conversion frequency and promoted anomalous plantlet development. The normal plantlets were treated with 1 M IAN, 1 M Brassin and 10 Phloroglucinol in liquid MS medium for 15 d, where profuse lateral roots were induced favoring a high rate of plant recovery.  相似文献   

10.
11.
The anatomical localization of caffeine within young Camellia sinensis leaves was investigated using immunohistochemical methods and confocal scanning laser microscopy. Preliminary fixation experiments were conducted with young C. sinensis leaves to determine which fixation procedure retained caffeine the best as determined by high-performance liquid chromatography analysis. High pressure freezing, freeze substitution, and embedding in resin was deemed the best protocol as it retained most of the caffeine and allowed for the samples to be sectioned with ease. Immunohistochemical localization with primary anti-caffeine antibodies and conjugated secondary antibodies on leaf sections proved at the tissue level that caffeine was localized and accumulated within vascular bundles, mainly the precursor phloem. With the use of a pressure bomb, xylem sap was collected using a micro syringe. The xylem sap was analyzed by thin-layer chromatography and the presence of caffeine was determined. We hypothesize that caffeine is synthesized in the chloroplasts of photosynthetic cells and transported to vascular bundles where it acts as a chemical defense against various pathogens and predators. Complex formation of caffeine with chlorogenic acid is also discussed as this may also help explain caffeine’s localization.  相似文献   

12.
The carbon and nitrogen partitioning characteristics of wheat (Triticum aestivum L.) and maize (Zea mays L.) grown hydroponically at a constant pH on either 4 mM or 12 mM NO3 - or NH4 + nutrition were investigated using either 14C or 15N techniques. Greater allocation of 14C to amino-N fractions occurred at the expense of allocation of 14C to carbohydrate fractions in NH4 +-compared to NO3 --fed plants. The [14C]carbohydrate:[14C]amino-N ratios were 1.5-fold and 2.0-fold greater in shoots and roots respectively of 12 mM NO3 --compared to 12 mM NH4 +-fed wheat. In both 4 mM and 12 mM N-fed maize the [14C]carbohydrate:[14C]amino-N ratios were approximately 1.7-fold and 2.0-fold greater in shoots and roots respectively of NO3 --compared to NH4 +-fed plants. Similar results were observed in roots of wheat and maize grown in split-root culture with one root-half in NO3 --and the other in NH4 +-containing nutrient media. Thus the allocation of carbon to the amino-N fractions occurred at the expense of carbohydrate fractions, particularly within the root. Allocation of 14N and 15N within separate sets of plants confirmed that NH4 --fed plants accumulated more amino-N compounds than NO3 --fed plants. Wheat roots supplied with 15NH4 + for 8 h were found to accumulate 15NH4 + (8.5 g 15N g-1 h-1) whereas in maize roots very little 15NH4 + accumulated (1.5 g 15N g-1 h-1)It is proposed that the observed accumulation of 15NH4 + in wheat roots in these experiments is the result of limited availability of carbon within the roots of the wheat plants for the detoxification of NH4 +, in contrast to the situation in maize. Higher photosynthetic capacity and lower shoot: root ratios of the C4 maize plants ensure greater carbon availability to the root than in the C3 wheat plants. These differences in carbon and nitrogen partitioning between NO3 --and NH4 +-fed wheat and maize could be responsible for different responses of wheat and maize root growth to NO3 - and NH4 + nutrition.  相似文献   

13.
Genuine roots ofSpiranthes sinensis var.amoena were infected with the mycorrhizal fungusRhizoctonia repens immediately after root formation in autumn. Infection by the mycorrhizal fungus extended, reaching a maximum the following early summer. The amount of living mycorrhizal fungus in the genuine roots dramatically declined in the flowering season, and then the roots decomposed. Tuberous roots were formed in spring. Mycorrhizas were limited to local infections and did not spread along the roots. The infection level of living mycorrhizal fungus in the tuberous roots was less than in the genuine roots throughout the year. The amount of dead fungal coils in the tuberous roots increased as the tuberous roots aged. The mycorrhizal characteritics of tuberous roots ofS. sinensis var.amoena were totally different from those of genuine roots although the tuberous roots morphologically resembled the genuine roots. Contribution No. 96, Laboratories of Plant Pathology and Mycology, Institute of Agriculture and Forestry, University of Tsukuba.  相似文献   

14.
Somatic embryos of Washington Navel sweet orange (Citrus sinensis (L.) Osb.) derived from in vitro cultured ovules excised from immature fruits, were frozen to the temperature of liquid nitrogen. A method of slow cooling at a rate of 0.5°C min-1 down to –42°C followed by storage in liquid nitrogen was used. Thawing was achieved by keeping the specimens at room temperature for 15 min. A small number of frozen embryos survived and developed into proliferating cultures that produced whole plants. The plants obtained from frozen cultures were transferred to soil and are growing successfully.  相似文献   

15.
Adventitious shoot regeneration via callus phase from in vitro leaf explants is reported for the first time in tea. Callus was obtained on Murashige and Skoog medium supplemented with varied concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) (2.5, 5.0, 7.5 and 10.0 mg/l). Rhizogenesis was observed at all concentrations of 2,4-D. Adventitious shoot buds developed indirectly on leaf explants after prolonged culture for 16 weeks on medium supplemented with 10.0 mg/l 2,4-D. GC analysis of the medium and the tissues at different stages of development showed that specific levels of 2,4-D in the tissue were responsible for morphogenesis. Shoot buds developed on rhizogenic calli, only when 2,4-D declined to undetectable or negligible concentrations in the tissue probably due to detoxification and metabolism. Alternatively, shoot buds could also be evoked when rhizogenic calli were transferred to medium supplemented with low concentration of 2,4-D (1.5 mg/l). The adventitious nature of the shoots was confirmed through histological studies.  相似文献   

16.
Ruan  Jianyun  Zhang  Fusuo  Wong  Ming H. 《Plant and Soil》2000,223(1-2):65-73
The effects of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of tea (Camellia sinensis L.) were investigated in a pot experiment. The experiment was performed with a compartmental cropping device, which enables the collection of rhizosphere soil at defined distances from the root of tea plant. Nitrogen was supplied as nitrate or ammonium in combination with soluble phosphorus as Ca(H2PO4)2 or insoluble P as rock phosphate. The leaf dry matter production of tea was significantly greater in the treatments with NH4 + than NO3 -, whereas dry matter production of root and stem was not significantly affected. Addition of phosphorus as either source did not influence the dry matter production. The concentrations of K in root, Mg and Ca in both the shoot and root supplied with NO3 - were significantly higher than in NH4 + and influence of P sources was minor. On the contrary, Al and Mn concentrations were significantly larger in NH4 --fed plants which could be attributed to remarkably increased availability of Al and Mn caused by acidification of the rhizosphere soil (the first 1-mm soil section from the root surface) with NH4–N nutrition. The concentration of N in shoot was also significantly higher in NH4- than in NO3-fed plants, indicating higher use efficiency of NH4–N. Whatever the phosphate source, rhizosphere pH declined in ammonium compared to in nitrate treatment. The pH decrease was much larger when no P or soluble P were applied and reached 0.85–1.30 units which extended to 3–5 mm away from the root surface. Exchangeable acidity, content of exchangeable Al and Mn were also considerably higher in the rhizosphere soils of NH4 + fed tea plants. Significant amounts of P dissolved from rock phosphate accumulated in rhizosphere of NH4 +, not NO3 -, suggesting that the dissolution of rock phosphate was induced by the proton excreted by tea root fed with ammonium. With soluble P addition, shoot and root P concentrations were greater in NH4 + than in NO3 - treatment and it appeared that this difference could not be sufficiently explained by the available P content in soil which was only slightly higher in NH4 + treatment. With rock phosphate addition, the shoot and root P concentrations were hardly affected by nitrogen form, although the available P content was much higher and accumulated in the rhizosphere soil supplied with ammonium. The reason for this was discussed with regard to the inter-relationship of Al with P uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The effect of mineral N availability on nitrogen nutrition and biomass partitioning between shoot and roots of pea (Pisum sativum L., cv Baccara) was investigated under adequately watered conditions in the field, using five levels of fertiliser N application at sowing (0, 50, 100, 200 and 400 kg N ha–1). Although the presence of mineral N in the soil stimulated vegetative growth, resulting in a higher biomass accumulation in shoots in the fertilised treatments, neither seed yield nor seed nitrogen concentration was affected by soil mineral N availability. Symbiotic nitrogen fixation was inhibited by mineral N in the soil but it was replaced by root mineral N absorption, which resulted in optimum nitrogen nutrition for all treatments. However, the excessive nitrogen and biomass accumulation in the shoot of the 400 kg N ha–1 treatment caused crop lodging and slightly depressed seed yield and seed nitrogen content. Thus, the presumed higher carbon costs of symbiotic nitrogen fixation, as compared to root mineral N absorption, affected neither seed yield nor the nitrogen nutrition level. However, biomass partitioning within the nodulated roots was changed. The more symbiotic nitrogen fixation was inhibited, the more root growth was enhanced. Root biomass was greater when soil mineral N availability was increased: root growth was greater and began earlier for plants that received mineral N at sowing. Rooting density was also promoted by increased mineral N availability, leading to more numerous but finer roots for the fertilised treatments. However, the maximum rooting depth and the distribution of roots with depth were unchanged. This suggested an additional direct promoting effect of mineral N on root proliferation.  相似文献   

18.
The dynamics of N uptake and N partitioning in peach (Prunus persica, Batsch) trees of a very early (cv. Flordastar) and a very late (cv. Tudia) fruit ripening varieties grown under a mediterranean climate was assessed during one season. Labelled N was applied to two-year old potted trees which were destructively harvested at regular intervals during the vegetative and reproductive cycle. Tree phenology as well as vegetative and reproductive growth of the two genotypes strongly differed: bud burst started in late January in Flordastar and late March in Tudia. Leaf senescence in Flordastar was almost complete by mid October, while Tudia still retained a significant fraction of leaves at the December harvest. Fruit yield averaged 4.0 and 6.9 kg tree–1 (fresh weight) in cv. Flordastar and Tudia, respectively, and fruit size was within commercial standards for the two genotypes. After growth resumption, shoot and fruit growth mainly relied on N remobilised from reserves, which accounted for 72–80% of total N in new growth. Nitrogen uptake by both genotypes was relatively low in the first month after bud burst, then was more rapid until the end of the season. Total labelled N uptake did not differ between the two genotypes and accounted on average for 65–70% of total N supplied. The kinetics of labelled N uptake were similar in the two varieties despite the great difference in the timing of their fruit ripening. Leaves were the main sink for N during much of the experimental period. The fruits, when present, also used a significant fraction of the absorbed N, which was almost constant until fruit ripening in Flordastar. Nitrogen partitioning to leaves declined progressively after summer, when a greater fraction of the absorbed N was recovered in the twigs, the trunk, the fine roots and especially in the coarse roots. The data provide evidence for guiding the kinetics of N supply to peach orchards under a Mediterranean climate.  相似文献   

19.
Rani A  Singh K  Ahuja PS  Kumar S 《Gene》2012,495(2):205-210
Catechins are bioprospecting molecules present in tea and any effort towards metabolic engineering of this important moiety would require knowledge on gene regulation. These are synthesized through the activities of phenylpropanoid and flavonoid pathways. Expression regulation of various genes of these pathways namely phenylalanine ammonia-lyase (CsPAL), cinnamate 4-hydroxylase (CsC4H), p-coumarate:CoA ligase (Cs4CL), flavanone 3-hydroxylase (CsF3H), dihydroflavonol 4-reductase (CsDFR) and anthocyanidin reductase (CsANR) was accomplished previously. In depth analyses of the remaining genes namely, chalcone synthase (CsCHS), chalcone isomerase (CsCHI), flavonoid 3'5'-hydroxylase (CsF3'5'H) and anthocyanidin synthase (CsANS) were lacking. The objective of the work was to clone and analyze these genes so as to generate a comprehensive knowledge on the critical genes of catechins biosynthesis pathway. Gene expression analysis was carried out in response to leaf age and external cues (drought stress, abscisic acid, gibberellic acid treatments and wounding). A holistic analysis suggested that CsCHI, CsF3H, CsDFR, CsANS and CsANR were amongst the critical regulatory genes in regulating catechins content.  相似文献   

20.
Uptake and xylem loading of organic sulfur and nitrogen were analyzed in detached mycorrhizal (Laccaria laccata L.) roots of pedunculate oak (Quercus robur L.) seedlings using radiolabeled reduced glutathione (GSH) and glutamine (Gln) for transport analyses. The experiments showed for the first time that GSH is taken up by plant roots from the nutrient solution and is partially allocated to the shoot. Apparently, GSH produced during mineralization processes in the soil can be used by plant roots as a sulfur source. GSH uptake into the roots showed biphasic kinetics within the concentration range studied (0–500 M) with maximum transport velocities (v max) and substrate affinities (K m) that were similar to the kinetics of Gln uptake. GSH uptake kinetics were also in the same range as previously reported for sulfate uptake by mycorrhizal roots of pedunculate oak. It may therefore be assumed that GSH and sulfate uptake can be of comparable significance for sulfur nutrition, provided both sulfur sources are available at similar concentrations at the sites of uptake. Xylem loading of GSH and Gln showed monophasic transport kinetics with v max significantly lower than observed for the two respective uptake systems and, as indicated by the K m-values, a substrate affinity between the high and the low affinity uptake systems. The possible nature of the transport systems for GSH and Gln is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号