首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugar is essential for the development of detached Petunia hybrida flowers. We have shown that sucrose (Suc) and gibberellic acid (GA3) are required for anthocyanin accumulation and the expression of various genes in developing petunia corollas. The effect of GA3 on the expression of the gibberellin-induced gene and chalcone synthase gene, in detached corollas, was promoted by metabolic sugars such as Suc, glucose (Glc) and fructose, but not by the nonmetabolized 3- O -methylglucose and the sugar alcohol, mannitol. Several pieces of evidence support sugars' signaling role in the corollas and the possible involvement of hexokinase as the sugar sensor. Mannose, which is inefficiently metabolized but is phosphorylated by hexokinase at efficiency similar to Glc, was as effective as Glc in promoting gene expression and pigmentation. 2-Deoxyglucose, which is a substrate for hexokinase but is not metabolized in glycolysis, also promoted gene expression. On the other hand, mannoheptulose, a competitive inhibitor of hexokinase, completely abolished the promotive effect of Glc. We suggest that sugar-phosphorylation-related signal transduction interacts with the gibberellin signal to induce gene expression and anthocyanin accumulation in developing petunia corollas.  相似文献   

2.
3.
We have previously reported that sucrose modulates anthocyanin biosynthesis in cell suspension cultures of Vitis vinifera L. The main role of sugar in this response does not seem to be that of general carbohydrate source for the supply of energy. In the present work, a number of pharmacological agents were used to further investigate the components of the signal transduction pathway involved in the induction of anthocyanin biosynthesis by sugar. We found that the phosphorylation of hexose by hexokinase, but not its transport, has to be taken into account for the sucrose signal transduction leading to anthocyanin accumulation. Indeed, 3-O-methylglucose, a glucose analog transported into cells but not phosphorylated by hexokinase, has no effect on anthocyanin production. Mannose mimics the effect of sucrose in grape cells, and mannoheptulose, a specific inhibitor of hexokinase, reduces the accumulation of anthocyanins in response to sucrose. The results with the two latter analogs are discussed. Ca2+ channel blockers, verapamil and LaCl3, which were used to investigate the role of extracellular Ca2+, all inhibited the sugar response. Ca2+ depletion by pretreatment with ethylene glycol bis (beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) also blocked the sugar response, which was partially recovered when Ca2+ was added exogenously after Ca2+ depletion. The use of two potent calmodulin antagonists, N-(6-aminohexyl)-5-chloro-1-naphtalenesulphonamide (W7) and chlorpromazine, showed that calmodulin is involved in the sugar signal transduction. A protein kinase inhibitor, 6-dimethylaminopurine (6-DMAP), and the protein phosphatase inhibitors, endothall and cantharidin, also inhibited the sugar response. The results of the present study suggest the involvement of several components of general signal transduction pathways such as Ca2+, calmodulin, and protein kinases phosphatases in the induction of anthocyanin biosynthesis by sugar.  相似文献   

4.
Sugar sensing in higher plants.   总被引:24,自引:0,他引:24       下载免费PDF全文
J C Jang  J Sheen 《The Plant cell》1994,6(11):1665-1679
Sugar repression of photosynthetic genes is likely a central control mechanism mediating energy homeostasis in a wide range of algae and higher plants. It overrides light activation and is coupled to developmental and environmental regulations. How sugar signals are sensed and transduced to the nucleus remains unclear. To elucidate sugar-sensing mechanisms, we monitored the effects of a variety of sugars, glucose analogs, and metabolic intermediates on photosynthetic fusion genes in a sensitive and versatile maize protoplast transient expression system. The results show that sugars that are the substrates of hexokinase (HK) cause repression at a low concentration (1 to 10 mM), indicating a low degree of specificity and the irrelevance of osmotic change. Studies with various glucose analogs suggest that glucose transport across the plasma membrane is necessary but not sufficient to trigger repression, whereas subsequent phosphorylation by HK may be required. The effectiveness of 2-deoxyglucose, a nonmetabolizable glucose analog, and the ineffectiveness of various metabolic intermediates in eliciting repression eliminate the involvement of glycolysis and other metabolic pathways. Replenishing intracellular phosphate and ATP diminished by hexoses does not overcome repression. Because mannoheptulose, a specific HK inhibitor, blocks the severe repression triggered by 2-deoxyglucose and yet the phosphorylated products per se do not act as repression signals, we propose that HK may have dual functions and may act as a key sensor and signal transmitter of sugar repression in higher plants.  相似文献   

5.
6.
Phosphate (Pi) is one of the least available plant nutrients in soils. It is associated with dynamic changes in carbon fluxes and several crucial processes that regulate plant growth and development. Pi levels regulate the expression of large number of genes including those involved in photosynthesis and carbon metabolism. Herein we show that sugar is required for Pi starvation responses including changes in root architecture and expression of phosphate starvation induced (PSI) genes in Arabidopsis. Active photosynthesis or the supplementation of sugar in the medium was essential for the expression of PSI genes under Pi limiting conditions. Expression of these genes was not only induced by sucrose but also detected, albeit at reduced levels, with other metabolizable sugars. Non-metabolizable sugar analogs did not induce the expression of PSI genes. Although sugar input appears to be downstream of initial Pi sensing, it is absolutely required for the completion of the PSI signaling pathway. Altered expression of PSI genes in the hexokinase signaling mutant gin2 indicates that hexokinase-dependent signaling is involved in this process. The study provides evidence for requirement of sugars in PSI signaling and evokes a role for hexokinase in some components of Pi response mechanism.  相似文献   

7.
We report the isolation and characterization of two sucrose transporter cDNAs (CitSUT1 and CitSUT2) from citrus. CitSUT1 and CitSUT2 encode putative proteins (CitSUT1 and CitSUT2) of 528 and 607 amino acids, respectively. CitSUT1 and CitSUT2 share high similarities with sucrose transporters isolated from other plants. The expression of CitSUT1 in mature leaf discs is repressed by exogenous sucrose, glucose, mannose, and the glucose analog 2-deoxyglucose but not by another glucose analog 3-O-methylglucose, indicating a hexokinase (HXK)-mediated signaling pathway. CitSUT2 expression is not affected by exogenous sugars. Whereas CitSUT1 expresses strongly in source, sugar exporting organs, CitSUT2 expresses more strongly in sink, sugar importing organs, suggesting different physiological roles for these sucrose transporters.  相似文献   

8.
9.
10.
11.
In this report, we provide evidence that the transport of sugars in Streptococcus mutans via the multiple sugar metabolism system is regulated by the phosphoenolpyruvate phosphotransferase system. A ptsI-defective mutant (DC10), when grown on the multiple sugar metabolism system substrate raffinose, exhibited reduced growth, transport, and glycolytic activity with raffinose relative to the parent strain BM71. Inhibition of [3H]raffinose uptake was also observed in both BM71 and DC10 with increasing concentrations of glucose and the glucose analogs alpha-methyl glucoside and 2-deoxyglucose.  相似文献   

12.
2-Deoxy-D-glucose uptake in cultured human muscle cells   总被引:1,自引:0,他引:1  
Hexose uptake was studied with cultured human muscle cells using 2-deoxy-D-[1-3H]glucose. At a concentration of 0.25 and 4 mM, phosphorylation rather than transport was the rate-limiting step in the uptake of 2-deoxy-D-glucose. This was not due to inhibition of the hexokinase activity by either ATP depletion or 2-deoxyglucose 6-phosphate accumulation. In cellular homogenates, hexokinase showed a lower Km value for glucose as compared to 2-deoxyglucose. Intact cells preferentially phosphorylated glucose instead of 2-deoxyglucose. Therefore, transport instead of phosphorylation may be rate limiting in the uptake of glucose by cultured human muscle cells. These data suggest caution in using 2-deoxyglucose for measuring glucose transport.  相似文献   

13.
Low concentrations of the glucose (Glc) analog mannose (Man) inhibit germination of Arabidopsis seeds. Man is phosphorylated by hexokinase (HXK), but the absence of germination was not due to ATP or phosphate depletion. The addition of metabolizable sugars reversed the Man-mediated inhibition of germination. Carbohydrate-mediated regulation of gene expression involving a HXK-mediated pathway is known to be activated by Glc, Man, and other monosaccharides. Therefore, we investigated whether Man blocks germination through this system. By testing other Glc analogs, we found that 2-deoxyglucose, which, like Man, is phosphorylated by HXK, also blocked germination; no inhibition was observed with 6-deoxyglucose or 3-O-methylglucose, which are not substrates for HXK. Since these latter two sugars are taken up at a rate similar to that of Man, uptake is unlikely to be involved in the inhibition of germination. Furthermore, we show that mannoheptulose, a specific HXK inhibitor, restores germination of seeds grown in the presence of Man. We conclude that HXK is involved in the Man-mediated repression of germination of Arabidopsis seeds, possibly via energy depletion.  相似文献   

14.
Low concentrations of the glucose (Glc) analog mannose (Man) inhibit germination of Arabidopsis seeds. Man is phosphorylated by hexokinase (HXK), but the absence of germination was not due to ATP or phosphate depletion. The addition of metabolizable sugars reversed the Man-mediated inhibition of germination. Carbohydrate-mediated regulation of gene expression involving a HXK-mediated pathway is known to be activated by Glc, Man, and other monosaccharides. Therefore, we investigated whether Man blocks germination through this system. By testing other Glc analogs, we found that 2-deoxyglucose, which, like Man, is phosphorylated by HXK, also blocked germination; no inhibition was observed with 6-deoxyglucose or 3-O-methylglucose, which are not substrates for HXK. Since these latter two sugars are taken up at a rate similar to that of Man, uptake is unlikely to be involved in the inhibition of germination. Furthermore, we show that mannoheptulose, a specific HXK inhibitor, restores germination of seeds grown in the presence of Man. We conclude that HXK is involved in the Man-mediated repression of germination of Arabidopsis seeds, possibly via energy depletion.  相似文献   

15.
The aim of this study was to examine the effect of abscisic acid (ABA), sucrose, and auxin on grape fruit development and to assess the mechanism of these three factors on the grape fruit ripening process. Different concentrations of ABA, sucrose, and auxin were used to treat the grape fruit, and the ripening-related indices, such as physiological and molecular level parameters, were analyzed. The activity of BG protein activity was analyzed during the fruit development. Sucrose, ABA, and auxin influenced the grape fruit sugar accumulation in different ways, as well as the volatile compounds, anthocyanin content, and fruit firmness. ABA and sucrose induced, but auxin blocked, the ripening-related gene expression levels, such as softening genes PE, PG, PL, and CELL, anthocyanin genes DFR, CHI, F3H, GST, CHS, and UFGT, and aroma genes Ecar, QR, and EGS. ABA, sucrose, and glucose induced the fruit dry weight accumulation, and auxin mainly enhanced fruit dry weight through seed weight accumulation. In the early development of grape, starch was the main energy storage; in the later, it was glucose and fructose. Sucrose metabolism pathway-related gene expression levels were significant for glucose and fructose accumulation. BG protein activity was important in the regulation of grape ABA content levels. ABA plays a core role in the grape fruit development; sucrose functions in fruit development through two pathways: one was ABA dependent, the other ABA independent. Auxin blocked ABA accumulation to regulate the fruit development process.  相似文献   

16.
An efficient monitoring of cytoplasmic vacuolation by fluorescein diacetate (FDA) staining of protoplasts revealed that the major populations of suspension-cultured rice cells undergo a rapid vacuolation upon glucosedepletion. As aquaporin-family proteins, tonoplast intrinsic proteins (TIPs) are known to play in regulating the water balance across the vacuolar membrane. Glucose starvation increased expression of every member of OsTIP family, leading to an enhancement of the total expression by up to 110-fold, which is well matched with an expansion of the vacuolar structure induced by starvation. OsTIPs 1;1, 2;2 and 3;1 are the three most prominently expressed OsTIPs in starved conditions due to their highest responsiveness to sugar deprivation. Feeding experiments with various sugars and glucose analogs indicated that sugar regulated expression of the three major OsTIPs is likely mediated by a hexokinasedependent pathway. Alleviation of sugar-induced suppression of OsTIP expression by co-treatment with the uncoupler of ATP synthesis suggests that sugar signaling for OsTIP regulation is also cross-talked by the energy-deficit conditions. Intriguingly, starvation-induced central vacuolation was effectively prevented by mannose and 2-deoxyglucose, but not by 3-O-methylglucose. These results imply that the hexokinase is able to trigger the signaling to suppress the central vacuolation, independently of fueling the energy metabolism.  相似文献   

17.
18.
Sucrose was found to modulate polyphenol accumulation in Vitis vinifera cell cultures. The production of anthocyanins increased 12-fold after addition of 0.15 m sucrose, while that of stilbenes was only slightly affected. Sucrose did not play a physical role because metabolic sugars were required for the induction of polyphenol accumulation. Indeed, the polyols, mannitol and sorbitol, had no effect on this accumulation. We established a model system to investigate the mechanism of sucrose regulation of polyphenol production without inhibition of grape cell growth. After addition of sucrose to the culture medium, the major sugars accumulated in grape cells were glucose and fructose, reaching 40% of the dry weight. The increase in the level of these hexoses closely coincided with the increase in anthocyanin accumulation in grape cells. Received: 18 August 1997 / Revision received: 6 November 1997 / Accepted: 5 January 1998  相似文献   

19.
The unicellular acidophilic red alga Galdieria sulphuraria is a facultative heterotroph with a complex uptake system for sugars and polyols, consisting of at least 14 transporters. Upon transfer to heterotrophic conditions, these transporters were induced simultaneously. Once induced, transporters for common hexoses and pentoses are apparently not down-regulated under heterotrophic conditions. Uptake of deoxysugars (FUC/Rha), however, was repressed by substrates metabolized via gluco-, galacto-, glycero-, or hexokinase, whereas substrates phosphorylated by xylulokinase had no effect. This indicates that several sugar kinases play a key role in sugar sensing. In contrast, polyol transporters were repressed only by glucose or its analogs but not by other sugars. This repression does not involve the activity of kinases. Most likely this type of glucose sensing is independent of metabolism and takes place prior to or during uptake. In its natural environment, these two different sensing mechanisms would enable the alga to utilize a mixture of different substrates in a most economic way by repressing dispensible transporters.  相似文献   

20.
Transport regulation by different metabolizable and nonmetabolizable sugars was studied in human fibroblasts. Sugars were classed as glucose-like (D-mannose, 3-0-methyl-D-glucose, thio-D-glucose, and D-allose) and starvation-like (D-galactose, D-fructose, L-glucose, D-xylose, 6-deoxy-D-glucose and 2-deoxy-D-glucose) based on their competence in curbing glucose starvation enhanced transport. No significant correlation existed between the ability of a sugar to curb hexose transport and the KI of that sugar in inhibiting hexose transport. Independence of the transport curb from glucose metabolism was observed since nonmetabolizable analogs of D-glucose when substituted for D-glucose in the culture medium effected glucose [i.e. 3-0-methyl-D-glucose (3-OMG)] and starvation-like (i.e. 6- and 2-deoxy-D-glucose) effects. The KI of inhibition pf 2-deoxy-D-glucose transport for 3-OMG was 8.5 mM, similar to those obtained for 6-deoxyglucose and 2-deoxyglucose on 2-deoxyglycose transport (7.5 and 3.5 mM, respectively) and on 3-0-methylglucose transport (3.5 and 2.5 mM, respectively). An equimolar mixture of D-glucose and 3-OMG (5.55 mM each) was more effective than 11.1 mM D-glucose or 3-OMG alone in curbing hexose transport or reversing hexose starvation induced increases in transport. The effect of 3-OMG may be independent of glucose metabolism but it is possible that 3-OMG structurally mimics a metabolite of glucose that may interact with intracellular regulators of carrier degradation and or expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号