共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of nitrate supply on nitrogen fixation during growth of the field bean Vicia faba in sand 总被引:1,自引:0,他引:1
Field bean (Vicia faba L.) cv. Maris Bead seeds were inoculated with Rhizobium Catalogue No. 1001, supplied by Rothamsted Experimental Station and grown in sand culture supplied with 15N-labelled nitrate at two concentrations. Plants were sampled at intervals throughout their growth for 15N and total N analysis. The rate of nitrate uptake was almost uniform up to pod-fill and was proportional to the nitrate concentration. Nodule weight was slightly depressed by the larger nitrate concentration at all samplings, and there was a corresponding reduction in the amount of atmospheric nitrogen fixed. However, at harvest the bean seeds from plants given most nitrate contained slightly more total N, as the enhanced nitrate uptake outweighed the reduction in fixation. 相似文献
2.
Field bean (Vicia faba L.) cv. Maris Bead seeds were inoculated with Rhizobium Catalogue No. 1001, supplied by Rothamsted Experimental Station, and grown in sand culture supplied with a complete nutrient solution which included nitrate at either 1.5 or 6.0 mM. Nodules were detached from the roots at intervals during plant development and their rates of nitrogen fixation estimated by both acetylene reduction and 15N gas technique. There was a constant relationship, independent of nitrate supply, between the results obtained by these two methods at all samplings. The amounts of acetylene reduced divided by a factor of 5.75 gave the amount of true nitrogen fixation; this factor is about twice the theoretical value. It is suggested that this discrepancy arose because, with acetylene, all the electrons available to the nitrogenase were used to form ethylene, whereas during normal fixation only about half the electron supply was used to fix nitrogen, the remainder having been consumed in the production of hydrogen gas. 相似文献
3.
4.
Before starting a breeding program aimed at improving the nitrogen nutrition ofVicia faba, the authors tried an alternative technique to the acetylene reduction assay, to measure some genetic variability in the
plant material. The quantity of dinitrogen fixed by several cultivars ofVicia faba was estimated using a low enrichment15N tracer method and high precision15N mass spectrometry. The fababeans were cultivated for two years in two different soils.
The percentage of fixed dinitrogen in the seed varied between genotypes from 40 to 83% of the total nitrogen and was positively
correlated with the total seed nitrogen (r=0.64 to 0.86). A highly significant positive correlation was also found between
the total seed nitrogen and the quantity of fixed dinitrogen in the seed (r=0.95 to 0.99).
The technique used to measure dinitrogen fixation proved to be useful and reliable enough to discriminate between various
genotypes, grown over a period of two years in two different soils. However, several non-fixing control plants showed significant
differences in their15N enrichment and the problem of choosing a good reference plant was raised and discussed. 相似文献
5.
Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean 总被引:5,自引:0,他引:5
Potassium (K) is reported to improve plant's resistance against environmental stress. A frequently experienced stress for plants in the tropics is water shortage. It is not known if sufficient K supply would help plants to partially overcome the effects of water stress, especially that of symbiotic nitrogen fixation which is often rather low in the tropics when compared to that of temperate regions. Thus, the impact of three levels of fertilizer potassium (0.1, 0.8 and 3.0 mM K) on symbiotic nitrogen fixation was evaluated with two legumes under high (field capacity to 25% depletion) and low (less than 50% of field capacity) water regimes. Plants were grown in single pots in silica sand under controlled conditions with 1.5 mM N (15N enriched NH4NO3). The species were faba bean (Vicia faba L.), a temperate, amide producing legume and common bean (Phaseolus vulgaris L.), a tropical, ureide producing species. In both species, 0.1 mM K was insufficient for nodulation at both moisture regimes, although plant growth was observed. The supply of 0.8 or 3.0 mM K allowed nodulation and subsequent nitrogen fixation which appeared to be adequate for respective plant growth. High potassium supply had a positive effect on nitrogen fixation, on shoot and root growth and on water potential in both water regimes. Where nodulation occurred, variations caused by either K or water supply had no consequences on the percentage of nitrogen derived from the symbiosis. The present data indicate that K can apparently alleviate water shortage to a certain extent. Moreover it is shown that the symbiotic system in both faba bean and common bean is less tolerant to limiting K supply than plants themselves. However, as long as nodulation occurs, N assimilation from the symbiotic source is not selectively affected by K as opposed to N assimilation from fertilizer. 相似文献
6.
Vincent Guérin Dominique Pladys Jean-Charles Trinchant Jean Rigaud 《Physiologia plantarum》1991,82(3):360-366
Nodulated faba-beans ( Vicia faba L. var. minor) exhibiting high rates of N2 fixation (133 μmol C2 H4 g−1 dry weight h−1 ), were subjected to water restriction. A loss of C2 H2 reduction due to water stress was always associated with a decline of the leghemoglobin content for each of the 4 decreasing values of Ψmod . Electron micrographs showed ultrastructural alterations of the fixing tissue, which affected both partners and increased with the severity of water stress. In the nodule cytosol, the alkaline proteolysis approximately doubled when Ψmod decreased from −0.55 MPa to −1.55 MPa. Concomitantly, an increase of the nodule intracellular pH from 6.3 to 7.0 was observed. Proteolysis was due to serine proteases, exhibiting a pH-optimum of 8 and which actively degraded purified leghemoglobin in vitro (Km =100 μ M ). The degradation of leghemoglobin during water stress may contribute to the loss of C2 H2 reduction and may affect the pattern of recovery upon rewatering. 相似文献
7.
Manel Bouraoui Zouhaier Abbes Mostapha Rouissi Neila Abdi Imen Hemissi Sawssen Kouki 《Biocontrol Science and Technology》2016,26(6):776-791
Orobanche foetida is a chlorophyll-lacking holoparasite that subsists on the roots of plants and causes significant damage to the culture of some leguminous plants particularly faba bean. To evaluate the effect of rhizobia as a biological agent and the effect of nitrogen (N) and/or phosphorus (P) to control O. foetida parasitism in faba bean (Vicia faba minor), a trial was conducted in infested and non-infested fields with O. foetida in the Oued Beja Agricultural Experimental Unit, Tunisia. This field trial was performed during two consecutive cropping seasons using the susceptible cv. Badï, two selected rhizobia strains (Bj1 and Mat) and N combined or not with P. Mat strain showed an antagonistic effect which displayed a parasitism index two-fold lower than the control and carried two times less of emerged parasite spikes at crop maturity. Seed-yield losses caused by O. foetida infestation were very high and reached 95% for the control. Despite this high reduction, faba bean inoculated with Mat strain showed an average yield three-fold higher than the control. Broomrape parasitism did not significantly affect the protein/starch ratio of seeds for all treatments. The Mat strain is a potential candidate for developing an integrate method to control O. foetida parasitism on faba bean. 相似文献
8.
Differences in seed vigour of zero- and high-tannin faba beans were investigated using 25 seed lots of 12 cultivars following earlier reports of poor emergence in the zero-tannin types. Field emergence ranged from 54–96% indicating differences in seed vigour between cultivars all having high laboratory germination (>91%). Seed from zero-tannin accessions with poor emergence had a higher incidence of testa and cotyledon cracking, a smaller percentage of hard seeds, more rapid water uptake, a lower percentage of vital staining of cotyledons and a greater leaching of solutes than high-tannin types. Nevertheless, variation in these characteristics existed between cultivars and lines of both types. Seeds with more cracks in the seed coat and fewer hard seeds imbibed water more rapidly and consequently showed lower levels of vital staining and more cracks in the abaxial surface of the cotyledons. Slower imbibition in polyethylene glycol lessened the incidence of these deleterious characteristics and may provide a practical resolution to the problem of poor field emergence in zero-tannin lines of faba bean with low seed vigour. 相似文献
9.
Two field experiments were performed to evaluate the nitrogen fixation potential of twenty common bean cultivars and breeding lines during summer and winter seasons of 1986 and 1988, respectively. The 15N isotope dilution method was used to quantify N2 fixation. The cultivars and breeding lines were variable in terms of their N2 fixation. The cv. Caballero was very efficient, with more than 50% N derived from the atmosphere and 60–80 kg N ha–1 fixed in both seasons. Other cultivars were less efficient, since the poorest ones derived less than 30% of their nitrogen from the atmosphere and fixed less than 20 kg N ha–1. After additional testing the best cultivars may be used directly by the farmers for cultivation. The experiments have provided information about which genotypes may be used to breed for enhanced fixation in common bean. 相似文献
10.
Thirty one selected bean lines were evaluated in the field for ability to support N2 fixation when intercropped with maize which received 0, 30 and 60 kg N ha–1 as ammonium sulphate. The amount of fixed N2 was estimated using the natural variation of 15N and wheat as the standard non-fixing crop. Nitrogen as low as 15 kg N ha–1 at sowing suppressed nodule weight and activity (acetylene reduction activity) but not nodule number, suggesting that the main effect of mineral N was on nodule development and function. 15N data revealed a high potential of the bean genotypes to fix N2, with the most promising ones averaging between 50–60% of seed N coming from fixation. Bean lines CNF-480, Puebla-152, Mexico-309, Negro Argel, CNF-178, Venezuela-350 and WBR22-3, WBR22-50 and WBR22-55 were ranked as good fixers. 相似文献
11.
Improvement of dinitrogen fixation in beans (Phaseolus vulgaris L.) will depend on the selection of superior plant genotypes and the presence of efficient rhizobial strains. This study
was conducted to evaluate diverse bean lines for N2 fixation potential using the15N-depleted dilution technique under field conditions in Wisconsin, USA. Plants of 21 bean lines and three non-nodulating isolines
of soybean received appliin Wisconsin, USA. Plants of 21 bean lines and three non-nodulating isolines of soybean received
applications of15N-depleted ammonium sulphate. Shoots harvested at the V6, R3 and R7 stages and dry seeds were analyzed for total N using the Kjeldahl procedure, and the ratio of15N to14N was determind on a MAT 250 mass spectrometer. Nodule occupancy of the applied strain ofR. leguminosarum biovarphaseoli, CIAT 899, was determined in five of the bean lines. Total shoot N content showed a pattern of accumulation similar to shoot
dry weight and fixed N2 in the shoot. Based on shoot total N, N2 fixed in the shoot and shoot dry weight Riz 30 and Preto Cariri were identified as being as good fixers as Puebla 152 and
Cargamanto appear to begin N2 fixation early. Furthermore, some bean lines that fixed considerable N2 did not translocate a large amount of N to the grains. Preto Cariri accumulated 21.2 kg N ha−1 in the seeds compared to Puebla 152 which accumulated 43.8 kg N ha−1 of the fixed N2 into the grains. At the early sampling, Puebla 152 and 22–27 had a considerable higher percentage of their crown nodules
formed by the inoculant strain CIAT 899, than did Rio Tibagi which has been considered a poor N2 fixer. 相似文献
12.
D. J. Wolyn D. A. St. Clair J. DuBois J. C. Rosas R. H. Burris F. A. Bliss 《Plant and Soil》1991,138(2):303-311
The improvement of N2 fixation in legumes may lead to increased yields and reduced fertilizer requirement. Levels of N2 fixation were determined for three cultivars and nine progeny lines from two inbred backcross common bean (Phaseolus vulgaris L.) populations that were grown at Hancock, Wissconsin in 1984 and 1985 using 15N-depleted (NH4)2SO4. The high N2-fixing line Puebla 152 was the donor parent for both inbred backcross populations and the cultivars Porrillo Sintetico and Sanilac were the recurrent parents for populations 21 and 24, respectively. Total N yield, fixed N2 and % N derived from the atmosphere were determined for whole plants and plant parts at the R3 (50% bloom) and R9 (maturity) growth stages. Significant year-by-line interactions were found for N2 fixation traits among the population 21 lines and parents, but not for population 24 lines and their parents. Measures of N2 fixation at R3 were inadequate to predict N2 fixation at R9. Population 24 lines and parents differed for N2 fixation ability at R9, and fixed N2 was correlated with maturity. The recovery of an inbred backcross progeny line, 24-21, which matured earlier and fixed more N2 than the recurrent parent Sanilac indicated that N2 fixation was heritable and that favorable alleles, independent of maturity, were recovered from a late-maturing, high N2-fixing donor parent by utilizing the inbred backcross breeding method. Since most fixed N2 and non-fixed N (>80%) was found in the seeds at maturity, and most lines did not vary for the distribution of nitrogen throughout the plant, selection for improved remobilization of nitrogen to the seed to increase yield is impractical in this genetic material. The highest N2-fixing lines tended to have high and similar % Ndfa in all plant parts. 相似文献
13.
Gudni Hardarson 《Plant and Soil》1993,152(1):1-17
Biological nitrogen fixation of leguminous crops is becoming increasingly important in attempts to develop sustainable agricultural production. However, these crops are quite variable in their effectiveness in fixing nitrogen. By the use of the 15N isotope dilution method some species have been found to fix large proportions of their nitrogen, while others like common bean have been considered rather inefficient. Methods for increasing N2 fixation are therefore of great importance in any legume work. Attempts to enhance nitrogen fixation of grain legumes has been mainly the domain of microbiologists who have selected rhizobial strains with superior effectiveness or competitive ability. Few projects have focused on the plant symbiont with the objective of improving N2 fixation as done in the FAO/IAEA Co-ordinated Research Programme which is being reported in this volume. The objective of the present paper is to discuss some possibilities available for scientists interested in enhancing symbiotic nitrogen fixation in grain legumes. Examples will be presented on work performed using agronomic methods, as well as work on the plant and microbial symbionts. There are several methods available to scientists working on enhancement of N2 fixation. No one approach is better than the others; rather work on the legume/Rhizobium symbiosis combining experience from various disciplines in inter-disciplinary research programmes should be pursued. 相似文献
14.
G. Hardarson F. A. Bliss M. R. Cigales-Rivero R. A. Henson J. A. Kipe-Nolt L. Longeri A. Manrique J. J. Peña-Cabriales P. A. A. Pereira C. A. Sanabria S. M. Tsai 《Plant and Soil》1993,152(1):59-70
Field experiments were performed in Austria, Brazil, Chile, Colombia, Guatemala, Mexico and Peru as part of an FAO/IAEA Co-ordinated Research Programme to investigate the nitrogen fixing potential of cultivars and breeding lines of common bean (Phaseolus vulgaris L.). Each experiment included approximately 20 bean genotypes which were compared using the 15N isotope dilution method. Great differences in nitrogen fixation were observed between and within experiments, with average values of 35% N derived from atmosphere (% Ndfa) and highest values of 70% Ndfa being observed. These values which were larger than had been reported previously for common bean, were observed only when environmental factors were favorable. Therefore, common bean lines are available, which can support high biological nitrogen fixation. These can be used either directly as cultivars for production or in breeding programmes to enhance nitrogen fixation in other cultivars. 相似文献
15.
E. S. Jensen 《Plant and Soil》1986,92(1):3-13
Summary The total amount of nitrogen derived from symbiotic nitrogen fixation in two pea and one field bean cultivar, supplied with
50 kg N ha−1 at sowing (‘starter’-N), was estimated to 165, 136, and 186 kg N ha−1, respectively (three-year means). However, estimates varied considerably between the three years. At the full bloom/flat
pod growth stage from 30 to 59 per cent of total N2 fixation had taken place. The proportion of total N derived from N2 fixation at maturity was higher in seeds than in vegetative plant parts and amounted to 59.5, 51.3 and 66.3 per cent of total
above-ground plant N in the two pea cultivars and field bean, respectively (three-year means). The recovery of fertilizer
N was 62.2, 70.2, 52.1, and 69.5 per cent in the two pea cultivars, field bean and barley, respectively. Growth analysis indicated
that barley did not meet the claims for an ideal reference crop in the15N fertilizer dilution technique for estimating N2 fixation in pea and field bean. ‘Starter’-N neither increased the seed yield nor the N content of the grain legumes. 相似文献
16.
Henning Kage 《Plant and Soil》1995,176(2):189-196
An experiment was carried out to determine the relationship between nitrate uptake and nitrogen fixation of faba beans. Therefore inoculated and uninoculated faba beans were grown in nutrient solution with different nitrate concentrations. Nitrate uptake was measured every two days during the growing period. At the end of the experiment the nitrate uptake kinetics were determined with a short time depletion technique and nitrogen fixation was measured with the acetylene reduction method. A limitation of nitrate uptake due to nitrogen fixation was relatively small. Nitrate concentrations of approximately 1 mol m–3 and 5 mol m–3 decreased nitrogen fixation to values of 16% and 1% of the control plants which received no nitrate nitrogen. A reduction of nitrogen fixation was mainly due to a decrease of specific nitrogen fixation per unit nodule weight and to a lesser extent due to a reduction of nodule growth. Only the maximum nitrate influx (Imax) seemed to be influenced by nitrogen fixation. Michaelis-Menten constants (Km) and minimum NO
inf3
–
-concentrations (Cmin) were not significantly influenced by nitrogen fixation. 相似文献
17.
R. S. Shukla C. B. Singh J. N. Dubey 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,78(3):433-435
Sumary The objective of this work was to know the behaviour and variability of Rhizobium leguminosarum after irradiation. The induced variation was tested under greenhouse conditions on the variety JV 3 of broad beans (Vicia faba) in six replications. Induced genetic variabilty was observed for strain, parent and mutant versus parent. Out of 24 irradiated strains, strain 93-32 performed better with a greater number of nodules and higher dry weight of nodules per plant and biological yield. Environment played an important role in the expression of characters observed. High heritability and genetic advance of these traits indicated that the nitrogen fixation ability of Rhizobium can easily be improved by selection. 相似文献
18.
Minimizing the effect of mineral nitrogen on biological nitrogen fixation in common bean by increasing nutrient levels 总被引:1,自引:0,他引:1
Although common bean (Phaseolus vulgaris L.) has good potential for N2 fixation, some additional N provided through fertilizer usually is required for a maximum yield. In this study the suppressive effect of N on nodulation and N2 fixation was evaluated in an unfertile soil under greenhouse conditions with different levels of soil fertility (low=no P, K and S additions; medium = 50, 63 and 10 mg kg–1 soil and high = 200, 256 and 40 mg kg–1 soil, respectively) and combined with 5, 15, 60 and 120 mg N kg–1 soil of 15N-labelled urea. The overall average nodule number and weight increased under high fertility levels. At low N applications, nitrogen had a synergistic effect on N2 fixation, by stimulating nodule formation, nitrogenase activity and plant growth. At high fertility and at the highest N rate (120 mg kg–1 soil), the stimulatory effect of N fertilizer on N2 fixation was still observed, increasing the amounts of N2 fixed from 88 up to 375 mg N plant–1. These results indicate that a suitable balance of soil nutrients is essential to obtain high N2 fixation rates and yield in common beans. 相似文献
19.
Voisin Anne-Sophie Salon Christophe Munier-Jolain Nathalie G. Ney Bertrand 《Plant and Soil》2002,243(1):31-42
The influence of soil nitrate availability, crop growth rate and phenology on the activity of symbiotic nitrogen fixation (SNF) during the growth cycle of pea (Pisum sativum cv. Baccara) was investigated in the field under adequate water availability, applying various levels of fertiliser N at the time of sowing. Nitrate availability in the ploughed layer of the soil was shown to inhibit both SNF initiation and activity. Contribution of SNF to total nitrogen uptake (%Ndfa) over the growth cycle could be predicted as a linear function of mineral N content of the ploughed layer at sowing. Nitrate inhibition of SNF was absolute when mineral N at sowing was over 380 kg N ha–1. Symbiotic nitrogen fixation was not initiated unless nitrate availability in the soil dropped below 56 kg N ha–1. However, SNF could no longer be initiated after the beginning of seed filling (BSF). Other linear relationships were established between instantaneous %Ndfa and instantaneous nitrate availability in the ploughed layer of the soil until BSF. Instantaneous %Ndfa decreased linearly with soil nitrate availability and was nil above 48 and 34 kg N ha–1 for the vegetative and reproductive stages, respectively, levels after which no SNF occurred. Moreover, SNF rate was shown to be closely related to the crop growth rate until BSF. The ratio of SNF rate over crop growth rate decreased linearly with thermal time. Maximum SNF rate was about 40 mg N m–2 degree-day–1, equivalent to 7 kg N ha–1, regardless of the N treatment. From BSF to the end of the growth cycle, the high N requirements of the crop were supported by both SNF and nitrate root absorption but, of the two sources, nitrate root absorption seemed to be less affected by the presence of reproductive organs. However, since soil nitrate availability was low at the end of the growth cycle, SNF was the main source of nitrogen acquisition. The onset of SNF decrease at the end of the growth cycle seemed to be first due to nodule age and then associated to the slowing of the crop growth rate. 相似文献
20.
Summary
Alnus glutinosa andAlnus rubra growing in the field in Scotland show specific nitrogenase activities of the same order of magnitude. The period of maximum potential nitrogenase activity coincides with that of maximum growth in late Spring and Summer. It is suggested that the retention of nitrogenase activity into the Autumn when growth has virtually ceased may be important as a contribution to the nitrogenous reserves of the tree.Bioassay of different Scottish soils, all collected from the locality of natural stands ofAlnus glutinosa, showed wide variation in the nodulation of seedlings, although generally a soil poor for nodulation ofAlnus glutinosa generally gave poor nodulation ofAlnus rubra. Soils of pH 4.5 to 6.5, best suited for growth and nitrogen fixation of the two species, often gave nodules showing highest specific nitrogen fixing activity. Young (2 to 3 year old) plants in glasshouse or controlled environment cabinet, inoculated withAlnus glutinosa endophyte, differed from mature field grown plants, however, sinceAlnus rubra required a much larger (up to 2.5 times) mass of root nodules to fix a unit quantity of N. Microscopic comparison of the nodules of glasshouse plants showed that the proportion of cells containing the vesicular (nitrogen fixing) form of the endophyte was only slightly lower inAlnus rubra than inAlnus glutinosa and it is suggested that the differences in specific nitrogen fixing activity between the two species may reflect some incompatibility of function of theAlnus glutinosa endophyte when in symbiosis withAlnus rubra. 相似文献