首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzymes involved in the metabolism of vitamin B6 were measured in Morris hepatomas and livers of female Buffalo rats fed pyridoxine-sufficient and deficient diets. Pyridoxal phosphate levels in plasmas hepatomas, and livers were also determined. Nontumor-bearing animals were maintained as controls. Regardless of the B6 nutritional status, the concentration of pyridoxal phosphate was lower in the hepatomas than in the livers of the host animals. The apoenzyme levels of ornithine decarboxylase, a pyridoxal phosphate-dependent enzyme, were higher in the hepatomas from animals fed the B6-deficient diet. Liver pyridoxine kinase activity was higher in B6-sufficient animals. In contrast, tumor pyridoxine kinase activity was influenced by B6 intake and was significantly lower than that in host liver. Liver pyridoxine phosphate oxidase activity was not significantly affected by B6 intake or by the presence of tumor. In contrast, hepatomas had little or no pyridoxine phosphate oxidase activity. Pyridoxine phosphate phosphatase activity was elevated in tumors relative to livers. These data indicate that the metabolism of vitamin B6 is markedly different in the hepatomas than in host or control livers and suggest that the tumor is apparently incapable of the complete synthesis of co-enzymatically active pyridoxal phosphate from inactive precursor forms such as pyridoxine.  相似文献   

2.
Analogues of pyridoxal and of pyridoxal phosphate in which the 4-CHO group is replaced with CH = CH2 were synthesized and were found to be potent inhibitors of pyridoxal kinase and pyridoxine phosphate oxidase of rat liver. They also inhibited the growth of mouse Sarcoma 180 and mammary adenocarcinoma TA3 in cell culture. Saturation of the vinyl double bond, replacement of the 5-CH2OH with methyl, methylation of the phenolic hydroxyl, or conversion to the N-oxide resulted in diminution or loss of all these activities. Similarly, the introduction of a beta-methyl group into the vinyl analogues of pyridoxal reduced all these inhibitory activities. The 4-vinyl anatogue of pyridoxal was shown to be a substrate of pyridoxal kinase and the product a potent inhibitor of pyridoxine oxidase, competing with pyridoxal phosphate. The affinity of this phosphorylated pyridoxal analogue to some apoenzymes varied greatly, indicating striking differences among the cofactor binding sites of these enzymes. The growth inhibitory effects of these analogues on cells in culture correlated well with their effects on pyridoxal kinase and pyridoxine phosphate oxidase in cell-free systems.  相似文献   

3.
1. Evidence is presented for the presence of pyridoxine phosphate oxidase in aqueous extracts of Escherichia coli. Some comparison is made with pyridoxamine phosphate oxidase. 2. Isoniazid and iproniazid were found to combine with pyridoxal phosphate, but isoniazid did not combine with either pyridoxamine phosphate or pyridoxine phosphate. Both oxidase activities were somewhat inhibited by benzylamine and putrescine, but not by phenethylamine or cadaverine. 3. The significance of pyridoxine phosphate oxidase in cell metabolism is discussed.  相似文献   

4.
1. Vitamin B6-sufficient rats had moderate pyridoxamine-P oxidase specific activities in heart, brain, kidney and liver, but no detectable activity in skeletal muscle. Vitamin B6-deficiency in rats resulted in a decreased oxidase activity in liver but no change in the activities in other tissues. 2. The pyridoxamine-P oxidase activity in vitamin B6-sufficient mice was high in liver, moderate in brain and kidney, and not measurable in skeletal muscle and heart. Vitamin B6-deficient, compared with control mice, had decreased oxidase activities in brain, kidney and liver. 3. Mouse erythrocytes took up pyridoxine more rapidly than did rat and human erythrocytes. 4. Mouse and human erythrocytes rapidly converted pyridoxine to pyridoxal-P. Rat, hamster and rabbit erythrocytes had appreciably lower pyridoxamine-P oxidase activity than did mouse and human erythrocytes.  相似文献   

5.
1. Salicylate, in concentrations of 0.25mm and above, enhances the basal activity of tyrosine–2-oxoglutarate aminotransferase in homogenates of rat liver incubated in the absence of added pyridoxal 5′-phosphate (endogenous activity). The effect is decreased by increasing the concentration of the cofactor. 2. The intraperitoneal administration of sodium salicylate enhances the activity of rat liver tyrosine aminotransferase; the major effect during the first hour being on the enzyme in the absence of added pyridoxal phosphate. Actinomycin D prevents the induction of the enzyme by cortisol and tryptophan. Induction by pyridoxine or salicylate is 50% inhibited by actinomycin D. The effects of the injections of various combinations of cortisol, pyridoxine and salicylate were also studied in the absence or presence of actinomycin D. 3. It is suggested that salicylate induces rat liver tyrosine aminotransferase by displacing its protein-bound cofactor and that a cofactor-type induction of the hepatic enzyme occurs in pyridoxine-treated rats.  相似文献   

6.
Evidence, obtained with in situ perfused rat liver, indicated that pyridoxine is taken up from the perfusate by a non-concentrative process, followed by metabolic trapping. These conclusions were reached on the basis of the fact that at low concentrations (0.125 μM), the 3H of [3H]pyridoxine accumulated against a concentration gradient, but high concentrations (333 μM) of pyridoxine or 4-deoxypyridoxine prevented this apparent concentrative uptake. Under no conditions did the tissue water : perfusate concentration ratio of [3H]pyridoxine exceed unity.The perfused liver rapidly converted the labeled pyridoxine to pyridoxine phosphate, pyridoxal phosphate and pyridoxamine phosphate and released a substantial amount of pyridoxal and some pyridoxal phosphate into the perfusate. Since muscle and erythrocytes failed to oxidize pyridoxine phosphate to pyridoxal phosphate, it is suggested that the liver plays a major role in oxidizing dietary pyridoxine and pyridoxamine as their phosphate esters to supply pyridoxal phosphate which then reaches to other organs chiefly as circulating pyridoxal.  相似文献   

7.
Feeding [14C]pyridoxine to growing rats for 146 days produced uniform labelling of the total vitamin B6 pool, thus permitting the radioactivity to be used as an absolute standard for evaluating the accuracy of vitamin B6 analyses. The results demonstrated that trichloroacetic acid extraction followed by cation exchange chromatography accurately measures the B6 vitamers. It is essential to homogenize tissues in a protein-denaturing agent in order to avoid shifts in the vitamer content, particularly in liver. In rats approximately 80% of the radioactivity was found in carcass and 8-9% each in liver and skin. Pyridoxamine phosphate equalled or exceeded the concentration of pyridoxal phosphate in heart, brain and kidney. The total vitamin B6 pool in weanling and adult rats averaged about 16 nmol/g body wt. Meta-phosphoric acid extraction followed by reverse phase chromatography gave good agreement with the cation exchange method in rat liver but with cat plasma yielded pyridoxal phosphate values below those of the cation exchange or enzymatic methods. The discrepancies encountered between different homogenization techniques and chromatographic methods emphasize the need for constant vigilance and continual verification of results by independent methods.  相似文献   

8.
Regulation of pyridoxal 5'-phosphate metabolism in liver   总被引:4,自引:0,他引:4  
The pyridoxal 5′-phosphate content of liver in vivo and of hepatocytes in vitro remains unaltered in the presence of excess unphosphorylated vitamin B6 precursors. Studies with isolated hepatocytes and subcellular fractions show that while product inhibition of pyridoxine phosphate oxidase does not limit synthesis sufficiently to account for the phenomenon, inhibition of phosphatase activity produces striking increases in pyridoxal 5′-phosphate concentration. Protein-binding protects it against degradation by the phosphatase. The data suggest that protein-binding and the enzymatic hydrolysis of pyridoxal 5′-phosphate, synthesized in excess, act jointly to preserve the constancy of the cellular content of this coenzyme.  相似文献   

9.
A study was made of the effect of a single exposure of rats to 0.4 Gy X-radiation on the content of pyridoxal phosphate and pyridoxamine phosphate in gray and white brain substances and liver. At the same time changes were noted in the activity of pyridoxal kinase in the tissues under study.  相似文献   

10.
Effect of vanadate and pyridoxal phosphate on S-adenosylmethionine   总被引:1,自引:0,他引:1  
Vanadate in the presence of pyridoxal phosphate promotes the decarboxylation of S-adenosylmethionine. Pyridoxal has a lower effect; pyridoxine none. The rate of decarboxylation depends on pyridoxal phosphate and vanadate concentration. Vanadate as low as 10(-7) M gives significant decarboxylation. The reaction seems to occur through the formation of a Schiff base. The spectral shift elicited by S-adenosylmethionine on pyridoxal phosphate due to the presence of the sulfonium function is influenced by vanadate. Orthovanadate is a little less effective then metavanadate; vanadyl sulfate is even less efficient, and the effect of Cu2+ at the same concentration is still lower. Bleomycin partially prevents the vanadium effect. In vivo, vanadate promotes a marked increase in chicken liver S-adenosylmethionine and S-adenosylhomocysteine concentration, whereas the polyamine concentration is unaffected.  相似文献   

11.
Pyridoxamine (pyridoxine) 5′-phosphate oxidase (EC 1.4.3.5) purified from rabbit liver is competitively inhibited by the reaction product, pyridoxal 5′-phosphate. The Ki, 3 μM, is considerably lower than the Km for either natural substrate (18 and 24 μM for pyridoxamine 5′-phosphate and 25 and 16 μM for pyridoxine 5′-phosphate in 0.2 M potassium phosphate at pH 8 and 7, respectively). The Ki determined using a 10% rabbit liver homogenate is the same as that for the pure enzyme; hence, product inhibition invivo is probably not diminished significantly by other cellular components. Similar determinations for a 10% rat liver homogenate also show strong inhibition by pyridoxal 5′-phosphate. Since the reported liver content of free or loosely bound pyridoxal 5′-phosphate is greater than Ki, the oxidase in liver is probably associated with pyridoxal 5′-phosphate. These results also suggest that product inhibition of pyridoxamine-P oxidase may regulate the invivo rate of pyridoxal 5′-phosphate formation.  相似文献   

12.
Pyridoxal kinase was purified 4760-fold from rat liver. The Km values for pyridoxine and pyridoxal were 120 and 190 microM respectively, and pyridoxine showed substrate inhibition at above 200 microM. Pyridoxamine 5-phosphate oxidase was also purified 2030-fold from rat liver, and its Km values for pyridoxine 5-phosphate and pyridoxamine 5-phosphate were 0.92 and 1.0 microM respectively. Pyridoxine 5-phosphate gave a maximum velocity that was 5.6-fold greater than with pyridoxamine 5-phosphate and showed strong substrate inhibition at above 6 microM. Among the tryptophan metabolites, picolinate, xanthurenate, quinolinate, tryptamine and 5-hydroxytryptamine inhibited pyridoxal kinase. However, pyridoxamine 5-phosphate oxidase could not be inhibited by tryptophan metabolites, and on the contrary it was activated by 3-hydroxykynurenine and 3-hydroxyanthranilate. Regarding the metabolism of vitamin B-6 in the liver, the effects of tryptophan metabolites that were accumulated in vitamin B-6-deficient rats after tryptophan injection were discussed.  相似文献   

13.
The activities of aspartate aminotransferase (EC 2.6.1.1) in the cytosol fractions of the liver and kidney of rats fed pyridoxine-deficient or control diet for 3 weeks were determined. In the absence of pyridoxal phosphate, the activities in the liver and kidney preparations of deficient rats were both abnormally low. The activity in the kidney fraction of deficient rats was restored to almost the control level by addition of pyridoxal phosphate, whereas that of the liver was only partially restored. The antigen activity, however, measured using anti-aspartate aminotransferase, was similar in liver fractions from deficient and control rats. These findings suggest the existence of a form of transaminase with little or no activity in the liver of deficient rats. The properties of the crude enzymes from deficient and control rats were indistinguishable by immunodiffusion, and the enzymes had the same subunit size and heat stability under the conditions tested. However, purified enzyme from deficient rat liver had a different specific activity and absorption spectrum from purified enzyme from normal liver.  相似文献   

14.
1. Polyamine concentrations were decreased in rats fed on a diet deficient in vitamin B-6. 2. Ornithine decarboxylase activity was decreased by vitamin B-6 deficiency when assayed in tissue extracts without addition of pyridoxal phosphate, but was greater than in control extracts when pyridoxal phosphate was present in saturating amounts. 3. In contrast, the activity of S-adenosylmethionine decarboxylase was not enhanced by pyridoxal phosphate addition even when dialysed extracts were prepared from tissues of young rats suckled by mothers fed on the vitamin B-6-deficient diet. 4. S-Adenosylmethionine decarboxylase activities were increased by administration of methylglyoxal bis(guanylhydrazone) (1,1'-[(methylethanediylidine)dinitrilo]diguanidine) to similar extents in both control and vitamin B-6-deficient animals. 5. The spectrum of highly purified liver S-adenosylmethionine decarboxylase did not indicate the presence of pyridoxal phosphate. After inactivation of the enzyme by reaction with NaB3H4, radioactivity was incorporated into the enzyme, but was not present as a reduced derivative of pyridoxal phosphate. 6. It is concluded that the decreased concentrations of polyamines in rats fed on a diet containing vitamin B-6 may be due to decreased activity or ornithine decarboxylase or may be caused by an unknown mechanism responding to growth retardation produced by the vitamin deficiency. In either case, measurements of S-adenosylmethionine decarboxylase and ornithine decarboxylase activity under optimum conditions in vitro do not correlate with the polyamine concentrations in vivo.  相似文献   

15.
The streptozotocin diabetic rat was selected as a model to study how insulin deficiency alters vitamin B6 utilization by focusing on pyridoxal phosphate levels and aspartate aminotransferase activities in liver tissues. Diabetes of 15 weeks' duration lowered plasma pyridoxal phosphate levels by 84%. Normal plasma pyridoxal phosphate was 480 pmole/ml. Fractionation of liver into mitochondrial and extramitochondrial compartments demonstrated that diabetes caused a 43% diminution in mitochondrial pyridoxal phosphate per gram of liver. There was no cytoplasmic change in these diabetic rats. Mitochondrial aspartate aminotransferase activity was decreased 53% per gram of diabetic liver and cytoplasmic aspartate aminotransferase activity was elevated 3.4-fold. Damage to diabetic mitochondria during preparation procedures could not account for the rise in cytoplasmic aspartate aminotransferase activity. Electrophoresis showed that in the diabetic cytoplasm both cathodal and anodal forms of the enzyme were elevated. Speculations concerning mitochondrial loss and cytoplasmic gain of enzyme activity as well as those on the reduction of plasma pyridoxal phosphate in the diabetic rat are presented.  相似文献   

16.
The total activity of three key enzymes and the flux through eight steps of aromatic amino acid metabolism have been determined in liver cells isolated from rats fed either control or pyridoxine-free diet for 5-6 weeks. The pyridoxine-free diet caused a decrease in the catabolism of tyrosine and phenylalanine because of a drop in the flux through tyrosine aminotransferase. This decrease of expressed cellular tyrosine aminotransferase activity can be fully explained in terms of loss of cofactor. Larger decreases in the catabolism of tryptophan were seen after pyridoxine deprivation. The decreased extent of tryptophan catabolism can be solely attributed to loss of cofactor or increased degradation of kynureninase. Inhibition of tryptophan 2,3-dioxygenase was seen in pyridoxine deficiency, probably because of the buildup of the kynurenine metabolites. The control strength of kynureninase, for flux through kynureninase, was calculated to be less than or equal to 0.004, but 0.41 after pyridoxine deprivation. The sensitivity of the three pathways to pyridoxine deprivation is interpreted and discussed in terms of the different affinities for pyridoxal phosphate and the control strengths of the pyridoxal phosphate-dependent enzymes, tyrosine aminotransferase and kynureninase.  相似文献   

17.
The effects of changes in the concentrations of pyridoxal phosphate and blogenic amines in brain on: (I) pyridoxal kinase (EC 2.7.1.35) activity in brain and choroid plexus; and (2) vitamin B6 accumulation by brain slices and isolated, intact choroid plexuses were studied. New Zealand white rabbits were treated parenterally with 200 mg/kg pyridoxine-HCl for 3 days or 120 mg/kg 4-deoxypyridoxine HCI or 5 mg/kg reserpine I day before death. After these treatments the mean concentration of pyridoxal phosphate in brain was elevated by 39% by pyridoxine and decreased by 57% by 4-deoxypyridoxine. Reserpine had no effect. However, the ability of brain slices and isolated, intact choroid plexuses from the treated rabbits to accumulate [3H] vitamin B6 (with [3H]pyridoxine in the medium) was not different from untreated controls. Also, the specific activity of pyridoxal kinase in brain and choroid plexus of treated rabbits was not different from controls. These results show that vitamin B6 accumulation and pyridoxal kinase activity in brain and choroid plexus are independent of both pyridoxal phosphate and reserpine-sensitive biogenic amine concentrations in brain. In vitro studies with pyridoxal kinase showed that. in both choroid plexus and brain. pyridoxal kinase was a single enzyme with a molecular weight of 43.000 and a Km , for pyridoxine of 2.0 μM Crude and partially-purified pyridoxal kinase from brain was not inhibited by biogenic amines (1 mM) or pyridoxal phosphate (5 μM). These in vitro data are consistent with the lack of effect of changes in pyridoxal phosphate and biogenic amine concentrations (in brain) on pyridoxal kinase activity in brain in vivo.  相似文献   

18.
The metabolism of [6-3H]pyridoxine - HCl was investigated in the liver of vitamin B-6-deficient rats. Rats were made vitamin B-6 deficient by feeding ad libitum for 42 days a diet lacking pyridoxine but otherwise optimal. Animals were each injected intraperitoneally with 33 muCi of [6-3H] pyridoxine - HCl and killed at different time intervals afterwards up to 7 days. Radioactively labeled hepatic B-6 compounds were extracted with acid and chromatographically separated on Dowex-X8 (H+) columns and the percent radioactivity for each vitamin compound was then calculated. Maximal uptake in control and deficient animals was observed 30 and 60 min, respectively, after administration of label. Radioactivity was not retained by the control animals but decreased steadily in a linear fashion after 30 min, reaching a low level after 3 h. On the other hand, vitamin deficient animals accumulated almost twice as much radioactivity in their liver as the controls and retained it through 7 days. In vitamin B-6 deficient animals 93% of the injected radioactivity was metabolized within 2 min at which time pyridoxine 5'-P and pyridoxal 5'-P reached 36 and 44% levels, respectively. Pyridoxine 5'-P dropped to minimal values (3%) within 15 min and remained unchanged for 7 days while pyridoxal 5'-P reached a peak (79%) level at 15 min and then began to drop linearly reaching a plateau (29%) at 5 days. Further, as the level of pyridoxal 5-P was falling, pyridoxamine 5'-P was linearly synthesized reaching a platuau low level (3%). The specific activity level of pyridoxal kinase decreased 3.2 times and that of pyridoxine 5'-phosphate oxidase increased 1.5 times in the state of deficiency. The results presented show that metabolism of [3H]pyridoxine in deficiency is characterized by (a) a delayed, two-fold increase in label uptake as well as an extended label retention period, (b) a rapid pyridoxal 5'-P synthesis, and (c) a continuous synthesis (and accumulation) of pyridoxamine 5'-P which is not utilized or further metabolized.  相似文献   

19.
—An inverse relationship was demonstrable between the concentration of pyridoxal phosphate and the activity of pyridoxal kinase in rabbit brain. The administration of pyridoxine elevated the concentration of pyridoxal phosphate and decreased the activity of pyridoxal kinase. Conversely, the administration of deoxypyridoxine decreased the concentration of pyridoxal phosphate and increased the activity of pyridoxal kinase. The increase in the activity of pyridoxal kinase by deoxypyridoxine was blocked by actinomycin D or puromycin. These results were interpreted to indicate that the tissue availability of pyridoxal phosphate regulated the activity of pyridoxal kinase.  相似文献   

20.
Vitamin B6 (pyridoxal phosphate) is an essential cofactor in enzymatic reactions involved in numerous cellular processes and also plays a role in oxidative stress responses. In plants, the pathway for de novo synthesis of pyridoxal phosphate has been well characterized, however only two enzymes, pyridoxal (pyridoxine, pyridoxamine) kinase (SOS4) and pyridoxamine (pyridoxine) 5' phosphate oxidase (PDX3), have been identified in the salvage pathway that interconverts between the six vitamin B6 vitamers. A putative pyridoxal reductase (PLR1) was identified in Arabidopsis based on sequence homology with the protein in yeast. Cloning and expression of the AtPLR1 coding region in a yeast mutant deficient for pyridoxal reductase confirmed that the enzyme catalyzes the NADPH-mediated reduction of pyridoxal to pyridoxine. Two Arabidopsis T-DNA insertion mutant lines with insertions in the promoter sequences of AtPLR1 were established and characterized. Quantitative RT-PCR analysis of the plr1 mutants showed little change in expression of the vitamin B6 de novo pathway genes, but significant increases in expression of the known salvage pathway genes, PDX3 and SOS4. In addition, AtPLR1 was also upregulated in pdx3 and sos4 mutants. Analysis of vitamer levels by HPLC showed that both plr1 mutants had lower levels of total vitamin B6, with significantly decreased levels of pyridoxal, pyridoxal 5'-phosphate, pyridoxamine, and pyridoxamine 5'-phosphate. By contrast, there was no consistent significant change in pyridoxine and pyridoxine 5'-phosphate levels. The plr1 mutants had normal root growth, but were significantly smaller than wild type plants. When assayed for abiotic stress resistance, plr1 mutants did not differ from wild type in their response to chilling and high light, but showed greater inhibition when grown on NaCl or mannitol, suggesting a role in osmotic stress resistance. This is the first report of a pyridoxal reductase in the vitamin B6 salvage pathway in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号