首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Considerable controversy surrounds the use of biocides in an ever increasing range of consumer products and the possibility that their indiscriminate use might reduce biocide effectiveness and alter susceptibilities towards antibiotics. These concerns have been based largely on the isolation of resistant mutants from in vitro monoculture experiments. To date, however the emergence of biocide-resistant strains in-vivo has not been reported and a number of environmental survey studies have failed to associate biocide use with antibiotic resistance. This article gives an overview of the issues as they currently stand and reviews data generated in our laboratory over the last five years where we have used laboratory microcosms of the environment and oral cavity to better understand the possible effects of real-life biocide exposure of these high risk ecosystems. In general, whilst biocide susceptibility changes can be demonstrated in pure culture, especially for E. coli towards triclosan, it has not been possible to reproduce these effects during chronic, sublethal dosing of complex communities. We conclude from this review that whilst the incorporation of antibacterial agents into a widening sphere of personal products may not overtly impact on the patterns of microbial susceptibility observed in the environment, the precautionary principle suggests that the use of biocides should be limited to applications where clear hygienic benefits can be demonstrated.  相似文献   

2.
Whereas much information on the die-off of Escherichia coli in the aquatic environment is available, only few data support its growth under such conditions. We therefore investigated batch growth in microcosms containing different types of sterile freshwater. The water samples were inoculated with low starting cell concentrations of E. coli O157 (3 × 103 cells ml−1) and growth was followed using nucleic acid staining combined with flow cytometry. We demonstrated that E. coli O157 is able to grow in sterile freshwater at low carbon concentrations, which is against the common view that cell numbers decline over time when added to freshwater samples. A correlation between apparent assimilable organic carbon (AOCapp) concentration and the final cell concentration reached by E. coli O157 was established ( P  <  0.01). A considerable fraction of the AOCapp (34 ± 13%) was used by E. coli O157 but the numerical cell yield was about five-times lower in comparison with the bacterial AOC-test community, which originated from natural freshwater. On average, the maximum specific growth rate ( μ max) of E. coli O157 growing in sterile freshwater at 30°C was 0.19 ± 0.07 h−1. Batch growth assays at five different temperatures revealed a positive influence of temperature on μ max of E. coli O157. The results give new information on the behaviour of this common pathogen in the aquatic environment and contribute to microbial risk assessment in order to prevent spreading of water-borne diseases.  相似文献   

3.
Extensive stalk elongation in Skl mutants of Caulobacter crescentus occurs when they are grown in complete medium. This stalk elongation is less pronounced in synthetic medium with glucose as the sole carbon source than in complex peptone yeast extract medium. Addition of exogenous nucleoside triphosphates (adenosine triphosphate [ATP], guanosine triphosphate [GTP], cytidine triphosphate, and uridine triphosphate) inhibits stalk elongation of the Skl mutants, whereas cyclic guanosine 3',5'-monophosphate (GMP) stimulates stalk elongation in the Skl strains grown in synthetic glucose medium. Cyclic GMP also produces stalk elongation in wild-type C. crescentus and concurrently produces a cell division defect resulting in cellular filament formation. Under conditions tested, cyclic adenosine 3',5'-monophosphate and dibutyryl cyclic adenosine monophosphate did not enhance stalk elongation. Endogenous ATP and GTP levels in the mutants are significantly lower than corresponding nucleotide concentrations of the parent wild-type strains. Control of syntheses resulting in stalk formation in C. crescentus appears to be related to intracellular concentrations of nucleotides, with cyclic GMP as a prominent candidate for an important regulatory role in this aspect of morphogenesis.  相似文献   

4.
The biocide triclosan (TRC) is used in a wide range of household, personal care, veterinary, industrial and medical products to control microbial growth. This extended use raises concerns about a possible association between the application of triclosan and the development of antibiotic resistance. In the present study we determined triclosan mutant prevention concentrations (MPC) for Salmonella enterica isolates of eight serovars and investigated selected mutants for their mechanisms mediating decreased susceptibility to triclosan. MPCTRC values were 8 - 64-fold higher than MIC values and ranged between 1 - 16 µg/ml. The frequencies at which mutants were selected varied between 1.3 x 10-10 - 9.9 x 10-11. Even if MIC values of mutants decreased by 3-7 dilution steps in the presence of the efflux pump inhibitor Phe-Arg-β-naphtylamide, only minor changes were observed in the expression of genes encoding efflux components or regulators, indicating that neither the major multidrug efflux pump AcrAB-TolC nor AcrEF are up-regulated in triclosan-selected mutants. Nucleotide sequence comparisons confirmed the absence of alterations in the regulatory regions acrRA, soxRS, marORAB, acrSE and ramRA of selected mutants. Single bp and deduced Gly93→Val amino acid exchanges were present in fabI, the target gene of triclosan, starting from a concentration of 1 µg/ml TRC used for MPC determinations. The fabI genes were up to 12.4-fold up-regulated. Complementation experiments confirmed the contribution of Gly93→Val exchanges and fabI overexpression to decreased triclosan susceptibility. MIC values of mutants compared to parent strains were even equal or resulted in a more susceptible phenotype (1-2 dilution steps) for the aminoglycoside antibiotics kanamycin and gentamicin as well as for the biocide chlorhexidine. Growth rates of selected mutants were significantly lower and hence, might partly explain the rare occurrence of Salmonella field isolates exhibiting decreased susceptibility to triclosan.  相似文献   

5.
AIMS: To determine the susceptibility of planktonic and biofilm-grown strains of resident and transient skin bacteria to the liquid hand soap biocides para-chloro-meta-xylenol (PCMX) and triclosan. METHODS AND RESULTS: Freshly isolated hand bacteria were identified by partial 16S rRNA gene sequencing. Two resident and three transient strains, as well as four exogenous potential transient strains, were selected for biocide susceptibility testing. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of planktonic cells were determined. Resident and transient strains showed a range of susceptibilities to both biocides (PCMX, MIC 12.5-200 mg x l(-1), MBC 100-400 mg x l(-1); triclosan, MIC 0.6- > 40 mg x l(-1), MBC 1.3- > 40 mg x l(-1)). Strains were attached to polystyrene plates for 65 h in 96-well microtitre plates and challenged with biocide to determine the biofilm inhibitory concentration and biofilm eradicating concentration. For all strains tested, biofilms were two- to eightfold less susceptible than planktonic cells to PCMX. CONCLUSIONS: Very few transients were detected on the hand. Transients were not more sensitive than residents to the biocides and susceptibility to PCMX and triclosan was strain dependent. Biofilm-grown strains were less susceptible to PCMX than planktonic cells. SIGNIFICANCE AND IMPACT OF THE STUDY: The study provides increased knowledge about the susceptibility of skin bacteria to biocides present in typical liquid antibacterial hand soaps and suggests that the concentration of biocide employed in such products is in excess of that required to kill the low numbers of transient bacteria typically found on skin.  相似文献   

6.
Location and architecture of the Caulobacter crescentus chemoreceptor array   总被引:2,自引:0,他引:2  
A new method for recording both fluorescence and cryo-EM images of small bacterial cells was developed and used to identify chemoreceptor arrays in cryotomograms of intact Caulobacter crescentus cells. We show that in wild-type cells preserved in a near-native state, the chemoreceptors are hexagonally packed with a lattice spacing of 12 nm, just a few tens of nanometers away from the flagellar motor that they control. The arrays were always found on the convex side of the cell, further demonstrating that Caulobacter cells maintain dorsal/ventral as well as anterior/posterior asymmetry. Placing the known crystal structure of a trimer of receptor dimers at each vertex of the lattice accounts well for the density and agrees with other constraints. Based on this model for the arrangement of receptors, there are between one and two thousand receptors per array.  相似文献   

7.
Microbial biofilm has become inexorably linked with man's failure to control them by antibiotic and biocide regimes that are effective against suspended bacteria. This failure relates to a localized concentration of biofilm bacteria, and their extracellular products (exopolymers and extracellular enzymes), that moderates the access of the treatment agent and starves the more deeply placed cells. Biofilms, therefore, typically present gradients of physiology and concentration for the imposed treatment agent, which enables the less susceptible clones to survive. Such clones might include efflux mutants in addition to genotypes with modifications in single gene products. Clonal expansion following subeffective treatment would, in the case of many antibiotics, lead to the emergence of a resistant population. This tends not to occur for biocidal treatments where the active agent exhibits multiple pharmacological activity towards a number of specific cellular targets. Whilst resistance development towards biocidal agents is highly unlikely, subeffective exposure will lead to the selection of less susceptible clones, modified either in efflux or in their most susceptible target. The latter might also confer resistance to antibiotics where the target is shared. Thus, recent reports have demonstrated that sublethal concentrations of the antibacterial and antifungal agent triclosan can select for resistant mutants in Escherichia coli and that this agent specifically targets the enzyme enoyl reductase that is involved in lipid biosynthesis. Triclosan may, therefore, select for mutants in a target that is shared with the anti-E. coli diazaborine compounds and the antituberculosis drug isoniazid. Although triclosan may be a uniquely specific biocide, sublethal concentrations of less specific antimicrobial agents may also select for mutations within their most sensitive targets, some of which might be common to therapeutic agents. Sublethal treatment with chemical antimicrobial agents has also been demonstrated to induce the expression of multidrug efflux pumps and efflux mutants. Whilst efflux does not confer protection against use concentrations of biocidal products it is sufficient to confer protection against therapeutic doses of many antibiotics. It has, therefore, been widely speculated that biocide misuse may have an insidious effect, contributing to the evolution and persistence of drug resistance within microbial communities. Whilst such notions are supported by laboratory studies that utilize pure cultures, recent evidence has strongly refuted such linkage within the general environment where complex, multispecies biofilms predominate and where biocidal products are routinely deployed. In such situations the competition, for nutrients and space, between community members of disparate sensitivities far outweighs any potential benefits bestowed by the changes in an individual's antimicrobial susceptibility.  相似文献   

8.
Caulobacter crescentus was grown in complex medium supplemented with low (0.05%) concentration of glycine, a component of the murein peptide side chains of this bacterium. Murein synthesized in the presence of glycine was poorly crosslinked and the rate of its synthesis was slowed down compared to the control cells. The glycine-grown cells were considerably more sensitive to the chelating agent EDTA and Tris buffer than the control cells and also lysed faster when incubated with beta-lactam antibiotics. No changes in phospholipid composition in the presence of glycine were observed and the outer membrane protein composition of the glycine-grown cells was altered only in the amount of 130 000 protein which forms the surface array of C. crescentus. The effects of glycine can thus be tentatively put down to the reduced crosslinkage of murein synthesized in its presence.  相似文献   

9.
10.
During exponential growth, each cell cycle of the α-purple bacterium Caulobacter crescentus gives rise to two different cell types: a motile swarmer cell and a sessile stalked cell. When cultures of C. crescentus are grown for extended periods in complex (PYE) medium, cells undergo dramatic morphological changes and display increased resistance to stress. After cultures enter stationary phase, most cells are arrested at the predivisional stage. For the first 6–8 days after inoculation, the colony-forming units (cfu) steadily decrease from 109 cfu ml−1 to a minimum of 3 × 107 cfu ml−1 after which cells gradually adopt an elongated helical morphology. For days 9–12, the cfu of the culture increase and stabilize around 2 × 108 cfu ml−1. The viable cells have an elongated helical morphology with no constrictions and an average length of 20 μm, which is 15–20 times longer than exponentially growing cells. The level of the cell division initiation protein FtsZ decreases during the first week in stationary phase and remains at a low constant level consistent with the lack of cell division. When resuspended in fresh medium, the elongated cells return to normal size and morphology within 12 h. Cells that have returned from stationary phase proceed through the same developmental changes when they are again grown for an extended period and have not acquired a heritable growth advantage in stationary phase (GASP) compared with overnight cultures. We conclude that the changes observed in prolonged cultures are the result of entry into a new developmental pathway and are not due to mutation.  相似文献   

11.
Nutrient dynamics and successional changes in a lentic freshwater biofilm   总被引:3,自引:0,他引:3  
SUMMARY 1. Colonisation, species composition, succession of microalgae and nutrient dynamics in biofilms grown under light and dark conditions were examined during the initial phases of biofilm development in a lentic freshwater environment.
2. Biofilms were developed on inert (perspex) panels under natural illuminated and experimental dark conditions and the panels were retrieved for analysis after different incubation periods. Analysed parameters included biofilm thickness, algal density, biomass, chlorophyll a , species composition, total bacterial density and nutrients such as nitrite, nitrate, phosphate and silicate.
3. Biofilm thickness, algal density, biomass, chlorophyll a and species richness were significantly higher in light-grown biofilms, compared with dark-grown biofilms. The light-grown biofilms showed a three-phased succession pattern, with an initial domination of Chlorophyceae followed by diatoms (Bacillariophyceae) and finally by cyanobacteria. Dark-grown biofilms were mostly dominated by diatoms.
4. Nutrients were invariably more concentrated in biofilms than in ambient water. Nutrient concentrations were generally higher in dark-grown biofilms except in the case of phosphate, which was more concentrated in light-grown biofilms. Significant correlations between nutrients and biofilm parameters were observed only in light-grown biofilms.
5. The N : P ratio in the biofilm matrix decreased sharply in the initial 4 days of biofilm growth; ensuing N-limitation status seemed to influence biofilm community structure. The N : P ratios showed significant positive correlations with the chlorophycean fraction in both light and dark-grown biofilms, and low N : P ratio in the older biofilms favoured cyanobacteria. Our data indicate that nutrient chemistry of biofilm matrix shapes community structure in microalgal biofilms.  相似文献   

12.
Triclosan is a biocide whose wide use has raised a debate about the potential benefits vs. hazards of the incorporation of antimicrobials in consumer products. The purpose of the present study was to determine whether exposure of biofilms of Salmonella enterica serovar Typhimurium to triclosan influences the tolerance of the bacteria towards antibiotics such as ciprofloxacin and vice versa. A synergistic antibiofilm activity was observed when the biofilms were treated with triclosan before or together with ciprofloxacin, and an additive activity was observed with planktonic cells. For example 500 μg mL−1 triclosan and 500 μg mL−1 ciprofloxacin reduced the number of viable cells in the biofilm by 1.6 and 0.5 log, respectively. However, the sequential treatment of 500 μg mL−1 triclosan followed by ciprofloxacin resulted in 4.8 log reduction. Combination indexes (CI) for biofilms treated with triclosan followed by ciprofloxacin were 0.7, 0.32 and 0.25 for reduction of 90%, 99% and 99.9%, respectively, indicating a synergism. For planktonic cells, CIs were 1±0.1, indicating an additive effect. Therefore, it was suggested that triclosan weakens the ability of biofilm-associated cells to survive exposure to ciprofloxacin in the biofilm, probably by improving the permeability or the activity of ciprofloxacin.  相似文献   

13.
Global assays of gene expression and protein stability during the Caulobacter crescentus cell cycle reveal that a surprisingly large fraction of the genome and proteome is affected as cells grow and divide. These studies are an important step toward understanding how the cell cycle is controlled in prokaryotes.  相似文献   

14.
In the oligotrophic freshwater bacterium Caulobacter crescentus, D-xylose induces expression of over 50 genes, including the xyl operon, which encodes key enzymes for xylose metabolism. The promoter (P(xylX)) controlling expression of the xyl operon is widely used as a tool for inducible heterologous gene expression in C. crescentus. We show here that P(xylX) and at least one other promoter in the xylose regulon (P(xylE)) are controlled by the CC3065 (xylR) gene product, a LacI-type repressor. Electrophoretic gel mobility shift assays showed that operator binding by XylR is greatly reduced in the presence of D-xylose. The data support the hypothesis that there is a simple regulatory mechanism in which XylR obstructs xylose-inducible promoters in the absence of the sugar; the repressor is induced to release DNA upon binding D-xylose, thereby freeing the promoter for productive interaction with RNA polymerase. XylR also has an effect on glucose metabolism, as xylR mutants exhibit reduced expression of the Entner-Doudoroff operon and their ability to utilize glucose as a sole carbon and energy source is compromised.  相似文献   

15.
Triclosan-bacteria interactions: single or multiple target sites?   总被引:1,自引:0,他引:1  
AIMS: To investigate the inhibitory and lethal effects of triclosan against several micro-organisms at different stages of their phase of population growth. METHODS AND RESULTS: Triclosan minimum inhibitory concentrations against several test organisms were determined in broth and agar using standard protocols. The bisphenol effect on bacterial population growth kinetics was studied using the Bioscreen C microbial growth analyser. Finally, the efficacy of triclosan on phases of bacterial growth was determined using a standard suspension test. The duration of the lag phase for all micro-organisms tested was increased by bisphenol in a concentration-dependent manner. The population growth kinetics of the micro-organisms was also altered after biocide exposure. At higher concentrations, triclosan was bactericidal regardless of their phase of population growth, although population in stationary phase and particularly, washed suspensions, were more resilient to the lethality of triclosan. This lethal activity was concentration and contact time dependent, and in some instances, bactericidal activity of bisphenol was observed within 15 s. CONCLUSIONS: Low concentrations of triclosan affected the growth of several bacteria, while higher concentrations were bactericidal regardless of the bacterial phase of population growth. SIGNIFICANCE AND IMPACT OF THE STUDY: Here, we presented clear evidence that the interaction of triclosan with the bacterial cell is complex and its lethality cannot be explained solely by the inhibition of metabolic pathways such as the enoyl acyl-reductase. However, the inhibition of such pathways cannot be ruled out as part of the lethal mechanism of the bisphenol at a low bactericidal concentration.  相似文献   

16.
Concern has been expressed about the overuse of biocides in farm animal production and food industries. Biocide application can create selective pressures that lead to increased tolerance to one or more of these compounds and are concomitant with the emergence of cross-resistance to antibiotics. A triclosan sensitive Salmonella enterica serovar Typhimurium and the isogenic triclosan tolerant mutant were studied at the proteomic level in order to elucidate cellular mechanisms that facilitate biocide tolerance. 2-D differential fluorescent gel electrophoresis (DIGE) compared protein profiles of parent and mutant Salmonella, in the presence and absence of triclosan. Differentially expressed proteins were identified by mass spectrometry and divided into two groups: Group A describes proteins differentially expressed between susceptible and triclosan tolerant Salmonella and includes the known triclosan target FabI which contained a mutation at the triclosan target binding site. Group B identified proteins differentially expressed in response to triclosan exposure and defines a general cell defence network. Only four proteins were common to both groups highlighting the diverse range of pathways employed by Salmonella to counteract biocides. These data suggest that sub-lethal concentrations of triclosan induce discernible changes in the proteome of exposed Salmonella and provide insights into mechanisms of response and tolerance.  相似文献   

17.
18.
The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS) in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition--isolated from sediments of the Eden Estuary (Scotland, UK)--on non-cohesive glass beads (<63 μm) and exposed to a range of triclosan concentrations (control, 2-100 μg L(-1)) was monitored over time by Magnetic Particle Induction (MagPI). In parallel, bacterial cell numbers, division rate, community composition (DGGE) and EPS (extracellular polymeric substances: carbohydrates and proteins) secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI) of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality) were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of ecosystem effects.  相似文献   

19.
Caulobacter crescentus is an obligate aerobe which is exposed to high concentrations of photosynthetic oxygen and low levels of nutrients in its aquatic environment. Physiological studies of oxidative and starvation stresses in C. crescentus were undertaken through a study of lacZ fusion and null mutant strains constructed from the cloned 5' end of katG, encoding a catalase-peroxidase. The katG gene was shown to be solely responsible for catalase and peroxidase activity in C. crescentus. Like the katG of Escherichia coli, C. crescentus katG is induced by hydrogen peroxide and is important in sustaining the exponential growth rate. However, dramatic differences are seen in growth stage induction. E. coli KatE catalase and KatG catalase-peroxidase activities are induced 15- to 20-fold during exponential growth and then approximately halved in the stationary phase. In contrast, C. crescentus KatG activity is constant throughout exponential growth and is induced 50-fold in the stationary phase. Moreover, the survival of a C. crescentus katG null mutant is reduced by more than 3 orders of magnitude after 24 h in stationary phase and more than 6 orders of magnitude after 48 h, a phenotype not seen for E. coli katE and katG null mutants. These results indicate a major role for C. crescentus catalase-peroxidase in stationary-phase survival and raise questions about whether the peroxidatic activity as well as the protective catalatic activity of the dual-function enzyme is important in the response to starvation stress.  相似文献   

20.
Consumer use of antimicrobial-containing products continuously introduces triclocarban and triclosan into the environment. Triclocarban and triclosan adversely affect plants and animals and have the potential to affect human health. Research examined the phytoaccumulation of triclocarban and triclosan by pumpkin (Cucurbita pepo cultivar Howden) and zucchini (Cucurbita pepo cultivar Gold Rush) grown hydroponically. Pumpkin and zucchini were grown in nutrient solution spiked with 0.315 μg/mL triclocarban and 0.289 μg/mL triclosan for two months. Concentrations of triclocarban and triclosan in nutrient solutions were monitored weekly. At the end of the trial, roots and shoots were analyzed for triclocarban and triclosan. Research demonstrated that pumpkin and zucchini accumulated triclocarban and triclosan. Root accumulation factors were 1.78 and 0.64 and translocation factors were 0.001 and 0.082 for triclocarban and triclosan, respectively. The results of this experiment were compared with a previous soil column study that represented environmentally relevant exposure of antimicrobials from biosolids and had similar root mass. Plants were not as efficient in removing triclocarban and triclosan in hydroponic systems as in soil systems. Shoot concentrations of antimicrobials were the same or lower in hydroponic systems than in soil columns, indicating that hydroponic system does not overpredict the concentrations of antimicrobials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号