首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen uptake with succinate or palmitoyl-CoA as substrates can be measured in rat liver mitochondria that have been isolated by sucrose density gradient centrifugation providing the fractions are diluted with a 30 mM phosphate buffer rather than with an isotonic medium. Separate assay procedures were used to measure peroxisomal and mitochondrial β-oxidation of palmitoyl-CoA in the fractions of a sucrose gradient used to separate these organelles. A preliminary estimate of the ratio of palmitoyl-CoA oxidation by the mitochondrial fraction relative to the surviving peroxisomes from livers of male rats was 3.2.  相似文献   

2.
3.
4.
Crude mitochondrial fractions were isolated by differential centrifugation of rat liver homogenates. Subfractionation of these fractions on self-generating continuous Percoll gradients resulted in clearcut separation of peroxisomes from mitochondria. Hexacosanoic acid beta-oxidation was present mainly in peroxisomal fractions whereas hexacosanoyl CoA oxidation was present in the mitochondrial as well as in the peroxisomal fractions. The presence of much greater hexacosanoyl CoA synthetase activity in the purified preparations of microsomes and peroxisomes compared to mitochondria, suggests that the synthesis of coenzyme A derivatives of very long chain fatty acids (VLCFA) is limited in mitochondria. We postulate that a specific VLCFA CoA synthetase may be required to effectively convert VLCFA to VLCFA CoA in the cell. This specific synthetase activity is absent from the mitochondrial membrane, but present in the peroxisomal and the microsomal membranes. We postulate that substrate specificity and the subcellular localization of the specific VLCFA CoA synthetase directs and regulates VLCFA oxidation in the cell.  相似文献   

5.
E-series prostaglandins have been shown to inhibit hepatic glucagon-stimulated glycogenolysis without inhibiting glycogenolysis stimulated by cAMP analogs. In the present studies, prostaglandin E2 and 16,16-dimethylprostaglandin E2 inhibited glucagon-stimulated cAMP accumulation in isolated rat hepatocytes by 25% and 46%, respectively, without affecting basal cAMP levels. Half-maximal inhibition of glucagon-stimulated cAMP accumulation occurred at approx. 10(-7) M 16,16-dimethylprostaglandin E2. 16,16-Dimethylprostaglandin E2 inhibited glucagon-stimulated palmitate oxidation in intact hepatocytes without affecting basal rates of palmitate oxidation. 16,16-Dimethylprostaglandin E2 had no effect on palmitate oxidation in a liver homogenate system. These studies demonstrate that prostaglandin E antagonizes the effects of glucagon on hepatic metabolism by inhibiting glucagon-stimulated cAMP accumulation.  相似文献   

6.
Mitochondrial were prepared from fat-cells isolated from rat epididymal adipose tissues of fed and 48 h-starved rats to study some aspects of fatty acid oxidation in this tissue. The data were compared with values obtained in parallel experiments with liver mitochondria that were prepared and incubated under identical conditions. 2. In the presence of malonate, fluorocitrate and arsenite, malate, but not pyruvate-bicarbonate, facilitated palmitoyl-group oxidation in both types of mitochondria. In the presence of malate, fat-cell mitochondria exhibited slightly higher rates of palmitoylcarnitine oxidation than liver. Rates of octanoylcarnitine oxidation were similar in liver and fat-cell mitochondria. Uncoupling stimulated acylcarnitine oxidation in liver, but not in fat-cell mitochondria. Oxidation of palmitoyl- and octanoyl-carnitine was partially additive in fat-cell but not in liver mitochondria. Starvation for 48 h significantly decreased both palmitoylcarnitine oxidation and latent carnitine palmitoyltransferase activity in fat-cell mitochondria. Starvation increased latent carnitine palmitoyltransferase activity in liver mitochondria but did not alter palmitoylcarnitine oxidation. These results suggested that palmitoylcarnitine oxidation in fat-cell but not in liver mitochondria may be limited by carnitine palmitoyltransferase 2 activity. 3. Fat-cell mitochondria also differed from liver mitochondria in exhibiting considerably lower rates of carnitine-dependent oxidation of palmitoyl-CoA or palmitate, suggesting that carnitine palmitoyltransferase 1 activity may severely rate-limit palmitoyl-CoA oxidation in adipose tissue.  相似文献   

7.
The production of hydrogen peroxide by isolated hepatocytes in response to lauric, palmitic and oleic acids, a measurement of peroxisomal fatty acid oxidation, is inhibited by phenothiazines under conditions in which ketone body production, a measurement of mitochondrial fatty acid oxidation, does not reveal inhibition of mitochondrial activity. This novel finding provides a pharmacological tool for the study of peroxisomal function in whole cells. The mechanism of this effect of phenothiazines, detected in hepatocytes from rats treated with a peroxisome proliferation inducing drug, is not yet known.  相似文献   

8.
9.
With hepatocytes in suspension, freshly isolated from meal-fed rats, no significant effect of ionomycin on the rate of de novo fatty acid synthesis was observed, whereas phorbol myristate acetate (PMA) was strongly stimulatory. The combination of ionomycin and PMA produced the same stimulation as was seen with PMA alone. Stimulation of fatty acid synthesis by vasopressin was comparable and not additive to that observed with PMA, indicating that activation of protein kinase C is solely responsible for this metabolic effect of vasopressin. Both vasopressin and PMA increased acetyl-CoA carboxylase activity in isolated rat hepatocytes.  相似文献   

10.
Rat liver peroxisomes oxidized palmitate in the presence of ATP, CoA and NAD+, and the rate of palmitate oxidation exceeded that of palmitoyl-CoA oxidation. Acyl-CoA synthetase [acid: CoA ligase (AMP-forming); EC 6.2.1.3] was found in peroxisomes. The substrate specificity of the peroxisomal synthetase towards fatty acids with various carbon chain lengths was similar to that of the microsomal enzyme. The peroxisomal synthetase activity toward palmitate (40--100 nmol/min per mg protein) was higher than the rate of palmitate oxidation by the peroxisomal system (0.7--1.7 nmol/min per mg protein). The data show that peroxisomes activate long chain fatty acids and oxidize their acyl-CoA derivatives.  相似文献   

11.
12.
When added to the hepatocyte incubation medium, vanadate increased the rate of fatty acid synthesis de novo as well as the activity of acetyl-CoA carboxylase, whereas it had no effect on the activity of fatty acid synthase. On the other hand, and despite elevating the intracellular levels of malonyl-CoA, vanadate diverted exogenous fatty acids into the oxidation pathway at the expense of the esterification route. This was concomitant to an increase in carnitine palmitoyltransferase I activity. All these effects were not significantly different between periportal and perivenous hepatocytes and were also evident in cells incubated in Ca2(+)-free medium. Nevertheless, Ca2+ ions enhanced carnitine palmitoyltransferase I activity in isolated liver mitochondria. In addition, the effects of vanadate on acetyl-CoA carboxylase and carnitine palmitoyltransferase I were only evident in a permeabilized-cell assay, disappearing upon cell disruption and isolation of the corresponding cell subfraction for enzyme assay. Results show that vanadate exerts specific insulin-like and non-insulin-like effects on hepatic fatty acid metabolism, and suggest that the intracellular concentration of malonyl-CoA is not the only factor responsible for the regulation of the fatty-acid-oxidative process in the liver.  相似文献   

13.
Valproate at 0.1 to 5 mM strongly inhibited oxidation of 1-(14C)-palmitate in isolated rat hepatocytes. Valproate at the same concentrations markedly decreased ketogenesis from 1 mM oleate. Valproate in a dose up to 5 mM did not significantly affect cellular concentration of ATP but lowered beta-hydroxybutyrate/acetoacetate and lactate/pyruvate ratios which paralleled its effect on ketogenesis. Moreover concomitant acetyl-CoA levels were drastically decreased by valproate. From this it may be concluded that inhibition of fatty acid oxidation by valproate results in reduced production of two carbons units and a drop of NADH/NAD+ ratio in rat hepatocyte. This suggests that valproate seriously interferes with beta-oxidation of physiological long-chain fatty acids.  相似文献   

14.
Degradation of the peroxisomal enzymes fatty acyl-CoA oxidase and catalase was studied in hepatocytes isolated from rats treated with clofibrate and from control rats. Hepatocytes were incubated in the absence of amino acids in order to ensure maximal flux through the autophagic pathway and in the presence of cycloheximide to inhibit protein synthesis. (1) Degradation of the two peroxisomal enzymes in hepatocytes from clofibrate-fed rats, but not in hepatocytes from control rats, was much faster than that of other intracellular enzymes. This increased degradation of the peroxisomal enzymes was almost completely prevented by 3-methyladenine, an inhibitor of macroautophagic sequestration. (2) The increased degradation of the peroxisomal enzymes was also inhibited by a long-chain (C16:0) and a very-long-chain (C26:0) fatty acid, but not by C12:0, a medium-chain fatty acid, or by C8:0, a short-chain fatty acid. These results provide direct evidence for the proposal that autophagic sequestration can be highly selective [(1987) Exp. Mol. Pathol. 46, 114-122]. It is concluded that preferential autophagy of peroxisomes is prevented when these organelles are supplied with their fatty acid substrates.  相似文献   

15.
16.
The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.  相似文献   

17.
Isolated hepatocytes from fasted rats were used to study the effects of lactate on palmitate metabolism. Lactate was found to stimulate fatty acid esterification and citric acid cycle oxidation and to inhibit ketone body synthesis. These effects of lactate were largely maintained when gluconeogenesis was inhibited with either quinolinate or perfluorosuccinate, but were overcome by α-cyano-4-hydroxycinnamate. However, the responses of hepatocytes to lactate could be restored in the presence of α-cyano-4-hydroxycinnamate by the further addition of propionate. The stimulation of triacylglycerol synthesis by lactate was not associated with an increase in the concentration of glycerol 3-phosphate. Rather, there was a correlation between flux through the citric acid cycle and the rate of triacylglycerol synthesis. In all instances reduction of ketone body formation in the presence of lactate was accompanied by a stimulation of citric acid cycle oxidation.  相似文献   

18.
Long chain fatty acids at concentrations inhibiting mitochondrial respiration were, in the presence of serum albumin, found to produce almost as high a rate of oxygen uptake as alpha-ketoglutarate, succinate, or acetate. This oxidation was characterized in terms of its coupling to phosphorylation, need for cofactors, and production of different metabolites during the reactions. Fatty acids were oxidized to carbon dioxide, acetoacetate, beta-hydroxybutyrate, and other water-soluble metabolites, tentatively identified as intermediates of the citric acid cycle. An agent to spark the citric acid cycle and adenosine tri- or monophosphate were necessary for optimal oxidation rate, as described for other fatty acid oxidation systems. Balance experiments with different amounts of malate were performed with incubations lasting as long as oxygen uptake took place. In the presence of 1 mumole of malate, practically all added palmitic acid was used up and found to be converted primarily to carbon dioxide, acetoacetate, and other water-soluble metabolites of which the major part was tentatively identified as succinate. A significant portion was found in mitochondrial phospholipids. With 10 mumoles of malate some palmitic acid remained in the system, while a comparatively small amount was converted to carbon dioxide, and a major part was found as succinate. Here also incorporation into phospholipids occurred. With no malate added, fatty acid oxidation was much smaller than with malate, although significant conversion to carbon dioxide took place. Only a little succinate and phospholipid were found. Oxygen uptake was greater than a theoretical value calculated from radioactive balance experiments. It was concluded that albumin contains oxidizable material even after extraction and dialysis. Albumin at high concentrations inhibited both fatty acid and alpha-ketoglutarate oxidation. The oxidation of long chain fatty acids in high concentrations in the form of albumin-fatty acid complex was coupled to phosphorylation. Thus P:O ratios above 2 were found as well as evidence for respiratory control. It was concluded that oxidation of long chain fatty acids by isolated mitochondria occurs from their albumin complex. This process can also be studied at high concentrations of fatty acids, where high rates of oxygen uptake are obtained from oxidation which is coupled to phosphorylation.  相似文献   

19.
Spin-labeled stearic acid is shown to exhibit the same beta-oxidation kinetics as normal stearic acid. ESR spectra recorded in conditions allowing beta-oxidation indicate that membrane-bound fatty acids can be directly beta-oxidized and that the rate of this reaction depends on the concentration of albumin in the medium. The regulating function of albumin and pool role of the lipidic phase of the mitochondrial membranes are discussed.  相似文献   

20.
Isolated hepatocytes from fasted rats were used to study the effects of lactate on palmitate metabolism. Lactate was found to stimulate fatty acid esterification and citric acid cycle oxidation and to inhibit ketone body synthesis. These effects of lactate were largely maintained when gluconeogenesis was inhibited with either quinolinate or perfluorosuccinate, but were overcome by alpha-cyano-4-hydroxycinnamate. However, the responses of hepatocytes to lactate could be restored in the presence of alpha-cyano-4-hydroxycinnamate by the further addition of propionate. The stimulation of triacylglycerol synthesis by lactate was not associated with an increase in the concentration of glycerol 3-phosphate. Rather, there was a correlation between flux through the citric acid cycle and the rate of triacylglycerol synthesis. In all instances reduction of ketone body formation in the presence of lactate was accompanied by a stimulation of citric acid cycle oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号