首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In an attempt to delineate potential folding initiation sites for different protein structural motifs, we have synthesized series of peptides that span the entire length of the polypeptide chain of two proteins, and examined their conformational preferences in aqueous solution using proton nuclear magnetic resonance and circular dichroism spectroscopy. We describe here the behavior of peptides derived from a simple four-helix bundle protein, myohemerythrin. The peptides correspond to the sequences of the four long helices (the A, B, C and D helices), the N- and C-terminal loops and the connecting sequences between the helices. The peptides corresponding to the helices of the folded protein all exhibit preferences for helix-like conformations in solution. The conformational ensembles of the A- and D-helix peptides contain ordered helical forms, as shown by extensive series of medium-range nuclear Overhauser effect connectivities, while the B- and C-helix peptides exhibit conformational preferences for nascent helix. All four peptides adopt ordered helical conformations in mixtures of trifluoroethanol and water. The terminal and interconnecting loop peptides also appear to contain appreciable populations of conformers with backbone phi and psi angles in the alpha-region and include highly populated hydrophobic cluster and/or turn conformations in some cases. Trifluoroethanol is unable to drive these peptides towards helical conformations. Overall, the peptide fragments of myohemerythrin have a marked preference towards secondary structure formation in aqueous solution. In contrast, peptide fragments derived from the beta-sandwich protein plastocyanin are relatively devoid of secondary structure in aqueous solution (see accompanying paper). These results suggest that the two different protein structural motifs may require different propensities for formation of local elements of secondary structure to initiate folding, and that there is a prepartitioning of conformational space determined by the local amino acid sequence that is different for the helical and beta-sandwich structural motifs.  相似文献   

2.
In an attempt to understand the earliest events in the protein folding pathway, the complete sequence of French bean plastocyanin has been synthesized as a series of short peptide fragments, and the conformational preferences of each peptide examined in aqueous solution using proton n.m.r. methods. Plastocyanin consists largely of beta-sheet, with reverse turns and loops between the strands of the sheet, and one short helix. The n.m.r. experiments indicate that most of the peptides derived from the plastocyanin sequence have remarkably little propensity to adopt folded conformations in aqueous solution, in marked contrast to the peptides derived from the helical protein, myohemerythrin (accompanying paper). For most plastocyanin peptides, the backbone dihedral angles are predominantly in the beta-region of conformational space. Some of the peptides show weak NOE connectivities between adjacent amide protons, indicative of small local populations of backbone conformations in the a region of (phi,psi) space. A conformational preference for a reverse turn is seen in the sequence Ala65-Pro-Gly-Glu68, where a turn structure is found in the folded protein. Significantly, the peptide sequences that populate the alpha-region of (phi,psi) space are mostly derived from turn and loop regions in the protein. The addition of trifluoroethanol does not drive the peptides into helical conformations. In one region of the sequence, the n.m.r. spectra provide evidence of the formation of a hydrophobic cluster involving aromatic and aliphatic side-chains. These results have significance for understanding the initiation of protein folding. From these studies of the fragments of plastocyanin (this paper) and myohemerythrin (accompanying paper), it appears that there is a pre-partitioning of the conformational space sampled by the polypeptide backbone that is related to the secondary structure in the final folded state.  相似文献   

3.
The structural and thermodynamics characters of α-syn12 (residues 1-12 of the human α-synuclein protein) peptide in aqueous solution were investigated through temperature replica-exchange molecular dynamics (T-REMD) simulations with the GROMOS 43A1 force field. The two independent T-REMD simulations were completed starting from an initial conformational α-helix and an irregular structure, respectively. Each replica was run for 300 ns. The structural and thermodynamics characters were studied based on parameters such as distributions of backbone dihedral angles, free energy surface, stability of folded β-hairpin structure, and favorite conformations. The results showed that the isolated α-syn12 peptide in water adopted four different conformational states: the first state was a β-hairpin ensemble with Turn(9-6) and four hydrogen bonds, the second state was a β-hairpin ensemble with two turns (Turn(9-6) and Turn(5-2)) and three hydrogen bonds, the third state was a disordered structure with both Turn(8-5) and Turn(5-2), and the last state was a π-helix ensemble. Meanwhile, we studied the free energy change of α-syn12 peptide from the unfolded state to the β-hairpin state, which was in good agreement with the experiments and molecular dynamics simulations for some other peptides. We also analyzed the driving force of the peptide transition. The results indicated that the driving forces were high solvent exposure of hydrophobic Leu8 and hydrophobic residues in secondary structure. To our knowledge, this was the first report to study the isolated α-syn12 peptide in water by T-REMD.  相似文献   

4.
Previous work by several groups has shown that the combination of spin--spin coupling constants and spectral density components (derived from spin--lattice relaxation and/or nuclear Overhauser measurements) may aid in the task of conformational determination of peptides in solution. Using the peptide formyl-L-methionyl-L-leucyl-L-phenylalanine, which is a potent specific chemotactic agent for leucocytes, we show the following: (a) that 3JNHCH coupling constants are consistent with a high degree of rigidity in the peptide backbone in solution, (b) that 3H isotopic substitution in combination with relaxation data taken at different Larmor frequencies enables spectral density, and thence conformational, information to be obtained, (c) that side-chain conformations for this molecule mirror, in some aspects, those found in the solid state for other peptides containing the same residues, and (d) that temperature dependence of amide chemical shifts does not have direct implication concerning the existence of intramolecular hydrogen bonds in peptides. We are able to propose a family of conformations which appear to interchange rapidly on the NMR time scale and are characterized by a distribution of side-chain rotamers. The basic backbone conformation is, or closely approximates, a small beta antiparallel pleated sheet and as such suggests a possible mode of receptor--chemotactic peptide interaction.  相似文献   

5.
The anti-human leukocyte antigen (HLA) class I monoclonal antibody (mAb) TP25.99 has a unique specificity since it recognizes both a conformational and a linear determinant expressed on the beta(2)-mu-associated and beta(2)-mu-free HLA class I heavy chains, respectively. Previously, we reported the identification of a cyclic and a linear peptide that inhibits mAb TP25.99 binding to the beta(2)-mu-associated and beta(2)-mu-free HLA class I heavy chains (S. A. Desai, X. Wang, E. J. Noronha, Q. Zhou, V. Rebmann, H. Grosse-Wilde, F. J. Moy, R. Powers, and S. Ferrone, submitted for publication). The linear X(19) and cyclic LX-8 peptides contain sequence homologous to residues 239-242, 245, and 246 and to residues 194-198, respectively, of HLA class I heavy chain alpha(3) domain. Analysis by two-dimensional transfer nuclear Overhauser effect spectroscopy of the induced solution structures of the linear X(19) and cyclic LX-8 peptides in the presence of mAb TP25.99 showed that the two peptides adopt a similar structural motif despite the lack of sequence homology. The backbone fold is suggestive of a short helical segment followed by a tight turn, reminiscent of the determinant loop region (residues 194-198) on beta(2)-mu-associated HLA class I heavy chains. The structural similarity between the linear X(19) and cyclic LX-8 peptides and the lack of sequence homology suggests that mAb TP25.99 predominantly recognizes a structural motif instead of a consensus sequence.  相似文献   

6.
To investigate helix-coil transition mechanisms, conformations of Glu12-Ala12, EA, in aqueous solution have been studied in detail over the pH range from 2 to 8 and the temperature range from 20 to 60 degrees C using CD and NMR spectroscopy. The 750-MHz NMR spectra displayed excellent dispersion of the backbone amide proton signals, and permitted essentially complete sequence-specific resonance assignments. These assignments, together with short- and medium-range nuclear Overhauser effect (NOE) constraints and coupling constants, enable us to analyze conformational characteristics of all the residues in the EA peptide individually. A combined use of CD and NMR techniques reveals that the EA peptide assumes a stable alpha-helix from Glu12 to Ala19 in 0.1 M NaCl solution at 20 degrees C above pH 7. The alpha-helix is getting longer as decreasing pH. Below pH 4, the peptide assumes the longest alpha-helix from Glu3 to Ala23. The important observation of the present study is that the helix-coil transition occurs stepwise, residue by residue, from both the N- and C-termini of the alpha-helix. No conformational equilibrium between the helical and random-coil states is detected for the residues in the central region of the alpha-helix. Quantitative analysis of temperature-induced helix-to-coil transitions at various pHs provides a pH-independent residual enthalpy change delta H(r) = 0.95 kcal res(-1). Similar values have been reported for a 50-residue alanine-rich peptide (1.2 kcal res(-1)), poly-L-glutamate (1.1 kcal res(-1)), poly-L-lysine (1.1 kcal res(-1)), and poly-L-alanine (0.86 kcal res(-1)). Those investigations, along with our present result, suggest that delta H(r) is mainly determined by the transformation of the backbone associated with the disruption of the intramolecular hydrogen bond. These results should increase our understanding of the helix-coil transition.  相似文献   

7.
To study the effect of O-glycosylation on the conformational propensities of a peptide backbone, the 15-residue peptide PPAHGVTSAPDTRPA (PPA15) from the MUC1 protein core and its analogue PPA15(T7), glycosylated with alpha-N-acetylgalactosamine on Thr7, were prepared and investigated by NMR spectroscopy. The peptide contains both the GVTSAP sequence, which is an effective substrate for GalNAc-T1 and -T3 transferases, and the PDTRP fragment, which is a well-known immunodominant epitope recognized by several anti-MUC1 monoclonal antibodies. Useful structural results were obtained in water upon decreasing the temperature to 5-10 degrees C. The sugar attachment slightly affected the conformational equilibrium of the peptide backbone near the glycosylated Thr7 residue. The clustering of low-energy conformations for both PPA15 and PPA15(T7) within the GVTSAP and APDTRP fragments revealed structural similarities between glycosylated and nonglycosylated peptides. For the GVTSAP region, minor but distinct clusters formed by either PPA15 or PPA15(T7) conformers showed distinct structural propensities of the peptide backbone specific for either the nonglycosylated or the glycosylated peptide. The peptide backbone of the APDTRP fragment, which is a well-known immunodominant region, resembled an S-shaped bend. A similar structural motif was found in the GVTSAP fragment. The S-shaped structure of the peptide backbone is formed by consecutive inverse gamma-turn conformations partially stabilized by hydrogen bonding. A comparison of the solution structure of the APDTRP fragment with a crystal structure of the MUC1 peptide antigen bound to the breast tumor-specific antibody SM3 demonstrated significant structural similarities in the general shape.  相似文献   

8.
We have applied computational procedures that utilize nmr data to model the solution conformation of ferrichrome, a rigid microbial iron transport cyclohexapeptide of known x-ray crystallographic structure [D. van der Helm et al. (1980) J. Am. Chem. Soc. 102, 4224-4231]. The Al3+ and Ga3+ diamagnetic analogues, alumichrome and gallichrome, dissolved in d6-dimethylsulfoxide (d6-DMSO), were investigated via one- and two-dimensional 1H-nmr spectroscopy at 300, 600, and 620 MHz. Interproton distance constraints derived from proton Overhauser experiments were input to a distance geometry algorithm [T. F. Havel and K. Wüthrich (1984) Bull. Math. Biol. 46, 673-691] in order to generate a family of ferrichrome structures consistent with the experimental data. These models were subsequently optimized through restrained molecular dynamics/energy minimization [B. R. Brooks et al. (1983) J. Comp. Chem. 4, 187-217]. The resulting structures were characterized in terms of relative energies and conformational properties. Computations based on integration of the generalized Bloch equations for the complete molecule, which include the 14N-1H dipolar interaction, demonstrate that the x-ray coordinates reproduce the experimental nuclear Overhauser effect time courses very well, and indicate that there are no significant differences between the crystalline and solution conformations of ferrichrome. A similar study of the metal free peptide, deferriferrichrome, suggests that at least two conformers are present in d6-DMSO at 23 degrees C. Both are different from the ferrichrome structure and explain, through conformational averaging, the observed amide NH and CH alpha multiplet splittings. The occurrence of interconverting peptide backbone conformations yields an increased number of sequential NH-CH alpha and NH-NH Overhauser connectivities, which reflects the mean value of r-6 dependence of the dipolar interaction. Our results support the idea that, in the case of structurally rigid peptides, moderately accurate distance constraints define a conformational subspace encompassing the "true" structure, and that energy considerations reduce the size of this subspace. For flexible peptides, however, the straight-forward approach can be misleading since the nmr parameters are averaged over substantially different conformational states.  相似文献   

9.
We have used the backbone cyclic proteinomimetics approach to develop peptides that functionally mimic the arginine-rich motif (ARM) of the HIV-1 Tat protein. This consensus sequence serves both as a nuclear localization signal (NLS) and as an RNA binding domain. Based on the NMR structure of Tat, we have designed and synthesized a backbone cyclic ARM mimetic peptide library. The peptides were screened for their ability to mediate nuclear import of the corresponding BSA conjugates in permeabilized cells. One peptide, designated "Tat11," displayed active NLS properties. Nuclear import of Tat11-BSA was found to proceed by the same distinct pathway used by the Tat-NLS and not by the common importin alpha pathway, which is used by the SV40-NLS. Most of the Tat-derived backbone cyclic peptides display selective inhibitory activity as demonstrated by the inhibition of the nuclear import mediated by the Tat-NLS and not by the SV40-NLS. The Tat-ARM-derived peptides, including Tat-11, also inhibited binding of the HIV-1 Rev-ARM to its corresponding RNA element (Rev response element) with inhibition constants of 5 nm. Here we have shown for the first time (a) a functional mimetic of a protein sequence, which activates a nuclear import receptor and (b) a mimetic of a protein sequence with a dual functionality. Tat11 is a lead compound which can potentially inhibit the HIV-1 life cycle by a dual mechanism: inhibition of nuclear import and of RNA binding.  相似文献   

10.
X L Zhang  M E Selsted  A Pardi 《Biochemistry》1992,31(46):11348-11356
Two-dimensional nuclear magnetic resonance spectroscopy has been used to make resonance assignments of the proton spectra of two defensin antimicrobial peptides, human neutrophil peptide HNP-1 and rabbit neutrophil peptide NP-2. The secondary structures of these peptides were determined from analysis of the proton-proton NOEs and from the positions of slowly exchanging amide protons. Both peptides contain a long stretch of a double-stranded antiparallel beta-sheet in a hairpin conformation that contains a beta-bulge, a short region of triple-stranded beta-sheet, and several tight turns. The NMR results clearly show that HNP-1 forms a dimer or higher order aggregate in solution and that Pro8 exists as a cis peptide bond. The NMR data on these peptides are compared with NMR data for a homologous peptide NP-5 [Bach, A. C., Selsted, M. E., & Pardi, A. (1987) Biochemistry 26, 4389-4397]. Analysis of the conformation-dependent proton chemical shifts shows that it is not possible to confidently judge the structural similarity of the three defensins from chemical shift data alone. However, comparison of the 3JHN alpha coupling constants in NP-2 and NP-5 indicates that the backbone conformations for these peptides are very similar. A more detailed comparison of the solution conformations of the defensins peptides is made in the following paper in this issue where the NMR data are used as input for distance geometry and molecular dynamics calculations to determine the three-dimensional structures of HNP-1 and NP-2.  相似文献   

11.
There is considerable interest in the structure of the denatured state and in the role local interactions play in protein stability and protein folding. Studies of peptide fragments provide one method to assess local conformational preferences which may be present in the denatured state under native-like conditions. A set of peptides corresponding to the individual elements of secondary structure derived from the N-terminal domain of the ribosomal protein L9 have been synthesized. This small 56 residue protein adopts a mixed alpha-beta topology and has been shown to fold rapidly in an apparent two-state fashion. The conformational preferences of each peptide have been analyzed by proton nuclear magnetic resonance spectroscopy and circular dichroism spectroscopy. Peptides corresponding to each of the three beta-stands and to the first alpha-helix are unstructured as judged by CD and NMR. In contrast, a peptide corresponding to the C-terminal helix is remarkably structured. This 17 residue peptide is 53 % helical at pH 5.4, 4 degrees C. Two-dimensional NMR studies demonstrate that the helical structure is distributed approximately uniformly throughout the peptide, although there is some evidence for fraying at the C terminus. Detailed analysis of the NMR spectra indicate that the helix is stabilized, in part, by a native N-capping interaction involving Thr40. A mutant peptide which lacks Thr40 is only 32 % helical. pH and ionic strength-dependent studies suggested that charge charge interactions make only a modest net contribution to the stability of the peptide. The protein contains a trans proline peptide bond located at the first position of the C-terminal helix. NMR analysis of the helical peptide and of a smaller peptide containing the proline residue indicates that only a small amount of cis proline isomer (8 %) is likely to be populated in the unfolded state.  相似文献   

12.
Two series of glycopeptides with mono- and disaccharides, [GalNAc and Galbeta (1-3)GalNAc] O-linked to serine and threonine at one, two or three contiguous sites were synthesized and characterized by 1H NMR. The conformational effects governed by O-glycosylation were studied and compared with the corresponding non-glycosylated counterparts using NMR, CD and molecular modelling. These model peptides encompassing the aa sequence, PAPPSSSAPPE (series I) and APPETTAAPPT (series II) were essentially derived from a 23-aa tandem repeat sequence of low molecular weight human salivary mucin (MUC7). NOEs, chemical shift perturbations and temperature coefficients of amide protons in aqueous and nonaqueous media suggest that carbohydrate moiety in threonine glycosylated peptides (series II) is in close proximity to the peptide backbone. An intramolecular hydrogen bonding between the amide proton of GalNAc or Galbeta (1-3)GalNAc and the carbonyl oxygen of the O-linked threonine residue is found to be the key structure stabilizing element. The carbohydrates in serine glycosylated peptides (series I), on the other hand, lack such intramolecular hydrogen bonding and assume a more apical position, thus allowing more rotational freedom around the O-glycosidic bond. The effect of O-glycosylation on peptide backbone is clearly reflected from the observed overall differences in sequential NOEs and CD band intensities among the various glycosylated and non-glycosylated analogues. Delineation of solution structure of these (glyco)peptides by NMR and CD revealed largely a poly L-proline type II and/or random coil conformation for the peptide core. Typical peptide fragments of tandem repeat sequence of mucin (MUC7) showing profound glycosylation effects and distinct differences between serine and threonine glycosylation as observed in the present investigation could serve as template for further studies to understand the multifunctional role played by mucin glycoproteins.  相似文献   

13.
Protease-activated receptor 4 (PAR4) is cleaved by thrombin at the R47-G48 peptide bond. Unlike PAR1, PAR4 does not contain a sequence readily predicted to interact with thrombin anion binding exosite-I. HPLC kinetic results on hydrolysis of PAR4 peptides (38-51 and 38-62) reveal that extending the sequence from the active site toward the exosite does not promote further binding interactions with thrombin. One-dimensional-proton line-broadening NMR indicates that the amino acids occupying the P(4)-P(1) positions of PAR4 (38-47), 44PAPR(47), come into direct contact with the thrombin surface. Less contact arises from the Leu43 at the P(5) position. Two-dimensional total correlation spectroscopy and two-dimensional transferred nuclear Overhauser effect spectroscropy studies on this complex reveal that Leu43 is flexible and can exhibit two conformational states. The binding mode observed for PAR4 peptides is similar to that of PAR1 peptides. PAR4 takes advantage of a distinctive sequence to optimize its interactions with the thrombin active site surface.  相似文献   

14.
A systematic examination by 1H nuclear magnetic resonance of the population of beta-turn-containing conformers in several series of short linear peptides in water solution has demonstrated a dependence on amino acid sequence which has important implications for initiation of protein folding. The peptides consist of a number of variants of the sequence Tyr-Pro-Tyr-Asp, the trans isomer of which was previously shown to contain a reverse turn in water. Two-dimensional rotating-frame nuclear Overhauser effect spectroscopy provides unequivocal evidence that substantial populations of reverse turn conformations occur in water solutions of certain of these peptides. In the unfolded state, the peptides adopt predominantly extended chain (beta) conformations in water. It appears probable from the nuclear Overhauser effect connectivities observed that the reverse turns in the trans isomers are predominantly type II. The low temperature coefficient of the amide proton resonance of the residue at position 4 of the turn suggests the presence of an intramolecular hydrogen bond. The presence of the beta-turn conformation has been confirmed for certain peptides by circular dichroism measurements. Substitutions at positions 3 and 4 in the sequence Tyr-Pro-Tyr-Asp-Val can enhance or abolish the beta-turn population in the trans peptide isomers. The residue at position 3 of the turn is the primary determinant of its stability. A small amount of additional stabilization appears to result from an electrostatic interaction between the side-chain of residue 4 and the unblocked amino terminus. For peptides of the series Tyr-Pro-X-Asp-Val, where X represents all L-amino acid except Trp and Pro, the temperature coefficient of the Asp4 amide proton resonance provides a measure of the beta-turn population. The beta-turn populations in water solution measured in this way correlate with the beta-turn probabilities determined from protein crystal structures. This indicates that it is frequently the local amino acid sequence, rather than medium- to long-range interactions in the folded protein, that determines the beta-turn conformation in the folded state. Such sequences are excellent candidates for protein folding initiation sites. A high population of structured forms appears to be present in the cis isomer of certain of the peptides, as shown by a considerable increase in the proportion of the cis isomer and by measurement of nuclear Overhauser effects and 3JN alpha coupling constants.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Peptide GVKGDKGNPGWPGAPY (called peptide IV-H1), derived from the protein sequence of human collagen type IV, triple-helix domain residues 1263-1277, represents an RGD-independent, cell-specific, adhesion, spreading, and motility promoting domain in type IV collagen. In this study, peptide IV-H1 has been investigated by 1H NMR (500 MHz) spectroscopy. Cis-trans proline isomerization at each of the three proline residues gives rise to a number of slowly exchanging (500-MHz NMR time scale) conformation states. At least five such states are observed, for example, for the well-resolved A14 beta H3 group, and K3, which is six residues sequentially removed from the nearest proline, i.e., P9, shows two sets. The presence of more than two sets of resonances for residues sequentially proximal to a proline, e.g., A14-cis-P15 and A14-trans-P15, and more than one set for a residue sequentially well-removed from a proline, e.g., K3, indicates long range conformation interactions and the presence of preferred structure in this short linear peptide. Many resonances belonging to these multiple species have been assigned by using mono-proline-substituted analogues. Conformational (isomer) state-specific 2D 1H NMR assignments for the combination of cis and trans proline states have been made via analysis of COSY-type, HOHAHA, and NOESY spectra. Peptide IV-H1 in the all-trans proline state ttt exists in relatively well-defined conformation populations showing numerous short- and long-range NOEs and long-lived backbone amide protons and reduced backbone NH temperature coefficients, suggesting hydrogen-bonding, and structurally informative 3J alpha N coupling constants. The NMR data indicate significant beta-turn populations centered at K3-G4, K5-G6, P9-G10, and P12-G13, and a C-terminal gamma-turn within the A14-P15-Y16 sequence. These NMR data are supported by circular dichroic studies which indicate the presence of 52% beta-turn, 10% helix, and 38% random coil structural populations. Since equally spaced KG and PG residues are found on both sides of peptide IV-H1 in the native collagen type IV sequence, this multiple turn repeat motif may continue through a longer segment of the protein. Synthetic peptide IV-H1 overlapping sequence "walk throughs" indicate that the primary biological activity is localized in the GNPGWPGAP double beta-turn domain, which contains the backbone constraining proline residues. This proline-domain conformation may suggest a collagen type IV receptor-specific, metastatic cell adhesion promoting binding domain.  相似文献   

16.
Molecular dynamics simulations of alamethicin in methanol were carried out with either a regular alpha-helical conformation or the x-ray crystal structure as starting structures. The structures rapidly converged to a well-defined hydrogen-bonding pattern with mixed alpha-helical and 3(10)-helical hydrogen bonds, consistent with NMR structural characterization, and did not unfold throughout the 1-ns simulation, despite some sizable backbone fluctuations involving reversible breaking of helical hydrogen bonds. Bending of the helical structure around residues Aib10-Aib13 was associated with reversible flips of the peptide bonds involving G11 (Aib10-G11 or G11-L12 peptide bonds), yielding discrete structural states in which the Aib10 carbonyl or (rarely) the G11 carbonyl was oriented away from the peptide helix. These peptide bond reversals could be accommodated without greatly perturbing the adjacent helical structure, and intramolecular hydrogen bonding was generally maintained in bent states through the formation of new (non-alpha or 3[10]) hydrogen bonds with good geometries: G11 NH-V9 CO (inverse gamma turn), Aib13 NH-Aib8 CO (pi-helix) and, rarely, L12 NH- Q7 NH (pi-helix). These observations may reconcile potentially conflicting NMR structural information for alamethicin in methanol, in which evidence for conformational flexibility in the peptide sequence before P14 (G11-Aib13) contrasts with the stability of backbone amide NH groups to exchange with solvent. Similar reversible reorientation of the Thr11-Gly12 peptide bond of melittin is also observed in dynamics simulations in methanol (R. B. Sessions, N. Gibbs, and C. E. Dempsey, submitted). This phenomenon may have some role in the orientation of the peptide carbonyl in solvating the channel lumen in membrane ion channel states of these peptides.  相似文献   

17.
D Peyton  V Sardana  E Breslow 《Biochemistry》1987,26(6):1518-1525
Perdeuteriated peptides were synthesized that are capable of binding to the hormone binding site of neurophysin but that differ in the position of aromatic residues. The binding of these peptides to bovine neurophysin I and its des-1-8 derivative was studied by proton nuclear magnetic resonance spectroscopy in order to identify protein residues near the binding site through the observation of differential ring current effects on assignable protein resonances. Phenylalanine in position 3 of bound peptides was shown to induce significant ring current shifts in several resonances assignable to the 1-8 sequence, including those of Leu-3 and/or Leu-5, but was without effect on Tyr-49 ring protons. The magnitude of these shifts was dependent on the identity of peptide residue 1. By contrast, the sole demonstrable direct effect of an aromatic residue in position 1 was a downfield shift in Tyr-49 ring protons. Study of peptide binding to des-1-8-neurophysin demonstrated similar conformations of native and des-1-8 complexes except for the environment of Tyr-49, confirmed the peptide-induced ring current shift assignments in native neurophysin, and indicated an effect of binding on Thr-9. These observations are integrated with other results to provide a partial model of neurophysin-peptide complexes that places the ring of Tyr-49 at a distance 5-10 A from residue 1 of bound peptide and that places both the 1-8 sequence and the protein backbone region containing Tyr-49 proximal to each other and to peptide residue 3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
It has been reported that backbone cyclization of octapeptides with the photoresponsive (4-aminomethyl)phenylazobenzoic acid imparts sufficient restraints to induce and stabilize ordered conformations of the peptide backbone in both the cis- and trans-azo-isomers (L. Ulysse, J. Cubillos, and J. Chmielewski, Journal of the American Chemical Society, 1995, Vol. 117, pp. 8466-8467). Correspondingly, the active-site octapeptide fragment H-Ala-Cys-Ala-Thr-Cys-Asp-Gly-Phe-OH [134-141] of thioredoxin reductase, with its high preference for a 3(10)-helix turn conformation centered on the Thr-Cys sequence, was backbone cyclized with this azobenzene moiety in the attempt to design a photoresponsive system where the conformational states of the peptide backbone are dictated by the configuration of the azobenzene and can be further modulated by the disulfide bridge. Nuclear magnetic resonance conformational analysis of the monocyclic compound clearly revealed the presence of two conformational families in both the cis- and trans-azo configuration. Of the higher populated conformational families, the structure of the trans-isomer seems like a pretzel-like folding, while the cis-isomer relaxes into a significantly less defined conformational state that does not exhibit any regular structural elements. Further restrictions imparted by disulfide bridging of the peptide moiety leads to an even better defined conformation for the trans-azo-isomer, whereas the cis-isomer can be described as a frustrated system without pronounced energy minima and thus with little conformational preferences. Our findings would suggest that this photoresponsive peptide template may not be of general usefulness for light-induced conformational transitions between two well-defined conformational states at least under the experimental conditions employed, even in the bicyclic form. However, trans --> cis isomerization of the bicyclic peptide is accompanied by a switch from a well-defined conformation to an ensemble of possible conformations.  相似文献   

19.
Shafer AM  Nakaie CR  Deupi X  Bennett VJ  Voss JC 《Peptides》2008,29(11):1919-1929
To probe the binding of a peptide agonist to a G-protein coupled receptor in native membranes, the spin-labeled amino acid analogue 4-amino-4-carboxy-2,2,6,6-tetramethylpiperidino-1-oxyl (TOAC) was substituted at either position 4 or 9 within the substance P peptide (RPKPQQFFGLM-NH2), a potent agonist of the neurokinin-1 receptor. The affinity of the 4-TOAC analog is comparable to the native peptide while the affinity of the 9-TOAC derivative is approximately 250-fold lower. Both peptides activate receptor signaling, though the potency of the 9-TOAC peptide is substantially lower. The utility of these modified ligands for reporting conformational dynamics during the neurokinin-1 receptor activation was explored using EPR spectroscopy, which can determine the real-time dynamics of the TOAC nitroxides in solution. While the binding of both the 4-TOAC substance P and 9-TOAC substance P peptides to isolated cell membranes containing the neurokinin-1 receptor is detected, a bound signal for the 9-TOAC peptide is only obtained under conditions that maintain the receptor in its high-affinity binding state. In contrast, 4-TOAC substance P binding is observed by solution EPR under both low- and high-affinity receptor states, with evidence of a more strongly immobilized peptide in the presence of GDP. In addition, to better understand the conformational consequences of TOAC substitution into substance P as it relates to receptor binding and activation, atomistic models for both the 4- and 9-TOAC versions of the peptide were constructed, and the molecular dynamics calculated via simulated annealing to explore the influence of the TOAC substitutions on backbone structure.  相似文献   

20.
The synthesis of an azobenzene amino acid (aa) for use as a photo-inducible conformational switch in polypeptides is described. The compound can be easily incorporated into an aa sequence by solid-phase peptide synthesis using standard 9-fluorenylmethoxycarbonyl methods. A reversible conformational change of the peptide backbone is induced by switching between the cis and trans configurations of the azobenzene moiety by irradiation with light of suitable wavelength. Thermal cis --> trans isomerization of this azobenzene aa is slow, enabling detailed structural investigations of the modified peptides, e.g., using NMR techniques. The total time for the synthesis of the photoswitch is typically 4 d, with an overall yield of 40-50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号