首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cryopreserved callus: a source of protoplasts for rice transformation   总被引:5,自引:0,他引:5  
We cryopreserved whole rice calli (Oryza sativa L cv Taipei 309) to investigate the ability of the surviving cells to regenerate plants and yield protoplasts competent for genetic transformation. Four out of six callus lines cryopreserved after four months in culture contained small sectors able to continue cell division and subsequently regenerate fertile plants. Both cryopreservation efficiency and regeneration ability decreased when using eight month old cultures. High yields of protoplasts were obtained from different cryopreserved callus lines. Protoplasts were transfected with chimeric genes consisting of the maize ubiquitin 1 promoter, first exon and first intron fused to the coding region of either the GUS or BAR marker genes. Levels of transient gene expression from both marker genes were similar to those previously obtained using protoplasts derived from callus that had not been frozen. Stable transformants were selected by their resistance to Bialaphos and could be identified with the pH indicator chlorophenol red. Southern blot analysis confirmed the integration of the BAR gene into the rice genome. Therefore, cryopreservation does not affect the ability of rice cells to integrate and express foreign genes.Abbreviations BA 6-benzylaminopurine - BAR Bialaphos-resistance - CaMV cauliflower mosaic virus - CPS cryoprotectant solution - CR chlorophenol red 2,4-D 2,4-dichlorophenoxyacetic acid - DMSO dimethyl sulfoxide - FW fresh weight - GUS -glucuronidase - IOD interoptical density - MS Murashige and Skoog - MU methyl umbelliferone - NAA naphthaleneacetic acid - PAT phosphinothricin acetyl transferase - PEG polyethylene glycol - TTC 2,3,5, triphenyltetrazolium chloride - UBI maize ubiquitin 1 promoter, first exon and first intron  相似文献   

3.
Lu J  Sivamani E  Li X  Qu R 《Plant cell reports》2008,27(10):1587-1600
Ubiquitin is an abundant protein involved in protein degradation and cell cycle control in plants and rubi3 is a polyubiquitin gene isolated from rice (Oryza sativa L.). Using both GFP and GUS as reporter genes, we analyzed the expression pattern of the rubi3 promoter as well as the effects of the rubi3 5'-UTR (5' untranslated region) intron and the 5' terminal 27 bp of the rubi3 coding sequence on the activity of the promoter in transgenic rice plants. The rubi3 promoter with the 5'-UTR intron was active in all the tissue and cell types examined and supported more constitutive expression of reporter genes than the maize Ubi-1 promoter. The rubi3 5'-UTR intron mediated enhancement on the activity of its promoter in a tissue-specific manner but did not alter its overall expression pattern. The enhancement was particularly intense in roots, pollen grains, inner tissue of ovaries, and embryos and aleurone layers in maturing seeds. The translational fusion of the first 27 bp of the rubi3 coding sequence to GUS gene further enhanced GUS expression directed by the rubi3 promoter in all the tissues examined. The rubi3 promoter should be an important addition to the arsenal of strong and constitutive promoters for monocot transformation and biotechnology.  相似文献   

4.
5.
Introns are key regulatory elements of rice tubulin expression   总被引:11,自引:0,他引:11  
Fiume E  Christou P  Gianì S  Breviario D 《Planta》2004,218(5):693-703
  相似文献   

6.
To investigate developmental regulation of wheat histone H3 gene expression, the H3 promoter, which has its upstream sequence to ?1711 (relative to the cap site as +1), was fused to the coding region of the gus A gene (?1711H3/GUS) and introduced into a monocot plant, rice. Detailed histochemical analysis revealed two distinct types of GUS expression in transgenic rice plants; one is cell division-dependent found in the apical meristem of shoots and roots and in young leaves, and another is cell division-independent detected in flower tissues including the anther wall and the pistil. In this study, replication-dependent expression occurring in non-dividing cells which undergo endoreduplication could not be discriminated from strict replication-independent expression. The observed expression pattern in different parts of roots suggested that the level of the H3/GUS gene expression is well correlated with activity of cell division in roots. To identify 5′ sequences of the H3 promoter necessary for an accurate regulation of the GUS expression, two constructs containing truncated promoters, ?908H3/GUS and ?185H3/GUS, were analyzed in transiently expressed protoplasts, stably transformed calli and transgenic plants. The results indicated that the region from ?909 to ?1711 contains the positive cis-acting element(s) and that the proximal promoter region (up to ?185) containing the conserved hexamer, octamer and nonamer motifs is sufficient to direct both cell division-dependent and -independent expression. The use of the meristem of roots regenerated from transformed calli for the analysis of cell division-dependent expression of plant genes is discussed.  相似文献   

7.
水稻OsBP-73基因表达需要其内含子参与   总被引:7,自引:0,他引:7  
该实验室以前的研究表明,水稻OsBP-73基因含有2个外显子和1个长度为2 471 bp的内含子.该文报告用OsBP-73基因ATG翻译起始密码子(在第1外显子中)上游序列(1- 818~ 215)与GUS基因构成嵌合质粒pRSSl,将该质粒转化水稻后,在抗性愈伤组织和转基因植株中未能检测到GUS基因的表达.只有用含有完整的内含子及其上游序列(1 818~ 2 844)与GUS基因构成嵌合质粒(p13GNF)时,才能在p13GNF的转基因抗性愈伤组织和植株中检测到GUS基因的表达.实验还证明,单是内含子序列并不能驱动GUS基因在转基因水稻中表达.由此推测:OsBP-73基因的启动子序列驱动基因表达时,需要基因内含子的参与.  相似文献   

8.
9.
The expression of the maize polyubiquitin gene promoter UBI1 in rice cells has been used to study the involvement of ubiquitin in cell protection responses to dehydration caused by osmotic, saline or freezing stress. The effect of these stresses on UBI1 activity was investigated by the use of stably transformed rice calli (UBI1:GUS), as well as by transient expression experiments performed with cell lines with high or low tolerance to each type of stress. The theoretical analysis of the UBI1 promoter shows several putative stress-regulated boxes that could account for the stress-related UBI1 induction pattern described in this work. We suggest that the study of the differential UBI1 promoter-driven expression in rice cell lines with different level of tolerance to stress might be useful to elucidate complex signal transduction pathways in response to dehydration stresses in monocots.  相似文献   

10.
11.
The first intron (EPI) of rice 5-enolpyruvylshikimate 3-phosphate synthase gene was isolated by PCR from one clone with genomic EPSP synthase gene. Sequence analysis showed that the first intron is 704 bp in length with 36.2% G+C content. To investigate its effect on expression of foreign gene, we inserted the first intron between CaMV35S promoter and β-glucuronidase (GUS) gene. The transient expression results showed that GUS could be expressed effectively with EPI. The GUS activity in transgenic tobacco shows that the EPI can greatly enhance the expression level of β-glucuronidase (P < 0.01) compared with transgenic tobacco without the first intron, and 3-to 6-fold increase in GUS activity in some transgenic tobaccos. Northern blot indicated the first intron was spliced from GUS pre-mRNA, and the steady-state mRNA levels of GUS with EPI in transgenic tobaccos were higher than that in transgenic tobacco without EPI, which suggested that the first intron of EPSP was a non-translated intron.  相似文献   

12.
pib基因启动子及其诱导启动性初探   总被引:6,自引:0,他引:6  
李婵娟  杨世湖  武亮  万建民 《遗传》2006,28(6):689-694
将pib基因上游5.7 kb区段取代pCAMBIA1301中gus基因上游的35S启动子构建了pib拟启动区-GUS+ 35S-hpt 基因表达载体pNAR604。经农杆菌介导转化水稻成熟胚愈伤,获得了转基因抗潮霉素愈伤和36株转基因水稻植株。 转基因抗性愈伤和转基因植株根的组织化学GUS活性检测表明,光照培养下的抗性愈伤和转基因植株根不能使X-gluc显色,而暗处理24 h后的抗性愈伤和定植后转基因植株的根能使X-gluc显色。转基因植株GUS荧光定量分析结果表明,GUS表达具有器官特异性,黑暗处理前根的GUS活性最高、茎次之,分别是是叶片的7倍和3倍,叶片中仅有痕量本底。24 h黑暗处理后根、茎、叶中GUS活性都有增加,且叶片中的增加比例最大,其活性仅次于根。5 mmol/L水杨酸和0.3 mol/L NaCl叶面喷施转基因植株24 h后叶片中GUS活性分别为处理前的2.7和3.6倍。初步确定pib拟启动区是一个诱导型启动子。黑暗、水杨酸和NaCl能诱导该启动子启动活性。  相似文献   

13.
A reproducible and efficient transformation system has been developed for maize that is based on direct DNA uptake into embryogenic protoplasts and regeneration of fertile plants from protoplast-derived transgenic callus tissues. Plasmid DNA, containing the -glucuronidase (GUS) gene, under the control of the doubled enhancer element (the –208 to –46 bp upstream fragment) from CaMV 35S promoter, linked to the truncated (up to –389 bp from ATG) promoter of wheat, -amylase gene was introduced into protoplasts from suspension culture of HE/89 genotype. The constructed transformation vectors carried either the neomycin phosphotransferase (NPTII) or phosphinothricin acetyltransferase (PAT) gene as selective marker. The applied DNA uptake protocol has resulted at least in 10–20 resistant calli, or GUS-expressing colonies after treatment of 106 protoplasts. Vital GUS staining of microcalli has made possible the shoot regeneration from the GUS-stained tissues. 80–90% of kanamycin or PPT resistant calli showed GUS activity, and transgenic plants were regenerated from more than 140 clones. Both Southern hybridization and PCR analysis showed the presence of introduced foreign genes in the genomic DNA of the transformants. The chimeric promoter, composed of a tissue specific monocot promoter, and the viral enhancer element specified similar expression pattern in maize plants, as it was determined by the full CaMV 35S promoter in dicot and other monocot plants. The highest GUS specific activity was found in older leaves with progressively less activity in young leaves, stem and root. Histochemical localization of GUS revealed promoter function in leaf epidermis, mesophyll and vascular bundles, in the cortex and vascular cylinder of the root. In roots, the meristematic tip region and vascular tissues stained intensively. Selected transformants were grown up to maturity, and second-generation seedlings with segregation for GUS activity were obtained after outcrossing. The GUS-expressing segregants carried also the NPTII gene as shown by Southern hybridization.  相似文献   

14.
D McElroy  W Zhang  J Cao    R Wu 《The Plant cell》1990,2(2):163-171
  相似文献   

15.
Nuclear matrix attachment regions (MARs) are thought to influence the expression of the flanking genes. TM2, a new DNA fragment isolated from tobacco, can bind with the rice nuclear matrix in vitro. In this study, we investigated the effect of TM2 on transgene expression under the control of three different promoters in stably transformed rice calli and plants. The presence of TM2 flanking the transgene increased the expression of constructs based on the constitutive CaMV 35S and maize ubiquitin gene promoters in both resistant calli and transformed plants. The GUS expression directed by the photosynthetic-tissue-specific PNZIP promoter was also increased in photosynthetic tissues of transformants. However, TM2 did not change the gene expression pattern controlled by the PNZIP promoter. The effect of TM2 in transgenic plants was stronger than that in transgenic calli based on all three promoters. Our results indicate that TM2, as a novel strong MAR, can be used to increase the transgene expression levels in the whole plant or in particular tissues of monocotyledons.  相似文献   

16.
Expression of a polyubiquitin promoter isolated from Gladiolus   总被引:2,自引:0,他引:2  
Joung YH  Kamo K 《Plant cell reports》2006,25(10):1081-1088
A polyubiquitin promoter (GUBQ1) including its 5′UTR and intron was isolated from the floral monocot Gladiolus because high levels of expression could not be obtained using publicly available promoters isolated from either cereals or dicots. Sequencing of the promoter revealed highly conserved 5′ and 3′ intron splicing sites for the 1.234 kb intron. The coding sequence of the first two ubiquitin genes showed the highest homology (87 and 86%, respectively) to the ubiquitin genes of Nicotiana tabacum and Oryza sativa RUBQ2. Transient expression following gene gun bombardment showed that relative levels of GUS activity with the GUBQ1 promoter were comparable to the CaMV 35S promoter in gladiolus, tobacco, rose, rice, and the floral monocot freesia. The highest levels of GUS expression with GUBQ1 were attained with Gladiolus. The full-length GUBQ1 promoter including 5′UTR and intron were necessary for maximum GUS expression in Gladiolus. The relative GUS activity for the promoter only was 9%, and the activity for the promoter with 5′UTR and 399 bp of the full-length 1.234 kb intron was 41%. Arabidopsis plants transformed with uidA under GUBQ1 showed moderate GUS expression throughout young leaves and in the vasculature of older leaves. The highest levels of transient GUS expression in Gladiolus have been achieved using the GUBQ1 promoter. This promoter should be useful for genetic engineering of disease resistance in Gladiolus, rose, and freesia, where high levels of gene expression are important.  相似文献   

17.
18.
19.
Agrobacterium-mediated and direct gene transfer into protoplasts using PEG were both successfully used to produce stable, transformed peppermint plants (Mentha×piperita L. cultivar Black Mitcham) with the limonene synthase gene. Stem internode explants found to possess a high level of organogenesis through adventitious shoot formation were subjected to Agrobacterium tumefaciens disarmed strain GV3101 (pMP90). Following the development of an efficient protoplast-to-plant cycle from stem-isolated protoplasts, they were used in direct gene transformations. In both cases the binary vector pGA643 carrying the nptII/GUS genes, both driven by the CaMV35S promoter, was used in preliminary plant-transformation studies. Later, GUS was replaced with the limonene synthase gene. Kanamycin was used as a selective agent in all transformation experiments to obtain both transformed protoplast-derived calli as well as putative transgenic shoots regenerated from internode explants. Both types of transformation resulted in transgenic plants which were detected using PCR and confirmed by Southern-blot hybridizations. Southern analysis revealed that the method of Agrobacterium-mediated transformation is superior to the direct DNA uptake into protoplasts with regard to the stability of the insert during the transformation event. Single transgenic plants were grown to 10% flowering in a greenhouse and the plants derived both by the Agrobacterium and the protoplast-derived methods were generally observed to have essential oil profiles characterized by a high-menthone, low-menthol, high-menthofuran and –pulegone content in comparison to a typical mid-west peppermint. Limonene varied only slightly, around 1.2%, in transgenic plants produced by both methods. Received: 22 November 1998 / Accepted: 4 Januar 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号