首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Actin labeled at Gln-41 with dansyl ethylenediamine (DED) via transglutaminase reaction was used for monitoring the interaction of myosin subfragment 1 (S1) with the His-40-Gly-42 site in the 38-52 loop on F-actin. Proteolytic digestions of F-actin with subtilisin and trypsin, and acto-S1 ATPase measurements on heat-treated F-actin revealed that the labeling of Gln-41 had a stabilizing effect on subdomain 2 and the actin filaments. DED on Gln-41 had no effect on the values of K(m) and Vmax of the acto-S1 ATPase and the sliding velocities of actin filaments in the in vitro motility assays. This suggests either that S1 does not bind to the 40-42 site on actin or that such binding is not functionally important. The binding of monoclonal antidansyl IgG to DED-F-actin did not affect acto-S1 binding in the absence of nucleotides, indicating that the 40-42 site does not contribute much to rigor acto-S1 binding. Myosin-induced changes in subdomain 2 on actin were manifested through an increase in the fluorescence of DED-F-actin, a decrease in the accessibility of the probe to collisional quenchers, and a partial displacement of antidansyl IgG from actin by S1. It is proposed that these changes in the 38-52 loop on actin originate from S1 binding to other myosin recognition sites on actin.  相似文献   

2.
Joel PB  Fagnant PM  Trybus KM 《Biochemistry》2004,43(36):11554-11559
We have succeeded in expressing actin in the baculovirus/Sf9 cell system in high yield. The wild-type (WT) actin is functionally indistinguishable from tissue-purified actin in its ability to activate ATPase activity and to support movement in an in vitro motility assay. Having achieved this feat, we used a mutational strategy to express a monomeric actin that is incapable of polymerization. Native actin requires actin binding proteins or chemical modification to maintain it in a monomeric state. The mutant actin sediments in the analytical ultracentrifuge as a homogeneous monomeric species of 3.2 S in 100 mM KCl and 2 mM MgCl(2), conditions that cause WT actin to polymerize. The two point mutations that render actin nonpolymerizable are in subdomain 4 (A204E/P243K; "AP-actin"), distant from the myosin binding site. AP-actin binds to skeletal myosin subfragment 1 (S1) and forms a homogeneous complex as demonstrated by analytical ultracentrifugation. The ATPase activity of a cross-linked AP-actin.S1 complex is higher than that of S1 alone, although less than that supported by filamentous actin (F-actin). AP-Actin is an excellent candidate for structural studies of complexes of actin with motor proteins and other actin-binding proteins.  相似文献   

3.
Dynamic properties of F-actin structure prompted suggestions (Squire, J. M., and Morris, E. P. (1998) FASEB J. 12, 761-771) that actin subdomain 2 movements play a role in thin-filament regulation. Using fluorescently labeled yeast actin mutants Q41C, Q41C/C374S, and D51C/C374S and azidonitrophenyl putrescine (ANP) Gln(41)-labeled alpha-actin, we monitored regulation-linked changes in subdomain 2. These actins had fully regulated acto-S1 ATPase activities, and emission spectra of regulated Q41C(AEDANS)/C374S and D51C(AEDANS)/C374S filaments did not reveal any calcium-dependent changes. Fluorescence energy transfer in these F-actins mostly occurred from Trp(340) and Trp(356) to 5-(2((acetyl)amino)ethyl)amino-naphthalene-1-sulfonate (AEDANS)-labeled Cys(41) or Cys(51) of adjacent same strand protomers. Our results show that fluorescence energy transfer between these residues is similar in the mostly blocked (-Ca(2+)) and closed (+Ca(2+)) states. Ca(2+) also had no effect on the excimer band in the pyrene-labeled Q41C-regulated actin, indicating virtually no change in the overlap of pyrenes on Cys(41) and Cys(374). ANP quenching of rhodamine phalloidin fluorescence showed that neither Ca(2+) nor S1 binding to regulated alpha-actin affects the phalloidin-probe distance. Taken together, our results indicate that transitions between the blocked, closed, and open regulatory states involve no significant subdomain 2 movements, and, since the cross-linked alpha-actin remains fully regulated, that subdomain 2 motions are not essential for actin regulation.  相似文献   

4.
Various lines of evidence suggest that communication between tropomyosin and myosin in the regulation of vertebrate-striated muscle contraction involves yet unknown changes in actin conformation. Possible participation of loop 38-52 in this communication has recently been questioned based on unimpaired Ca(2+) regulation of myosin interaction, in the presence of the tropomyosin-troponin complex, with actin cleaved by subtilisin between Met(47) and Gly(48). We have compared the effects of actin cleavage by subtilisin and by protease ECP32, between Gly(42) and Val(43), on its interaction with myosin S1 in the presence and absence of tropomyosin or tropomyosin-troponin. Both individual modifications reduced activation of S1 ATPase by actin to a similar extent. The effect of ECP cleavage, but not of subtilisin cleavage, was partially reversed by stabilization of interprotomer contacts with phalloidin, indicating different pathways of signal transmission from the N- and C-terminal parts of loop 38-52 to myosin binding sites. ECP cleavage diminished the affinity to tropomyosin and reduced its inhibition of acto-S1 ATPase at low S1 concentrations, but increased the tropomyosin-mediated cooperative enhancement of the ATPase by S1 binding to actin. These effects were reversed by phalloidin. Subtilisin-cleaved actin more closely resembled unmodified actin than the ECP-modified actin. Limited proteolysis of the modified and unmodified F-actins revealed an allosteric effect of ECP cleavage on the conformation of the actin subdomain 4 region that is presumably involved in tropomyosin binding. Our results point to a possible role of the N-terminal part of loop 38-52 of actin in communication between tropomyosin and myosin through changes in actin structure.  相似文献   

5.
Interaction of phalloidin with chemically modified actin   总被引:3,自引:0,他引:3  
Modification of Tyr-69 with tetranitromethane impairs the polymerizability of actin in accordance with the previous report [Lehrer, S. S. and Elzinga, M. (1972) Fed. Proc. 31, 502]. Phalloidin induces this chemically modified actin to form the same characteristic helical thread-like structure as normal F-actin. The filaments bind myosin heads and activate the myosin ATPase activity as effectively as normal F-actin. When a dansyl group is introduced at the same point [Chantler, P. D. and Gratzer, W. B. (1975) Eur. J. Biochem. 60, 67-72], phalloidin still induces the polymerization. The filaments bind myosin heads and activate the myosin ATPase activity. These results indicate that Tyr-69 is not directly involved in either an actin-actin binding site or the myosin binding site on actin. Moreover, the results suggest that phalloidin binds to actin monomer in the presence of salt and its binding induces a conformational change in actin which is essential for polymerization, or that actin monomer fluctuates between in unpolymerizable and polymerizable form while phalloidin binds to actin only in the polymerizable form and its binding locks the conformation which causes the irreversible polymerization of actin. Modification of Tyr-53 with 5-diazonium-(1H)tetrazole blocks actin polymerization [Bender, N., Fasold, H., Kenmoku, A., Middelhoff, G. and Volk, K. E. (1976) Eur. J. Biochem. 64, 215-218]. Phalloidin is unable to induce the polymerization of this modified actin nor does it bind to it. Phalloidin does not induce the polymerization of the trypsin-digested actin core. These results indicate that the site at which phalloidin binds is involved in polymerization and the probable conformational change involved in polymerization may be modulated through this site.  相似文献   

6.
In order to elucidate the role of DNA-binding loop of actin (amino acid residues 38-52) in mechanisms of muscle contraction, polarizational fluorimetry and ghost muscle fibers, containing thin filaments reconstructed by intact and subtilisin-cleaved G-actin were used. The thin filaments were modified by fluorescent probes rhodamin-phalloidin and 1,5-IAEDANS. Changes in orientation and mobility of the probes were considered as an indication of changes in actin conformation. The stage AM of ATP hydrolysis cycle was simulated. For this purpose, thin filaments were decorated by myosin subfragment-1 (S1) in the absence of nucleotide. It has been shown that S1 binding to actin is accompanied by changes in orientation and mobility of the fluorescent probes. For intact filaments, the changes of these parameters indicate the formation of a strong binding between S1 and actin. Cleavage of DNA-binding loop by subtilisin markedly inhibits this effect. The cleavage of actin by subtilisin has also been shown to diminish the changes in fiber birefringence, which takes place at the formation of F-actin-S1 complex in the muscle fiber. The spatial organization of the actin DNA-binding loop is suggested to play an important role in determining the character of myosin interaction with actin in the ATP hydrolysis cycle.  相似文献   

7.
I DalleDonne  A Milzani  R Colombo 《Biochemistry》1999,38(38):12471-12480
The susceptibility of monomeric actin to both methionine and cysteine oxidation when treated with the oxidizing agent tert-butyl hydroperoxide (t-BH) was investigated. The results show that no methionine residue was susceptible to oxidation by t-BH at concentrations of 1-20 mM, while Cys-374, one of the five cysteine residues of the actin molecule, was found to be the site of the oxidative modification. Perturbations in the intrinsic tryptophan fluorescence and the decreased susceptibility to limited proteolysis by alpha-chymotrypsin and subtilisin of oxidized actin give an indication of some alterations in protein conformation in subdomain 1, and in the central segment of surface loop 39-51, in subdomain 2. Urea denaturation curves indicate a lower conformational stability for the oxidized actin. G-actin structural alterations due to Cys-374 oxidation produced by t-BH result in a decrease in the maximum rate of polymerization, an increase in both the delay time and the time required for half-maximum assembly, a decrease in the elongation rate, and enhancement of the critical monomer concentration for polymerization. The results suggest that oxidation of actin Cys-374 induces structural alterations in the conformation of at least two different distant regions of the molecule. The involvement of both the C-terminus of the actin polypeptide chain and the DNase-I-binding loop in the intermonomer interactions in the polymer could account for the altered kinetics of polymerization shown by the oxidized actin.  相似文献   

8.
Structural effects of yeast cofilin on skeletal muscle and yeast actin were examined in solution. Cofilin binding to native actin was non-cooperative and saturated at a 1:1 molar ratio, with K(d)相似文献   

9.
Differential interactions of tropomyosin (TM) isoforms with actin can be important for determination of the thin filament functions. A mechanism of tropomyosin binding to actin was studied by comparing interactions of five αTM isoforms with actin modified with m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) and with fluorescein-5-isothiocyanate (FITC). MBS attachment sites were revealed with mass spectrometry methods. We found that the predominant actin fraction was cross-linked by MBS within subdomain 3. A smaller fraction of the modified actin was cross-linked within subdomain 2 and between subdomains 2 and 1. Moreover, investigated actins carried single labels in subdomains 1, 2, and 3. Such extensive modification caused a large decrease in actin affinity for skeletal and smooth muscle tropomyosins, nonmuscle TM2, and chimeric TM1b9a. In contrast, binding of nonmuscle isoform TM5a was less affected. Isoform’s affinity for actin modified in subdomain 2 by binding of FITC to Lys61 was intermediate between the affinity for native actin and MBS-modified actin except for TM5a, which bound to FITC–actin with similar affinity as to actin modified with MBS. The analysis of binding curves according to the McGhee–von Hippel model revealed that binding to an isolated site, as well as cooperativity of binding to a contiguous site, was affected by both actin modifications in a TM isoform-specific manner.  相似文献   

10.
Cofilin binding induces an allosteric conformational change in subdomain 2 of actin, reducing the distance between probes attached to Gln-41 (subdomain 2) and Cys-374 (subdomain 1) from 34.4 to 31.4 A (pH 6.8) as demonstrated by fluorescence energy transfer spectroscopy. This effect was slightly less pronounced at pH 8.0. In contrast, binding of DNase I increased this distance (35.5 A), a change that was not pH-sensitive. Although DNase I-induced changes in the distance along the small domain of actin were modest, a significantly larger change (38.2 A) was observed when the ternary complex of cofilin-actin-DNase I was formed. Saturation binding of cofilin prevents pyrene fluorescence enhancement normally associated with actin polymerization. Changes in the emission and excitation spectra of pyrene-F actin in the presence of cofilin indicate that subdomain 1 (near Cys-374) assumes a G-like conformation. Thus, the enhancement of pyrene fluorescence does not correspond to the extent of actin polymerization in the presence of cofilin. The structural changes in G and F actin induced by these actin-binding proteins may be important for understanding the mechanism regulating the G-actin pool in cells.  相似文献   

11.
In this study, we use fluorescent probes and proteolytic digestions to demonstrate structural coupling between distant regions of actin. We show that modifications of Cys-374 in the C-terminus of actin slow the rate of nucleotide exchange in the nucleotide cleft. Conformational coupling between the C-terminus and the DNasal loop in subdomain II is observed in proteolytic digestion experiments in which a new C-terminal cleavage site is exposed upon DNasel binding. The functional consequences of C-terminal modification are evident from S-1 ATPase activity and the in vitro motility experiments with modified actins. Pyrene actin, labeled at Cys-374, activates S-1 ATPase activity only half as well as control actin. This reduction is attributed to a lower Vmax value because the affinity of pyrene actin to S-1 is not significantly altered. The in vitro sliding velocity of pyrene actin is also decreased. However, IAEDANS labeling of actin (also at Cys-374) enhances the Vmax of acto-S-1 ATPase activity and the in vitro sliding velocity by approximately 25%. These results are discussed in terms of conformational coupling between distant regions in actin and the functional implications of the interactions of actin-binding proteins with the C-terminus of actin.  相似文献   

12.
In the recently solved structure of TMR-modified ADP-G-actin, the nucleotide cleft is in a closed state conformation, and the D-loop contains an alpha-helix (L. R. Otterbein, P. Graceffa, and R. Dominguez, 2001, Science, 293:708-711). Subsequently, questions were raised regarding the possible role of the TMR label on Cys(374) in determining these aspects of G-actin structure. We show here that the susceptibility of D-loop on G-actin to subtilisin cleavage, and ATP/ADP-dependent changes in this cleavage, are not affected by TMR-labeling of actin. The TMR modification inhibits nucleotide exchange, but has no effect on DNase I binding and the fast phase of tryptic digestion of actin. These results show an absence of allosteric effects of TMR on subdomain 2, while confirming ATP/ADP-dependent changes in D-loop structure. In conjunction with similar results obtained on actin-gelsolin segment 1 complex, this works reveals the limitations of solution methods in probing the putative open and closed nucleotide cleft states of G-actin.  相似文献   

13.
B Hambly  K Franks    R Cooke 《Biophysical journal》1992,63(5):1306-1313
We have measured the orientation of a region of the myosin head, close to the junction with the rod, during active force generation. Paramagnetic probes were attached specifically to a reactive cysteine (Cys 125) of purified myosin light chain 2 (LC2) and exchanged into myosin heads in glycerinated rabbit psoas muscle. Electron paramagnetic resonance spectroscopy was used to monitor the orientation of the probes. Previous work has shown that the LC2 bound spin probes are significantly ordered in rigor and muscle in the presence of adenosine diphosphate (ADP). In contrast, there is a nearly random angular distribution in relaxed muscle. We show here that during the generation of isometric tension, all of the LC2 bound spin probes (98 +/- 1.6%) show an angular distribution similar to that of relaxed muscle. These findings contrast with results obtained from probes attached to Cys 707 on the cross-bridge, located close to the actin binding site, where, during active force generation, a proportion of the spin probes were ordered as in rigor, whereas the remaining probes were disordered as in relaxation. To test the hypothesis that this ordered component is due to modification of Cys 707, we measured the spectra obtained from probes attached to LC2 in fibers modified at Cys 707. The modification of Cys 707 did not produce an ordered component in these spectra. The absence of an ordered component at the LC2 site limits the populations of some states in active fibers. An actin/myosin/ADP state is thought to be the major force-producing state. Our present results show that the populations of states with ordered probes on LC2 are < 2% in active fibers; thus, the major force-producing state is different from the one obtained by addition of ADP to rigor fibers.  相似文献   

14.
Actin cleaved by the protease from Escherichia coli A2 strain between Gly42 and Val43 (ECP-actin) is no longer polymerizable when it contains Ca2+ as a tightly bound cation, but polymerizes when Mg2+ is bound. We have investigated the interactions of gelsolin with this actin with regard to conformational changes in the actin molecule induced by the binding of gelsolin. ECP-(Ca)actin interacts with gelsolin in a manner similar to that in which it reacts with intact actin, and forms a stoichiometric 2:1 complex. Despite the nonpolymerizability of ECP-(Ca)actin, this complex can act as a nucleus for the polymerization of intact actin, thus indicating that upon interaction with gelsolin, ECP-(Ca)actin undergoes a conformational change that enables its interaction with another actin monomer. By gel filtration and fluorometry it was shown that the binding of at least one of the ECP-cleaved actins to gelsolin is considerably weaker than of intact actin, suggesting that conformational changes in subdomain 2 of actin monomer may directly or allosterically affect actin-gelsolin interactions. On the other hand, interaction with gelsolin changes the conformation of actin within the DNase I-binding loop, as indicated by inhibition of limited proteolysis of actin by ECP and subtilisin. Cross-linking experiments with gelsolin-nucleated actin filaments using N,N-phenylene-bismaleimide (which cross-links adjacent actin monomers between Cys374 and Lys191) reveal that gelsolin causes a significant increase in the yield of the 115-kDa cross-linking product, confirming the evidence that gelsolin stabilizes or changes the conformation of the C-terminal region of the actin molecule, and these changes are propagated from the capped end along the filament. These results allow us to conclude that nucleation of actin polymerization by gelsolin is promoted by conformational changes within subdomain 2 and at the C-terminus of the actin monomer.  相似文献   

15.
S-glutathionylation, the reversible formation of mixed disulphides of cysteinyl residues in target proteins with glutathione, occurs under conditions of oxidative stress; this could be a posttranslational mechanism through which protein function is regulated by the cellular redox status. A novel physiological relevance of actin polymerization regulated by glutathionylation of Cys(374) has been recently suggested. In the present study we showed that glutathionylated actin (GS-actin) has a decreased capacity to polymerize compared to native actin, filament elongation being the polymerization step actually inhibited. Actin polymerizability recovers completely after dethiolation, indicating that S-glutathionylation does not induce any protein denaturation and is therefore a reversible oxidative modification. The increased exposure of hydrophobic regions of protein surface observed upon S-glutathionylation indicates changes in actin conformation. Structural alterations are confirmed by the increased rate of ATP exchange as well as by the decreased susceptibility to proteolysis of the subtilisin cleavage site between Met(47) and Gly(48), in the DNase-I-binding loop of the actin subdomain 2. Structural changes in the surface loop 39-51 induced by S-glutathionylation could influence actin polymerization in view of the involvement of the N-terminal portion of this loop in intermonomer interactions, as predicted by the atomic models of F-actin.  相似文献   

16.
M Miki  T Hozumi 《Biochemistry》1991,30(22):5625-5630
A chemical modification of G-actin with (m-maleimidobenzoyl)-N-hydroxysuccinimide ester (MBS) impairs actin polymerization [Bettache, N., Bertrand, R., & Kassab, R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6028-6032]. MBS-actin recovers the ability to polymerize when a 2-fold molar excess of phalloidin is added in 30 mM KCl/2 mM MgCl2/20 mM Tris-HCl (pH 7.6). The resulting polymer (MBS-P-actin) is highly potentiated so that it activates the Mg(2+)-ATPase of S1 more strongly than native F-actin. The affinity of MBS-P-actin for S1 in the presence of ATP (KATPase) is about four times higher than that of native F-actin, although the maximum velocity at infinite actin concentration (Vmax) is almost the same. This high activation is not due to a cross-linking between MBS-P-actin and the S1 heavy chain, since no substantial amount of cross-linking was observed in SDS gel electrophoresis. Direct binding studies and ATPase measurements showed that the modification of actin with MBS impairs the binding of tropomyosin. Tropomyosin binding can be improved considerably by the addition of troponin. However, the regulation mechanism of the acto-S1 ATPase activity by troponin-tropomyosin is damaged. The addition of troponin-tropomyosin reduces the S1 ATPase activation by MBS-P-actin to the same level as that of native F-actin in 30 mM KCl/2.5 mM ATP/2 mM MgCl2, but there is no difference in the ATPase activation in the presence and absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Maleimidylsalicylic acid reacts with the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum with high affinity and inhibits the ATPase activity following a pseudo-first-order kinetic with a rate constant of 8.3 m(-1) s(-1). Calcium binding remains unaffected in the maleimide-inhibited ATPase. However, the presence of ATP, ADP, and, to a lesser extent, AMP protects the enzyme against inhibition. Furthermore, ATPase inhibition is accompanied by a concomitant decrease in ATP binding. The stoichiometry of the nucleotide-dependent maleimidylsalicylic acid binding is 6-10 nmol/mg ATPase, which corresponds to the binding of up to one molecule of maleimide/molecule of ATPase. The stoichiometry of maleimide binding is decreased in the presence of nucleotides and in the ATPase previously labeled with fluorescein-5'-isothiocyanate or N-ethylmaleimide A fluorescent peptide was isolated by high performance liquid chromatography after trypsin digestion of the maleimide-labeled ATPase. Analysis of the sequence and mass spectrometry of the peptide leads us to propose Cys(344) as the target for maleimidylsalicylic acid in the inhibition reaction. The effect of Cys(344) modification on the nucleotide site is discussed.  相似文献   

18.
We have recently shown that actin can be modified by the Michael addition of 4-hydroxynonenal to Cys374. Here, we have exposed purified actin at increasing acrolein concentrations and have identified the sites of acrolein addition using LC-ESI-MS/MS. Acrolein reacted with Cys374, His87, His173, and, minimally, His40. Cys374 adduction by both 4-hydroxynonenal and acrolein negligibly affected the polymerization of aldehyde-modified (carbonylated) actin, as shown by fluorescence measurements. Differently, acrolein binding at histidine residues, when Cys374 was completely saturated, inhibited polymerization in a dose-dependent manner. Molecular modeling analyses indicated that structural distortions of the ATP-binding site, induced by four acrolein-Michael adducts, could explain the changes in the polymerization process. Aldehyde binding to Cys374 does not alter significantly actin polymerization because this residue is located in a very flexible region, whose covalent modifications do not alter the protein folding. These data demonstrate that Cys374 represents the primary target site of alpha,beta-unsaturated aldehyde addition to actin in vitro. As Cys374 is a preferential target for various oxidative/nitrosative modifications, and actin is one of the main carbonylated proteins in vivo, these findings also suggest that the highly reactive Cys374 could serve as a carbonyl scavenger of reactive alpha,beta-unsaturated aldehydes and other electrophilic lipids.  相似文献   

19.
The negatively charged residues in the N-terminus of actin and the 697-707 region on myosin subfragment 1 (S-1), containing the reactive cysteines SH1 and SH2, are known to be important for actin-activated myosin ATPase activity. The relationship between these two sites was first examined by monitoring the rates of SH1 and SH2 modification with N-ethylmaleimide in the presence of actin and, secondly, by testing for direct binding of SH1 peptides to the N-terminal segment on actin. While actin alone protected SH1 from N-ethylmaleimide modification, this effect was abolished by an antibody against the seven N-terminal amino acids on actin, F(ab)(1-7), and was greatly reduced when the charge of acidic residues at actin's N-terminus was altered by carbodiimide coupling of ethylenediamine. Neither F(ab)(1-7) nor ethylenediamine treatment reversed the effect of F-actin on SH2 reactivity in SH1-modified S-1. These results show a communication between the SH1 region on S-1 and actin's N-terminus in the acto-S-1 complex. To test whether such a communication involves the binding of the SH1 site on S-1 to the N-terminal segment of actin, the SH1 peptide IRICRKG-NH2(4+) was used. Cosedimentation experiments revealed the binding of three to six peptides per actin monomer. Peptide binding to actin was affected slightly, if at all, by F(ab)(1-7). The antibody also did not change the polymerization of G-actin by the peptides. The peptides caused a small reduction in the binding of S-1 to actin and did not change the binding of F(ab)(1-7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Smooth muscle caldesmon binds actin and inhibits actomyosin ATPase activity. Phosphorylation of caldesmon by extracellular signal-regulated kinase (ERK) reverses this inhibitory effect and weakens actin binding. To better understand this function, we have examined the phosphorylation-dependent contact sites of caldesmon on actin by low dose electron microscopy and three-dimensional reconstruction of actin filaments decorated with a C-terminal fragment, hH32K, of human caldesmon containing the principal actin-binding domains. Helical reconstruction of negatively stained filaments demonstrated that hH32K is located on the inner portion of actin subdomain 1, traversing its upper surface toward the C-terminal segment of actin, and forms a bridge to the neighboring actin monomer of the adjacent long pitch helical strand by connecting to its subdomain 3. Such lateral binding was supported by cross-linking experiments using a mutant isoform, which was capable of cross-linking actin subunits. Upon ERK phosphorylation, however, the mutant no longer cross-linked actin to polymers. Three-dimensional reconstruction of ERK-phosphorylated hH32K indeed indicated loss of the interstrand connectivity. These results, together with fluorescence quenching data, are consistent with a phosphorylation-dependent conformational change that moves the C-terminal end segment of caldesmon near the phosphorylation site but not the upstream region around Cys(595), away from F-actin, thus neutralizing its inhibitory effect on actomyosin interactions. The binding pattern of hH32K suggests a mechanism by which unphosphorylated, but not ERK-phosphorylated, caldesmon could stabilize actin filaments and resist F-actin severing or depolymerization in both smooth muscle and nonmuscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号