首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different factors involved in the early steps of the T-DNA transfer process were studied by using a -glucuronidase gene (gusA) as a reporter in Nicotiana glauca leaf disc transformation experiments. The levels of transient expression of the gusA gene in leaf discs infected with several strains or vir mutants correlated well with their virulence phenotype, except for virC mutants. The rate of T-DNA transfer was shown to be stimulated in the case of non-oncogenic strains by the co-transfer of small amounts of oncogenic genes. It was found that the location of the T-DNA in the Agrobacterium genome affected the T-DNA transfer rate especially in virC mutants. The virC mutants transferred the gusA-containing T-DNA located on a binary vector more efficiently than the oncogenic T-DNA of the Ti plasmid. Although wild-type strains induced high levels of gusA expression early after infection, the gusA expression appeared to be lost late after infection in the infected leaf discs. In contrast, in leaf discs infected by virC mutants the level of gusA expression increased steadily in time. A model explaining these results is presented.  相似文献   

2.
A chimeric gene consisting of the -glucuronidase (gusA) reporter gene under the control of the metallothionein-like promoter cgMT1 from the tropical tree Casuarina glauca was introduced into Nicotiana tabacum via Agrobacterium tumefaciens and into Oryza sativa by particle bombardment. The strongest histochemical staining for GUS activity was observed in the root system of the transgenic plants, and especially in lateral roots. In contrast, a relatively low level of reporter gene expression was seen in the aerial tissues and GUS staining was located mainly in the plant vascular system. The average ratio of GUS activity between root and leaf was found to be 13:1 in tobacco and 1.5:1 in rice. The pattern of cgMT1 promoter activity in floral organs was found to be different in tobacco and rice. High levels of gusA gene expression were detected in the ovules, pollen grains and tapetum, whereas in rice PcgMT1 directs expression to the vascular system of the floral organs. These results suggest that PcgMT1 is potentially useful in molecular breeding to express genes of interest whose products are preferentially needed in roots.  相似文献   

3.
To develop a system forAgrobacterium-mediated transformation of maize (Zea mays L.), we have investigated histochemically the transient expression of -glucuronidase (GUS) activity in maize seedling tissue segments using binary vectors that allow minimal (pKIWI105 and pCNL1) or undetectable (p35S-GUS-INT and pCNL56) levels of GUS activity inA. tumefaciens. Tissue segments from three- to five-day-old sterile seedlings of maize genotype A188 were inoculated withA. tumefaciens. Four days after inoculation, transient expression of GUS activity was found in mesocotyl segments originating from the intercalary meristem region. This GUS activity was specific to the vascular cylinder and was not found in the internal cortical or epidermal layers, nor was it found in mature mesocotyl tissue (segments 5 mm below the coleoptilar node). Transient GUS activity was also detected in leaf and coleoptile tissues of shoot segments, but not in the shoot apexper se or in leaves younger than the first leaf. Maize tissues inoculated withA. tumefaciens strains that harbourgusA-containing binary vectors but no Ti-plasmid did not show GUS activity, supporting evidence from previous work thatvir gene activity was essential for the observed GUS activity.A. tumefaciens strains containing different types of Ti-plasmids were also tested. A strain harbouring an agropine-type Ti-plasmid was the most effective for expressing GUS activity in mesocotyl segments, whereas a strain harboring a nopaline-type Ti-plasmid was most effective for expression of GUS activity in the apical meristem-containing segment. These results indicate that different interactions occurred between the differentA. tumefaciens strains and the susceptible plant tissues. Maize genotype specificity for GUS activity in mesocotyl tissues was observed; variations in the cocultivation medium had a profound effect on the frequency of expression of GUS activity.  相似文献   

4.
Regeneration of transgenic tamarillo plants   总被引:2,自引:0,他引:2  
Media were developed to regenerate shoots from leaf pieces of tamarillo (Cyphomandra betacea (Cav.) Sendtner). Shoots were derived via organogenesis and could be easily rooted and transferred to the growth chamber. Transgenic tamarillo plants were produced using the binary vector pKIWI110 in the avirulent Agrobacterium strain LBA4404. All transgenic plants were kanamycin resistant and some plants expressed the D-glucuronidase (gusA) reporter gene and were chlorsulfuron resistant. Molecular evidence for transformation was obtained using PCR (polymerase chain reaction) and Southern hybridization. Inheritance of the transgenic phenotypes was demonstrated in seedling progeny.  相似文献   

5.
To play an essential role in C4 photosynthesis, the maize C4 phosphoenolpyruvate carboxylase gene (PPCZm1) acquired many new expression features, such as leaf specificity, mesophyll specificity, light inducibility and high activity, that distinguish the unique C4 PPC from numerous non-C4 PPC genes in maize. We present here the first investigation of the developmental, cell-specific, light and metabolic regulation of the homologous C4 PPCZm1 promoter in stable transgenic maize plants. We demonstrate that the 1.7 kb of the 5-flanking region of the PPCZm1 gene is sufficient to direct the C4-specific expression patterns of -glucuronidase (GUS) activity, as a reporter, in stable transformed maize plants. In light-grown shoots, GUS expression was strongest in all developing and mature mesophyll cells in the leaf, collar and sheath. GUS activity was also detected in mesophyll cells in the outer husks of ear shoots and in the outer glumes of staminate spikelets. We did not observe histological localization of GUS activity in light- or dark-grown callus, roots, silk, developing or mature kernels, the shoot apex, prop roots, or pollen. In addition, we used the stable expressing transformants to conduct and quantify physiological induction studies. Our results indicate that the expression of the C4 PPCZm1-GUS fusion gene is mesophyll-specific and influenced by development, light, glucose, acetate and chloroplast biogenesis in transgenic maize plants. These studies suggest that the adoption of DNA regulatory elements for C4-specific gene expression is a crucial step in C4 gene evolution.  相似文献   

6.
The promoter region of the Agrobacterium tumefaciens T-cyt gene was fused to a -glucuronidase (gusA) reporter gene and introduced into tobacco plants. Detection of gusA expression in transgenic F1 progeny revealed that the T-cyt promoter is active in many, if not all, cell types in leaves, stems and roots of fully developed plants. Developmental stage-dependent promoter activity was observed in seedlings. Analysis of 5-deleted promoter fragments showed that sequences located between positions–185 and –139 with respect to the T-cyt translational start codon are essential for T-cyt promoter activity in transfected tobacco protoplasts as well as in transformed tobacco plants.  相似文献   

7.
The ability of the heterologous promoters, rolCP and CoYMVP, to drive expression of the gusA reporter gene in the vegetative tissues of apple (Malus pumila Mill.) has been studied using transgenic plants produced by Agrobacterium-mediated transformation. Replicate plants of each transgenic clone were propagated in soil to a uniform size and samples of leaf, petiole, stem, and root were taken for the measurement of -glucuronidase (GUS) activity by fluorometric assay. The levels of expression were compared with those in tissues of a representative clone containing the CaMV 35S promoter. These quantitative GUS data were related to the copy number of transgene loci assessed by Southern blotting. The CoYMV promoter was slightly more active than the rolC promoter, although both expressed gusA at a lower level than the CaMV 35S promoter. In clones containing the rolC promoter with multiple transgene loci, expression values were generally among the highest or lowest in the range. The precise location of GUS activity in each tissue was identified by staining of whole leaves and tissue sections with a chromogenic substrate. This analysis demonstrated that with both the rolC and CoYMV promoters the reporter gene activity was primarily localised to vascular tissues, particularly the phloem. Our results indicate that both promoters would be suitable to drive the expression of transgenes to combat pests and diseases of apple that are dependent on interaction with the phloem.  相似文献   

8.
Transgenic plants of the aromatic shrub Lavandula latifolia (Lamiaceae) were produced using Agrobacterium tumefaciens-mediated gene transfer. Leaf and hypocotyl explants from 35–40-day old lavender seedlings were inoculated with the EHA105 strain carrying the nptII gene, as selectable marker, and the reporter gusA gene with an intron. Some of the factors influencing T-DNA transfer to L. latifolia explants were assessed. Optimal transformation rates (6.0 ± 1.6% in three different experiments) were obtained when leaf explants precultured for 1 day on regeneration medium were subcultured on selection medium after a 24 h co-cultivation with Agrobacterium. Evidence for stable integration was obtained by GUS assay, PCR and Southern hybridisation. More than 250 transgenic plants were obtained from 37 independent transformation events. Twenty-four transgenic plants from 7 of those events were successfully established in soil. -glucuronidase activity and kanamycin resistance assays in greenhouse-grown plants from two independent transgenic lines confirmed the stable expression of both gusA and nptII genes two years after the initial transformation. Evidence from PCR data, GUS assays and regeneration in the presence of kanamycin demonstrated a 1:15 Mendelian segregation of both transgenes among seedlings of the T1 progeny of two plants from one transgenic L. latifolia line.  相似文献   

9.
The effect of light on [14C]glutamate conversion to free proline during water stress was studied in attached barley (Hordeum vulgare L.) leaves which had been trimmed to 10 cm in length. Plants at the three-leaf stage were stressed by flooding the rooting medium with polyethylene glycol 6000 (osmotic potential-19 bars) for up to 3 d. During this time the free proline content of 10-cm second leaves rose from about 0.02 to 2 mol/leaf while free glutamate content remained steady at about 0.6 mol/leaf. In stressed leaves, the amount of [14C]glutamate converted to proline in a 3-h period of light or darkness was taken to reflect the in-vivo rate of proline biosynthesis because the following conditions were met: (a) free-glutamate levels were not significantly different in light and darkness; (b) both tracer [14C]-glutamate and [14C]proline were rapidly absorbed; (c) rates of [14C]proline oxidation and incorporation into protein were very slow. As leaf water potential fell, more [14C]glutamate was converted to proline in both light and darkness, but at any given water potential in the range-12 to-20 bars, illuminated leaves converted twice as much [14C]glutamate to proline.  相似文献   

10.
Summary T-DNA vectors were constructed which carry a -glucuronidase (gusA) gene fused to the promoter of the nopaline synthase (nos) gene and the 3 end of the octopine synthase (ocs) gene. This reporter gene was cloned at different locations and orientations towards the right T-DNA border. For each construct, between 30 and 60 stably transformed calli were analysed for -glucuronidase activity. Depending on the T-DNA configuration, distinct populations of gusA-expressing calli were obtained. Placing the reporter gene in the middle of the T-DNA results in relatively low expression levels and a limited inter-transformant variability. Placing the gene with its promoter next to the right border led to an increase in both the mean activity and the variability level. With this construct, some of the calli expressed the gusA gene at levels four to five times higher than the mean. In all these series, at least 30% of the calli contained reporter gene activities that were less than half of the mean expression level. Separating the gusA gene from the right T-DNA border by an additional 3-untranslated region, derived from the nos gene, resulted in an increase in the mean expression to a level almost four times higher than that of constructions carrying the reporter gene in the middle of the T-DNA. Moreover, the number of transformants with extremely low activities decreased by at least 50% and this resulted in significantly lower inter-transformant variability independently of the orientation of the reporter gene on the T-DNA.  相似文献   

11.
Summary In order to analyze expression of the maize alcohol dehydrogenase 1 gene (Adh1), its promoter was fused with the gusA reporter gene and introduced into rice by protoplast transformation. Histochemical analysis of transgenic plants and their progeny showed that the maize Adh1 promoter is constitutively expressed in root caps, anthers, anther filaments, pollen, scutellum, endosperm and shoot and root meristem of the embryo. Induction of expression by the Adh1 promoter was examined using seedlings derived from selfed progeny of the transgenic plants. The results showed that expression of the Adh1 promoter was strongly induced (up to 81-fold) in roots of seedlings after 24 h of anaerobic treatment, concomitant with an increase in the level of gusA mRNA. 2,4-D also induced Adh1 promoter-directed expression of gusA to a similar extent. In contrast, little induction by anaerobic treatment was detected in transformed calli, leaves or roots of primary transformants or shoots of seedlings. A detailed examination of seedling roots during anaerobic treatment revealed that the induction started first at the meristem and after 3 h there was strong induction in the elongation zone which is located 1–2 mm above the meristem; the induction then progressed upward from this region. Our results suggest that transgenic rice plants carring the gusA reporter gene fused with promoters are useful for the study of anaerobic regulation of genes derived from graminaceous species.  相似文献   

12.
Four different pearl millet breeding lines were transformed and led to the regeneration of fertile transgenic plants. Scutellar tissue was bombarded with two plasmids containing the bar selectable marker and the -glucuronidase reporter gene (gus or uidA) under control of the constitutive CaMV 35S promoter or the maize Ubiquitin1 promoter (the CaMV 35S is not a maize promoter). For the delivery of the DNA-coated microprojectiles, either the particle gun PDS 1000/He or the particle inflow gun was used. The calli and regenerants were selected for their resistance to the herbicide Basta (glufosinate ammonium) mediated by the bar gene. Putative transformants were screened for enzyme activity by painting selected leaves or spraying whole plants with an aqueous solution of the herbicide Basta and by the histochemical GUS assay using cut leaf segments. PCR and Southern blot analysis of genomic DNA indicated the presence of introduced foreign genes in the genomic DNA of the transformants. Five regenerated plants represent independent transformation events and have been grown to maturity and set seed. The integration of the bar selectable and the gus reporter gene was confirmed by genomic Southern blot analysis in all five plants. All five plants had multiple integrations of both marker genes. To date, the T1 progeny of three out of four lines generated by the PDS particle gun shows co-segregating marker genes, indicating an integration of the bar and the gus gene at the same locus in the genome.  相似文献   

13.
Pierre Thibault 《Planta》1973,114(2):109-118
Summary When a leaf of maize (Zea mays) is illuminated following a long enough period of darkness (t10 min) under pure nitrogen, the oxygen evolution occurs only after a lag time from one to several minutes. During this delay, a burst of CO2 occurs the maximum of which corresponds to the start of oxygen evolution. The source of carbon dioxide is thought to be a stable internal CO2 reserve which has been previously formed in the leaf and is assumed to be malic acid. For as yet unknown reasons the carbon dioxide issued from the reserve by action of light at the beginning of illumination is not fixed and escapes into the atmosphere; this process could require the phytochrome system.  相似文献   

14.
This paper describes the development of a reliable transformation system for garlic (Allium sativum L.) and its application in producing insect resistant GM garlic lines. The transformation system is based on Agrobacterium tumefaciens as a vector, using young callus derived from different callus sources: callus induced from both apical and non-apical root segments of in vitro plantlets, true garlic seeds and bulbils. Two different reporter genes were used in our garlic transformation experiments, namely the gusA gene coding for -glucuronidase and the gfp gene coding for green fluorescent protein. A total of seven independent transformed callus lines derived from different callus sources were obtained. The advantage of the system developed is the short time period needed for completion of the protocol (about 6 months) and the year-round availability of high quality callus from in vitro roots. The highest transformation frequency in a single experiment (1.47%), was obtained using garlic cv. 'Printanor'. Differences existed between cultivars in transformation frequency but were not significant. The same was found for the plasmids used in transforming garlic. Via PCR the presence of the gusA, hpt (hygromycin phosphotransferase) and gfp genes could be demonstrated in putative transformed in vitro plants. Southern hybridization showed that the reporter gene gusA and the selective gene hpt were stably integrated into the garlic genome. After transfer to the greenhouse of in vitro regenerants, transgenic garlic harbouring the gusA gene survived and grew well, whereas the gfp transgenic garlic gradually died under these conditions.Using this protocol transgenic garlic resistant to beet armyworm using the cry1Ca and H04 resistance genes from Bacillus thuringiensis were developed. Via Southern hybridization it was shown that the cry1Ca sequence was stably integrated into the garlic genome. After transfer of the transgenic in vitro garlic plants to the greenhouse, the cry1Ca plants developed normally and grew well to maturity with normal bulbs. However, all transgenic in vitro H04 garlic plants did not survive after transfer to the greenhouse. Transgenic cry1Ca garlic plants proved completely resistant to beet armyworm in a number of in vitro bio-assays. This finding will facilitate the development of new garlic cultivars resistant to beet armyworm.  相似文献   

15.
Stable co-transformation of maize protoplasts with gusA and neo genes   总被引:10,自引:0,他引:10  
An efficient co-transformation protocol using polyethylene glycol was developed for Zea mays L. (cv. A188 × BMS) protoplasts isolated from suspension culture cells. Co-transformation was accomplished by using plasmid constructions containing -glucuronidase (gusA) or neomycin phosphotransferase (neo) gene coding sequences; both were under control of the CaMV 35S promoter. Protoplast culture and transformation conditions were optimized to assure efficient recovery of transformed cells. The overall efficiency of transformation was 1 × 10–4 (calculated per viable protoplast plated). Among kanamycin-resistant lines, 50% showed a high level of GUS activity (above one unit). Southern blot hybridization confirmed the presence of numerous gusA and neo coding sequences in the maize genome. In two analyzed lines, integrated sequences appeared to be organized in tandem head-to-tail repeats. Results also indicated that the integrated sequences were partially methylated.  相似文献   

16.
The use of reporter genes to characterise sequence elements that act to regulate gene expression in transgenic plants has been vital to the development of foreign gene expression strategies for use in cereal transformation. ThegusA locus ofEscherichia coli, which encodes the enzyme-glucuronidase (GUS), is by far the most popular reporter gene used in plant transformation. In this paper we extend the utility of the GUS reporter gene system in cereal transformation by describing and evaluating a number of novel constructs suitable for use in direct gene transfer experiments. These plasmids are all available from the Molecular Genetic Resource Service of the Center for the Application of Molecular Biology to International Agriculture.  相似文献   

17.
Genetic transformation system of Dendrobium Sonia 17 was optimized using green fluorescent protein (GFP) and -glucuronidase (GUS) gene as the reporter systems. The 35S-sgfp-TYG-nos (p35S) and pSMDFR, carrying sgfp and gusA gene, respectively, were co-bombarded into the calluses. Parameters optimized were acceleration pressure, target distance, gold particle size, pre-bombardment cultured time, plasmid DNA precipitation, total plasmid DNA and the ratio of the plasmids co-bombarded. Both reporter systems responded similarly to the bombardment parameters investigated. Based on the GUS/GFP spot counts, the GFP expression rate was higher than that for GUS under the control of the same promoter, CaMV 35S. GFP could be used as the reporter system for the co-bombardment as it was rapid and non-destructive system to monitor the transformed tissues. A combination of GFP and antibiotic resistance gene was used to select stable putative transformants.  相似文献   

18.
A fusion gene usingluxA andluxB genes ofVibrio species has been designed to express light autonomously in plants.LuxA:luxB was introduced into plants by a high-efficiency transformation system consisting of a high-copy virulence helper plasmid pUCD2614 and T-vector pUCD2715 containingluxA:luxB. The expression ofluxA:luxB fusion gene was optimized by adjusting the spacing between the genes and by placing the translational efficiency of its mRNA under the control of the -3 translational enhancer. The resulting transgenic plants synthesized luciferase at levels greater than 1% of the total leaf protein. These plants produced light autonomously and light intensity was enhanced by the addition of aldehyde. That theluxA:luxB fusion has been optimized enables its use as a reporter for gene activity in plants during development and under various stress-inducing conditions. These results show that a specific protein from an introduced foreign gene can be produced with high efficiency in cultivated plants and such a system is therefore amenable for production of desired proteins through conventional farming methods.  相似文献   

19.
Inheritance of gusA and neo genes in transgenic rice   总被引:21,自引:0,他引:21  
Inheritance of foreign genes neo and gusA in rice (Oryza sativa L. cv. IR54 and Radon) has been investigated in three different primary (T0) transformants and their progeny plants. T0 plants were obtained by co-transforming protoplasts from two different rice suspension cultures with the neomycin phosphotransferase II gene [neo or aph (3) II] and the -glucuronidase gene (uidA or gusA) residing on separate chimeric plasmid constructs. The suspension cultures were derived from callus of immature embryos of indica variety IR54 and japonica variety Radon. One transgenic line of Radon (AR2) contained neo driven by the CaMV 35S promoter and gusA driven by the rice actin promoter. A second Radon line (R3) contained neo driven by the CaMV 35S promoter and gusA driven by a promoter of the rice tungro bacilliform virus. The third transgenic line, IR54-1, contained neo driven by the CaMV 35S promoter and gusA driven by the CaMV 35S.Inheritance of the transgenes in progeny of the transgenic rice was investigated by Southern blot analysis and enzyme assays. Southern blot analysis of genomic DNA showed that, regardless of copy numbers of the transgenes in the plant genome and the fact that the two transgenes resided on two different plasmids before transformation, the introduced gusA and neo genes were stably transmitted from one generation to another and co-inherited together in transgenic rice progeny plants derived from self-pollination. Analysis of GUS and NPT II activities in T1 to T2 plants provided evidence that inheritance of the gusA and neo genes was in a Mendelian fashion in one plant line (AR2), and in an irregular fashion in the two other plant lines (R3 and IR54-1). Homozygous progeny plants expressing the gusA and neo genes were obtained in the T2 generation of AR2, but the homozygous state was not found in the other two lines of transgenic rice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号