首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The coordinate regulation of human chorionic gonadotropin (hCG) subunit synthesis by JEG-3 choriocarcinoma cells was studied at the pretranslational level. The responses of the hCG alpha and beta mRNAs were measured during stimulation with the potent cAMP analog 8-bromo-cAMP (8-Br-cAMP) using 32P-labeled hCG alpha and beta cDNA probes. The hCG alpha mRNA (850 bases) and beta mRNA (1050 bases) from JEG-3 cells were identical in size to that of their respective mRNAs from placenta, by Northern blot analysis. After 48 h of stimulation with 2 mM 8-Br-cAMP, production of immunoreactive alpha and beta subunits increased 25- and 52-fold, respectively; corresponding levels of the alpha and beta mRNAs increased 36- and 43-fold, respectively, in a dot blot hybridization assay. Total cellular protein, DNA content, and messenger RNA pools were not altered by treatment with 8-Br-cAMP. The temporal coordination of the expression of the hCG alpha- and beta-subunit genes was examined by comparing the time course of stimulation of the respective mRNAs and the production of immunoreactive subunits. The kinetic responses of the alpha and beta mRNAs differed: the increase in hCG alpha mRNA preceded the increase in hCG beta mRNA, while levels of free alpha subunit and intact hCG increased in parallel with the increase in beta mRNA. hCG alpha mRNA levels increased rapidly between 8 and 24 h after the addition of 8-Br-cAMP, and approached a plateau by 48 h. The levels of hCG beta mRNA increased steadily throughout the 8-48 h period. These results demonstrate that the cAMP analog 8-Br-cAMP differentially regulates hCG subunit biosynthesis in JEG-3 cells at a pretranslational level, and that the stimulation by 8-Br-cAMP in this system appears to be relatively selective for hCG subunits.  相似文献   

2.
JAR malignant trophoblast cells produce a free alpha subunit in addition to an alpha combined with beta subunit as hCG. The free alpha is larger by gel chromatography and SDS-PAGE than combined alpha and is unable to associate with beta subunit to form hCG. A tryptic fragment, representing amino acid residues 36-42, derived from free alpha was larger than the corresponding fragment from combined alpha. After neuraminidase treatment, the fragment from free alpha bound peanut lectin agarose, which is specific for Gal beta 1-3GalNAc as found in O-linked oligosaccharides. The fragment also contained Gal and GalNAc (and a lesser amount of GlcNAc) as determined by glycosidase sensitivity and amino sugar analyses. Removal of this tryptic fragment ablated the size difference between free and combined alpha subunits.  相似文献   

3.
Human chorionic gonadotropin (hCG) consists of two noncovalently joined alpha and beta subunits similar to the other glycoprotein hormones. To study the function of the individual disulfide bonds in subunit assembly and secretion, site-directed mutagenesis was used to convert the 12 cysteine (Cys) residues in the beta subunit of hCG to either alanine or serine. Both cysteines of proposed disulfide pairs were also mutated. These mutant hCG beta genes were transfected alone or together with the wild-type alpha gene into Chinese hamster ovary cells. Only 3-10% assembly could be achieved with derivatives containing single Cys mutations at positions 26, 110, 72, and 90, whereas no assembly was detected with the other 8 mutants. However, double mutations of pairs 26-110 or 23-72 showed increased dimer formation (11 and 36%, respectively). The secretion rate of individual mutants varied significantly. Whereas the Cys-23 and 72 mutants were secreted normally (t1/2 = 140-190 min), the Cys-26 mutant was secreted faster (t1/2 = 70 min), and the other 9 mutants were secreted slower (t1/2 = 280-440 min); mutations of both Cys at 26 and 110 caused much faster secretion (t1/2 = 34 min). Although the secretion rate of these mutants differed, they were quantitatively recovered in the medium except for mutant Cys-88, Cys-23-72, and Cys-34-88 (40, 55, and 10% secreted, respectively). Thus, interruption of any disulfide bond in the hCG beta subunit alters the structure sufficiently to block dimer formation and in some cases slow secretion, although the stability for most of the mutant hCG beta subunits is not greatly affected. The data indicate that interruption of any hCG beta disulfide bond generates different structural forms that are unable to assemble with the alpha subunit, and that the structural requirements for stability and assembly are different.  相似文献   

4.
Human choriogonadotropin (hCG) is a placental glycoprotein hormone composed of a 92-amino acid alpha subunit noncovalently linked to a 145-amino acid beta subunit. We report here the expression of biologically active hCG in mouse C127 cells transfected with expression vectors containing the DNA coding for both subunits. In addition, the same cell line was used to express the alpha subunit alone. The expression products were purified by affinity chromatography using specific monoclonal antibodies to hCG or its subunits. The system secreting biologically active hCG also produced a 10-fold or greater molar excess of free beta subunit. The dimeric hormone, as well as the excess beta subunit, resembles the standard urinary hCG and beta subunit by chemical and biological criteria. In contrast, when the vector encoding for the alpha subunit was expressed alone, the alpha subunit had a higher molecular weight than both standard alpha and the alpha found in the expressed dimeric hormone. The molecular weight difference between expressed alpha subunit and standard alpha was found to reside in the alpha peptide consisting of residues 52-91 which contained all of the carbohydrate of the alpha subunit. The N-asparagine-linked carbohydrate moieties in the recombinant alpha were found to be triantennary in contrast to biantennary in urinary alpha, and this hyperglycosylation was responsible for the higher molecular weight of the alpha subunit when it was expressed alone. We found no evidence of O-threonine glycosylation at position alpha 39 reported to be present in free forms of the alpha subunit; however, the companion paper (Corless, C.L., Bielinska, M., Ramabhadran, T. V., Daniels-McQueen, S. Otani, T., Reitz, B. A., Tiemeier, D. C., and Boime, I. (1987) J. Biol Chem. 262, 14197-14203) finds a small quantity of O-glycosylation. Since the excess beta subunit appears to be of normal size and contains the expected complement of sugars, only free alpha subunit seems to be a potential substrate for addition of extra sugar moieties. No large beta subunit forms have been found by others, while large alpha subunits have been described both clinically and in tissue culture systems. These observations imply that the conformation of the free alpha subunit, in the regions of the glycosylation recognition sites, allows easier access for glycosyltransferases than those same sites in the beta subunit. When alpha is combined with beta, the local structures around the alpha glycosylation sites are apparently altered so as to make the synthesis of triantennary chains less favorable.  相似文献   

5.
6.
The molecular sizes of human chorionic gonadotropin (hCG) subunits in the native state in normal first trimester placental extracts were determined by gel filtration on Sephacryl S-300, followed by SDS-polyacrylamide gel electrophoresis, protein blotting, and immunobinding analysis using anti-alpha and - beta antibodies. Mature forms of hCG subunits in the extracts were only found in the same fraction as that which contained standard urinary hCG, indicating an alpha beta dimer. On the other hand, immature forms were detected with a wide range of molecular weights, which were higher than that of standard hCG, suggesting oligomerization of associated or non-associated immature subunits. In order to determine the associated state of these subunits, various forms of associated subunits (hCG alpha beta) in placental extracts were immunoprecipitated with anti-hCG antiserum, which only recognized hCG alpha beta, and Protein A-Sepharose. They were then analyzed by SDS-polyacrylamide gel electrophoresis under reducing and non-reducing conditions, followed by immunobinding assaying. It has been suggested that there are three kinds of hCG alpha beta S (one mature and two immature). To confirm the above results and to clarify the existence of free subunits, placental extracts were subjected to two-dimensional SDS-polyacrylamide gel electrophoresis. With this technique, high molecular weight forms of immature hCG subunits were found to be present in placental cells as an oligomer of not only the alpha beta dimer but of each subunit as well.  相似文献   

7.
Neff S  Mason PW  Baxt B 《Journal of virology》2000,74(16):7298-7306
We have previously reported that Foot-and-mouth disease virus (FMDV), which is virulent for cattle and swine, can utilize the integrin alpha(v)beta(3) as a receptor on cultured cells. Since those studies were performed with the human integrin, we have molecularly cloned the bovine homolog of the integrin alpha(v)beta(3) and have compared the two receptors for utilization by FMDV. Both the alpha(v) and beta(3) subunits of the bovine integrin have high degrees of amino acid sequence similarity to their corresponding human subunits in the ectodomains (96%) and essentially identical transmembrane and cytoplasmic domains. Within the putative ligand-binding domains, the bovine and human alpha(v) subunits have a 98.8% amino acid sequence similarity while there is only a 93% similarity between the beta(3) subunits of these two species. COS cell cultures, which are not susceptible to FMDV infection, become susceptible if cotransfected with alpha(v) and beta(3) subunit cDNAs from a bovine or human source. Cultures cotransfected with the bovine alpha(v)beta(3) subunit cDNAs and infected with FMDV synthesize greater amounts of viral proteins than do infected cultures cotransfected with the human integrin subunits. Cells cotransfected with a bovine alpha(v) subunit and a human beta(3) subunit synthesize viral proteins at levels equivalent to those in cells expressing both human subunits. However, cells cotransfected with the human alpha(v) and the bovine beta(3) subunits synthesize amounts of viral proteins equivalent to those in cells expressing both bovine subunits, indicating that the bovine beta(3) subunit is responsible for the increased effectiveness of this receptor. By engineering chimeric bovine-human beta(3) subunits, we have shown that this increase in receptor efficiency is due to sequences encoding the C-terminal one-third of the subunit ectodomain, which contains a highly structured cysteine-rich repeat region. We postulate that amino acid sequence differences within this region may be responsible for structural differences between the human and bovine beta(3) subunit, leading to more efficient utilization of the bovine receptor by this bovine pathogen.  相似文献   

8.
The baculovirus expression system was used to produce alpha 1 and beta 1 subunits of the human GABAA receptor in Sf9 cells. In cells infected with both alpha 1 and beta 1 recombinant viruses, GABA elicited an outwardly rectifying chloride current that was blocked by bicuculline and potentiated by pentobarbitone. GABA did not produce detectable currents in cells infected with either alpha 1 or beta 1 recombinant viruses alone. In these cells, and in control (non-infected) Sf9 cells, pentobarbitone depressed the leakage current (Ki = 55 microM). Fluorescently labelled monoclonal antibodies to the alpha 1 subunit showed greater amounts of the alpha 1 subunit in cells infected with only the alpha 1 recombinant virus than in cells co-infected with the alpha 1 and beta 1 recombinant viruses. Fluorescence of the plasma membrane was seen in cells co-infected with the alpha 1 and beta 1 recombinant viruses, but was absent in cells infected with only the alpha 1 recombinant virus. It was concluded that the alpha 1 subunit normally interacts with the beta 1 subunit to be transported to the plasma membrane in Sf9 cells.  相似文献   

9.
The glycoprotein hormones are a family of conserved heterodimeric proteins which share a common alpha subunit but differ in their hormone-specific beta subunits. We used chimeras of human chorionic gonadotropin (hCG) and luteinizing hormone (hLH) beta subunits to identify residues which enable monoclonal antibodies (mAb) to distinguish the two hormones. The LH beta-CG beta chimeras appeared to fold similar to hCG beta, since they combined with hCG alpha and, depending on their sequences, were recognized by hCG-selective mAbs. Amino acid residues Arg8-Arg10,Gly47-Ala51, and Gln89-Leu92 form a major epitope region and appear to be adjacent to each other on the surface of hCG beta. Gly47-Ala51 and Gln89-Leu92 are recognized by dimer-specific mAbs while Arg8-Arg10 is recognized by mAbs which have highest affinity for the free beta subunit. These observations suggest that the conformation of this region of the beta subunit changes when the alpha and beta subunits combine. Residues which are C-terminal of Asp112 form a second epitope domain. mAbs to the third domain distinguish hCG beta and hLH beta by the presence of Asn77 in hCG beta and can be detected after hCG binds to receptors. These findings were used to develop a model of hCG beta which predicts the locations of these residues and their positions relative to the alpha subunit and receptor interfaces.  相似文献   

10.
11.
12.
Ben-Menahem D  Hyde R  Pixley M  Berger P  Boime I 《Biochemistry》1999,38(46):15070-15077
The human glycoprotein hormones chorionic gonadotropin (CG), thyrotropin (TSH), lutropin (LH), and follitropin (FSH) are heterodimers, composed of a common alpha subunit assembled to a hormone-specific beta subunit. The subunits combine noncovalently early in the secretory pathway and exist as heterodimers, but not as multimers. Little information is available regarding the steps associated with the assembly reaction. It is unclear if the initial alpha beta engagement results either in the formation of only mature heterodimer or if the nascent complex is reversible and can undergo an exchange of subunits or combine transiently with an additional subunit. This is relevant for the case of LH and FSH, because both are synthesized in the same cell (i.e., pituitary gonadotrophs) and several of the alpha subunit sequences required for association with either the LH beta or FSH beta subunits are different. Such features could favor the generation of short-lived, multi-subunit forms prior to completion of assembly. Previously, we showed that the CG beta or FSH beta subunit genes can be genetically fused to the alpha gene to produce biologically active single chains, CG beta alpha and F beta alpha, respectively. Studies using monoclonal antibodies sensitive to the conformation of the hCG subunits suggested that in contrast to the highly compact heterodimer, the interactions between the beta and alpha domains in the single chain are in a more relaxed configuration. That the tethered domains do not interact tightly predicts that they could combine with an additional subunit to form triple domain complexes. We tested this point by cotransfecting CHO cells with the genes encoding F beta alpha and the CG beta subunit or the CG beta alpha and FSH beta monomer. The CG beta subunit combined noncovalently with F beta alpha to form a F beta alpha/CG beta complex. Ternary complex formation was not restricted to a specific set of single chain/monomeric subunit, because a CG beta alpha/FSH beta complex was also detected implying that triple domain intermediates could be transiently generated along the secretory pathway. Monoclonal antibodies specific for the CG heterodimer recognized the F beta alpha/CG beta complex, which suggests that the epitopes unique for dimeric CG were established. In addition, media containing F beta alpha/CG beta displayed high-affinity binding to both CG and FSH receptors. The presence of CG activity is presumptive for the existence of a functional F beta alpha/CG beta complex, because neither F beta alpha nor the uncombined CG beta subunit binds to CG receptor. These data show that the alpha subunit of the tether, although covalently linked to the FSH beta domain, can functionally interact with a different beta subunit implying that the contacts in the nascent alpha beta dimer are reversible. The formation of a functional single chain/subunit complex was not restricted to the FSH single chain/CG beta subunit since CG single chain interacts with the monomeric FSH beta subunit and exhibits FSH activity. The presence of the triple domain configuration does not abolish bioactivity, suggesting that although the gonadotropins are heterodimers, the cognate receptor is capable of recognizing a larger ligand composed of three subunit domains.  相似文献   

13.
Glycine receptors mediating synaptic inhibition are heteromeric proteins constituted of alpha and beta subunits. The mammalian GlyR subunits constitute a subgroup in the superfamily of ligand-gated ionic channels. To compare the evolutionary events in the mammalian and teleostean lineages for the receptor family, we first undertook systematic cloning of the constitutive subunits of the zebrafish glycine receptor. The isolation of two alpha subunits (alphaZ1 and alphaZ2) and one beta subunit (betaZ) has been reported previously and we report here the characterization of two novel alpha subunits, alphaZ3 and alphaZ4, increasing the known zebrafish subunits number to four alpha and one beta. Establishment of phylogenetic relationships reveals that alphaZ1, alphaZ3 and betaZeta are orthologous to mammalian alpha1, alpha3 and beta subunits. However, two zebrafish GlyRalpha subunit genes are orthologous to the unique avian and mammalian alpha4 subunit revealing a duplication of the alpha4 gene in zebrafish. Whole-mount in situ hybridization in 24-hours post fertilization (hpf) and 52-hpf embryos of the daughter gene products display very different expression patterns indicating distinct functions of the duplicated genes. Gene mapping reveals that the two duplicated genes are localized on two different linkage groups (LG5 and LG22) as would be daughter genes resulting from a large-scale duplication of the ancestral genome. Finally, we report that a linked pair of genes on human chromosome 4 (alpha3 and beta) is also linked on linkage group 1 in zebrafish (alphaZ3 and betaZ) as a consequence of a mosaic conserved syntheny.  相似文献   

14.
The effect of inhibition of ornithine decarboxylase with difluoromethylornithine (DFMO) and the resultant lowering of polyamine levels upon human chorionic gonadotropin (hCG) production in JEG-3 choriocarcinoma cells was investigated. DFMO (10 mM) totally inhibited ornithine decarboxylase activity. In DFMO-treated cells, cellular spermidine concentrations fell to nondetectable levels (less than 1% of control values) within 24 h and spermine concentrations were reduced to 41.9% of controls over 6 days. DFMO caused a 70-80% inhibition of hCG production. Levels of mRNA for both the alpha and beta subunits of hCG were also inhibited relative to mRNA for tubulin. Exogenous putrescine normalized hCG production in a dose-dependent manner. Other diamines, including cadaverine, 1,3-diaminopropane, 1,6-diaminohexane, and 1,7-diaminoheptane, were ineffective in reestablishing hCG production in DFMO-treated cells. Dibutyryl cAMP (1 mM) stimulated hCG production and increased levels of mRNA for the alpha and beta subunit 5-40-fold in both DFMO-treated and control cells. Polyamines appear to have a fundamental role in hCG production in JEG-3 choriocarcinoma cells. However, dibutyryl cAMP can partially overcome or circumvent the requirement for polyamines in hCG biosynthesis.  相似文献   

15.
Previous studies have demonstrated an imbalance in placental levels of the human choriogonadotropin (hCG) alpha and beta subunits. Free alpha subunit was present in first trimester placentae, and the imbalance was accentuated as gestation approached parturition. Two sets of experiments were performed to assess the control on production levels of each subunit. Synthesis of the alpha and beta subunits was assessed by labeling the nascent chains of polysomes derived from first trimester placenta. The products of these reactions were immunoprecipitated with subunit-specific antisera and the labeled subunits were quantitated; the ratio of alpha to beta subunit synthesized was 1.7. To examine whether this imbalanced synthesis reflected differences in the amount of subunit mRNAs, or differing mRNA translational efficiencies, the ratio of the steady state levels of these mRNAs was also determined. Total first trimester placental RNA was hydrolyzed with alkali, 5'-end-labeled with 32P, and hybridized in DNA excess to cloned alpha and beta cDNAs. These experiments demonstrated the presence of twice as much hCG-alpha mRNA as hCG-beta mRNA. In term placenta, the amounts of excess alpha subunit are greater than at first trimester; the ratio of alpha to beta mRNAs in term RNA was about 12:1. Thus, the subunit mRNA levels are independently regulated and their imbalance accounts for differences in the quantities of alpha and beta subunits seen in placental tissue.  相似文献   

16.
Human chorionic gonadotropin (hCG) is a member of a family of heterodimeric glycoprotein hormones that have a common alpha subunit but differ in their hormone-specific beta subunit. Site-directed mutagenesis of the two asparagine-linked glycosylation sites of hCG alpha was used to study the function of the individual oligosaccharide chains in secretion and subunit assembly. Expression vectors for the alpha genes (wild-type and mutant) and the hCG beta gene were constructed and transfected into Chinese hamster ovary cells. Loss of the oligosaccharide at position 78 causes the mutant subunit to be degraded quickly and less than 20% is secreted. However, the presence of hCG beta stabilizes this mutant and allows approximately 45% of the subunit in the form of a dimer to exit the cell. Absence of carbohydrate at asparagine 52 does not perturb the stability or transport of the alpha subunit but does affect dimer secretion; under conditions where this mutant or hCG beta was in excess, less than 30% is secreted in the form of a dimer. Mutagenesis of both glycosylation sites affects monomer and dimer secretion but at levels intermediate between the single-site mutants. We conclude that there are site-specific functions of the hCG alpha asparagine-linked oligosaccharides with respect to the stability and assembly of hCG.  相似文献   

17.
Human chorionic gonadotrophin (hCG) is a heterodimeric glycoprotein hormone consisting of an alpha- and a beta-subunit, both containing two N-linked, complex-type glycans. Using this hormone as a model glycoprotein, the influence of its polypeptide part on the activity and specificity of bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase (alpha 6-sialyltransferase) was investigated. Initial rates of sialic acid incorporation into the desialylated glycans of hCG alpha and hCG beta in the heterodimer were higher with the alpha-subunit. This appeared to be due to a higher V which, together with a slightly lowered affinity (higher Km), resulted in a higher kinetic efficiency of the sialyltransferase for the glycans of this subunit. By contrast, the kinetic parameters did not differ significantly when the subunits were in the free form, indicating that the differences in the kinetics of sialylation found for the subunits in the heterodimeric state were not caused by the differences in N-linked carbohydrate structures of the subunits. It is proposed that these effects are due to conformational constraints which the polypeptide moieties put on the glycan chains upon dimerization. Furthermore, it was investigated whether the polypeptide of hCG would interfere with the sialyltransferase so as to alter the branch specificity of the enzyme. 1H-NMR spectroscopy (400 MHz) of the glycan chains, alpha 6-sialylated in vitro, showed that the enzyme highly prefers the galactosyl residue at the Gal beta 1----4GlcNAc beta 1----2-Man alpha 1----3Man branch for attachment of the first mol of sialic acid into the diantennary glycans of desialylated hCG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The 36-kDa beta 1, 35-kDa beta 2, and 6.5-kDa gamma 2 subunits of the heterotrimeric guanine nucleotide-binding proteins have been overexpressed in Sf9 cells using a baculovirus expression system. The gamma 2 subunit expressed in Sf9 cells incorporated label derived from [3H]mevalonate and is therefore likely to be isoprenylated, as is its mammalian counterpart. Extracts of Sf9 cells doubly infected with viruses encoding a beta subunit and viruses encoding a gamma subunit are active in promoting the pertussis toxin-catalyzed ADP-ribosylation of a G protein alpha subunit. However, extracts from Sf9 cells singly infected with viruses encoding either a beta or gamma subunit are not active in this assay. Results demonstrate utility of the insect/baculovirus system for expressing G protein beta gamma subunits of defined composition.  相似文献   

19.
The Western blot procedure has been adapted to detect the reassembly of a two-subunit glycoprotein, urinary human chorionic gonadotropin (hCG), directly on the nitrocellulose. This glycoprotein is composed of two nonidentical subunits, alpha and beta. A simple procedure using immunoblotting has been developed to detect reassembly of the monomers to dimer. Three monoclonal antibodies were required for the development of this method: A109, which binds the alpha subunit or hCG; B105, which binds the beta subunit or hCG; and B107, specific for the intact hCG dimer. The alpha subunit and beta subunit of hCG were each electrophoresed and transferred to nitrocellulose, and the transfer was then incubated with the appropriate complementary subunit; reassembly of the dimer was determined by the binding of the monoclonal antibody B107. Evidence that the reassembly occurs directly on the nitrocellulose comes from the fact that B107 immunoreactivity is detected at the molecular weight position of the subunit and not at the dimer molecular weight. A genetically expressed recombinant form of the alpha subunit was also tested for its ability to recombine with the opposite subunit to produce the dimer. The recombinant alpha subunit was determined to have additional carbohydrate which interfered with the binding of the beta subunit. N-Glycanase digestion of the recombinant alpha subunit produced a form which, when incubated with the beta subunit, did recombine on the nitrocellulose and could be recognized by B107.  相似文献   

20.
Agents that affect intracellular cation and pH gradients and inhibit energy production have been tested for their ability to modulate the processing and secretion of the free alpha subunit and the alpha beta dimer of human chorionic gonadotropin (hCG) by cultured human trophoblastic cells (JAR). Incubation of JAR cells with monensin or nigericin, monovalent cation ionophores that produce equilibration of Na+ and K+ across cellular membranes, dicyclohexylcarbodiimide, an agent that inhibits intracellular membrane ATPases, and methylamine, which neutralizes intracellular pH gradients, produced similar effects on hCG processing and secretion. All these agents inhibited the processing of the asparagine-linked oligosaccharide chains of free alpha subunit and the alpha and beta subunits contained in the hCG dimer. Moreover, after treatment of JAR cells with these agents, there was an intracellular accumulation of precursor forms and an inhibition of secretion of "mature" forms of hCG. Monensin affected the processing and secretion of hCG subunits differently at different concentrations. At 5 X 10(-7) M, monensin inhibited the processing of the asparagine-linked oligosaccharides of hCG without altering the rate-limiting step in the secretory pathway or blocking hCG secretion. The intracellular hCG subunit precursors in both control and monensin-treated cells contained a similar array of high mannose oligosaccharides, predominantly of the Man8GlcNAc2 and Man9GlcNAc2 types. However, monensin-treated cells secreted hCG subunits that contained endo H-sensitive oligosaccharides of the high mannose (mostly Man5GlcNAc2) and hybrid types rather than the endo H-resistant complex chains synthesized by control cells. Nevertheless, a full complement of serine-linked oligosaccharides was added to the hCG-beta subunit in monensin-treated cells. These results indicate that the intracellular movement of hCG from the rough endoplasmic reticulum to the cell surface was not inhibited by monensin at a concentration that impaired Golgi-localized steps in the processing of asparagine-linked oligosaccharides. At 5 X 10(-6) M, monensin significantly inhibited secretion of hCG and created a new rate-limiting step in the processing pathway. hCG subunits bearing Man5GlcNAc2 units accumulated intracellularly, suggesting that the equilibration of intracellular Na+/K+ pools blocked oligosaccharide processing at an intra-Golgi point, perhaps by inhibiting movement of the glycoprotein hormone from the "cis" to the "trans" Golgi compartment. Since the other drugs mentioned above produced similar effects on hCG processing and secretion, it appears that maintenance of intracellular cation and pH gradients is necessary for the intra-Golgi transport of glycoprotein hormones.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号