首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lead inhibition of enzyme synthesis in soil.   总被引:2,自引:2,他引:0       下载免费PDF全文
Addition of 2 mg of Pb2+/g of soil concident with or after amendment with starch or maltose resulted in 75 and 50% decreases in net synthesis of amylase and alpha-glucosidase, respectively. Invertase synthesis in sucrose-amended soil was transiently reduced after Pb2+ addition. Amylase activity was several times less sensitive to Pb2+ inhibition than was enzyme synthesis. In most cases, the rate of enzyme synthesis returned to control (Pb2+) values 24 to 48 h after the addition of Pb. The decrease in amylase synthesis was paralleled by a decrease in the number of Pb-sensitive, amylase-producing bacteria, whereas recovery of synthesis was associated with an increase in the number of amylase-producing bacteria. The degree of inhibition of enzyme synthesis was related to the quantity of Pb added and to the specific form of lead. PbSO4 decreased amylase synthesis at concentrations of 10.2 mg of Pb2+/g of soil or more, whereas PbO did not inhibit amylase synthesis at 13 mg of Pb2+/g of soil. Lead acetate, PbCl2, and PbS reduced amylase synthesis at total Pb2+ concentrations of 0.45 mg of Pb2+/g of soil or higher. The results indicated that lead is a potent but somewhat selective inhibitor of enzyme synthesis in soil, and that highly insoluble lead compounds, such as PbS, may be potent modifiers of soil biological activity.  相似文献   

3.
4.
We have previously reported that prostaglandin F2 alpha (PGF2 alpha) activates p44/p42 mitogen-activated protein kinase (MAPK) through protein kinase C (PKC) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the mechanism of vascular endothelial growth factor (VEGF) synthesis induced by PGF2 alpha and the effect of incadronate on the VEGF synthesis in these cells. PGF2 alpha significantly stimulated the VEGF synthesis in a dose-dependent manner between 1 pm and 10 microm. Cycloheximide reduced the PGF2 alpha effect. PGF2 alpha increased the levels of mRNA for VEGF. Cloprostenol, a PGF2 alpha-sensitive receptor agonist, potently induced the VEGF synthesis. Indomethacin, an inhibitor of cyclooxygenase, significantly reduced the PGF2 alpha-induced VEGF synthesis. Bisindolylmaleimide, an inhibitor of PKC, reduced the PGF2 alpha-induced VEGF synthesis. The VEGF synthesis induced by PGF2 alpha was significantly attenuated in the PKC down-regulated cells. PGF2 alpha elicited the translocation of PKC beta I from cytosol to membrane fraction. PD98059 or U0126, inhibitors of MEK, suppressed the VEGF synthesis induced by PGF2 alpha. Farnesyltransferase inhibitor failed to affect the PGF2 alpha-induced VEGF synthesis. Incadronate enhanced the synthesis of VEGF induced by PGF2 alpha. NaF-induced VEGF synthesis was also amplified by incadronate. PD98059 suppressed the enhancement by incadronate of PGF2 alpha-induced VEGF synthesis. Incadronate markedly enhanced the phosphorylation of Raf-1, MEK1/2, and p44/p42 MAPK induced by PGF2 alpha or 12-O-tetradecanoylphorbol-13-acetate, a PKC activator. Incadronate significantly enhanced the cloprostenol-increased level of VEGF concentration in mouse plasma in vivo. These results strongly suggest that PGF2 alpha stimulates VEGF synthesis through the PKC-dependent activation of p44/p42 MAPK in osteoblasts and that the incadronate enhances the VEGF synthesis at the point between PKC and Raf-1.  相似文献   

5.
To understand the regulation by thyroid hormone, 3,3',5-triiodo-L-thyronine (T3), of the synthesis of a cytosolic thyroid hormone binding protein (p58-M2) during liver regeneration, the synthesis of p58-M2 was evaluated. The synthesis of p58-M2 was measured by metabolic labeling of primary cultures derived from the regenerating liver of euthyroid, hypo- or hyperthyroid rats. During regeneration, the increase in the liver/body weight ratio is approximately 25% higher in hyper- than in hypothyroid rats. However, T3 has no effect on the rate of overall liver regeneration observed in four days. In mature liver, T3 increased the synthesis of p58-M2 by approximately 2.5-fold. During regeneration, however, the change in the synthesis of p58-M2 varied with the thyroid status. In euthyroid rats, the synthesis of p58-M2 continued to increase up to 2-fold during liver regeneration. In hyperthyroid rats, after an initial increase by 1.5-fold on day 1, the synthesis of p58-M2 subsequently declined during regeneration. In hypothyroid rats, the synthesis of p58-M2 remained virtually unchanged during regeneration. These results indicate that T3 regulates the synthesis of p58-M2 in mature and regenerating liver.  相似文献   

6.
The cre(2C) hairpin is a cis-acting replication element in poliovirus RNA and serves as a template for the synthesis of VPgpUpU. We investigated the role of the cre(2C) hairpin on VPgpUpU synthesis and viral RNA replication in preinitiation RNA replication complexes isolated from HeLa S10 translation-RNA replication reactions. cre(2C) hairpin mutations that block VPgpUpU synthesis in reconstituted assays with purified VPg and poliovirus polymerase were also found to completely inhibit VPgpUpU synthesis in preinitiation replication complexes. Surprisingly, blocking VPgpUpU synthesis by mutating the cre(2C) hairpin had no significant effect on negative-strand synthesis but completely inhibited positive-strand synthesis. Negative-strand RNA synthesized in these reactions immunoprecipitated with anti-VPg antibody and demonstrated that it was covalently linked to VPg. This indicated that VPg was used to initiate negative-strand RNA synthesis, although the cre(2C)-dependent synthesis of VPgpUpU was inhibited. Based on these results, we concluded that the cre(2C)-dependent synthesis of VPgpUpU was required for positive- but not negative-strand RNA synthesis. These findings suggest a replication model in which negative-strand synthesis initiates with VPg uridylylated in the 3' poly(A) tail in virion RNA and positive-strand synthesis initiates with VPgpUpU synthesized on the cre(2C) hairpin. The pool of excess VPgpUpU synthesized on the cre(2C) hairpin should support high levels of positive-strand synthesis and thereby promote the asymmetric replication of poliovirus RNA.  相似文献   

7.
Phorbol 12-myristate 13-acetate, 1-20 nM, induced the synthesis in HeLa cells of a 65 200 Mr tissue-type plasminogen activator, and of prostaglandin E2. Omission of Ca2+ from the incubation medium inhibited the induction of plasminogen activator synthesis by 40-60% and abolished the induction of prostaglandin E2 synthesis. Maximal plasminogen activator synthesis could be maintained at extracellular Ca2+ concentrations of approx. 0.1 mM, while maximal prostaglandin synthesis required at least 0.45-0.9 mM Ca2+. The induction of each factor was inhibited by 10-100 microM 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), an inhibitor of intracellular C2+ mobilization. Prostaglandin synthesis, but not plasminogen activator synthesis, was also inhibited by 10-100 microM verapamil and nifedipine, which inhibit intracellular Ca2+ uptake via the so-called 'slow-channels' and by 0.5-10 microM trifluoperazine, an inhibitor of calmodulin. Neither plasminogen activator synthesis nor prostaglandin synthesis were stimulated by 5-50 microM 1-oleoyl-2-acetylglycerol or 1-250 microM 1,2-dioctanoylglycerol, alone and in combination with 50 nM-1 microM ionophore A23187. These results indicate that the synthesis of plasminogen activator and prostaglandins in HeLa cells is Ca2+-dependent, and that the Ca2+ requirements for each process are not identical. Thus, Ca2+ regulation of the production of tissue plasminogen activator and prostaglandin E2 occurs at multiple points in their biosynthetic pathways.  相似文献   

8.
The effect of heavy metal ions (in particular Cd2+, Hg2+, and Pb2+) on protein synthesis in hemin-supplemented reticulocyte lysates was investigated. Heavy metal ions were found to inhibit protein synthesis in hemin-supplemented lysates with biphasic kinetics. The shut off of protein synthesis occurred in conjunction with the phosphorylation of the alpha-subunit of the eukaryotic initiation factor (eIF) 2, the loss of reversing factor (RF) activity, and the disaggregation of polyribosomes. Addition of eIF-2 or RF to heavy metal ion-inhibited lysates restored protein synthesis to levels observed in hemin-supplemented controls. The stimulation of protein synthesis observed upon the addition of cAMP to heavy metal ion-inhibited lysates correlated with the inhibition of eIF-2 alpha phosphorylation and the restoration of RF activity. The partial restoration of protein synthesis observed upon the addition of MgGTP to heavy metal ion-inhibited lysates correlated with a partial inhibition of eIF-2 alpha phosphorylation. Addition of glucose 6-phosphate was found to have no effect on protein synthesis of eIF-2 alpha phosphorylation under these conditions. Antiserum raised to the reticulocyte heme-regulated eIF-2 alpha kinase inhibited the phosphorylation of eIF-2 alpha catalyzed by Hg2+-inhibited lysate. The inhibition of protein synthesis observed in the presence of heavy metal ions correlated with the relative biological toxicity of the ions. Highly toxic ions (AsO-2, Cd2+, Hg2+, Pb2+) inhibited protein synthesis by 50% at concentrations of 2.5-10 microM. Cu2+, Fe3+, and Zn2+, which are moderately to slightly toxic ions, inhibited protein synthesis by 50% at concentrations of 40, 250, and 300 microM, respectively. The data presented here indicate that heavy metal ions inhibit protein chain initiation in hemin-supplemented lysates by stimulating the phosphorylation of eIF-2 alpha apparently through the activation of the heme-regulated eIF-2 alpha kinase rather than through inhibition of the rate of eIF-2 alpha dephosphorylation.  相似文献   

9.
We previously showed that prostaglandin (PG) E1 stimulates the synthesis of interleukin-6 (IL-6) through activation of protein kinase (PK) A in osteoblast-like MC3T3-E1 cells and that PGF2alpha induces IL-6 synthesis through PKC activation. In other studies, we demonstrated that thrombin stimulates IL-6 synthesis, which depends on intracellular Ca2+ mobilisation in these cells and that tumour necrosis factor-alpha (TNF) induces IL-6 synthesis through sphingosine 1-phosphate, a product of sphingomyelin turnover. In the present study, among sphingomyelin metabolites, we examined the effect of ceramide on the IL-6 synthesis induced by various agonists in MC3T3-E1 cells. C2-ceramide, a cell-permeable ceramide analogue, suppressed the PGE1-induced IL-6 synthesis. C2-ceramide inhibited the IL-6 synthesis induced by PGF2alpha or 12-O-tetradecanoylphorbol-13-acetate, an activator of PKC. C2-ceramide reduced the IL-6 synthesis induced by cholera toxin, forskolin or dibutyryl cAMP. C2-ceramide inhibited the IL-6 synthesis induced by thrombin. The IL-6 synthesis stimulated by thapsigargin, which is known to stimulate Ca2+ mobilisation from intracellular Ca2+ stores, or A23187, a Ca-ionophore, was also inhibited by C2-ceramide. C2-ceramide did not affect the IL-6 synthesis induced by interleukin-1. On the contrary, C2-ceramide enhanced the TNF-induced IL-6 synthesis. D,L-threo-dihydrosphingosine, an inhibitor of sphingosine kinase, inhibited the enhancement by C2-ceramide as well as the TNF-effect. These results strongly suggest that ceramide modulates the IL-6 synthesis stimulated by various agonists in osteoblasts.  相似文献   

10.
The effect of purified recombinant interleukin 2 on the expression of the receptors for interleukin 2 by human thymocytes was examined. Interleukin 2 augmented the expression of interleukin 2 receptors and interferon-gamma synthesis by thymocytes activated with concanavalin A, and it was required to maintain the growth of thymocytes in vitro and the expression of interleukin 2 receptors. The increase observed in the number of receptor bearing thymocytes and in the density of receptors due to interleukin 2 occurred within the first 2 days of culture. Dexamethasone inhibited the expression of interleukin 2 receptors, the synthesis of interferon-gamma, and the early proliferation and protein synthesis of lectin-activated thymocytes during the first 2 days of culture. The inhibitory effect of dexamethasone on the expression of interleukin 2 receptors and on the synthesis of interferon-gamma was reversed by interleukin 2, whereas its effect on proliferation and on protein synthesis during the first two days of culture was not reversed by interleukin 2. Interleukin 2 induced the proliferation of thymocytes in vitro, even in the absence of activation by lectin; however, the number of cells displaying receptors which could be detected with anti-Tac remained low throughout the first week of culture and interferon-gamma synthesis was not observed. Nonetheless, interleukin 2-induced proliferation was inhibited by anti-Tac on a dose dependent manner. The results of the study document that recombinant interleukin 2, like purified natural interleukin 2, is required for the expression of interleukin 2 receptors, for interferon-gamma synthesis, and for the growth of thymocytes in vitro.  相似文献   

11.
A murine killer T cell line, G-CTLL 1, whose proliferation depends on the presence of interleukin 2 (IL-2), was used to analyze the mechanism of IL-2 action with respect to sterol synthesis and arachidonate metabolism. De novo sterol synthesis was substantially enhanced much earlier than DNA synthesis, and the rate reached a maximum at 13 hr after the addition of IL-2. Compactin, which is a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase, the enzyme in the rate-limiting step of the sterol synthesis), inhibited the IL-2-induced DNA synthesis. The addition of mevalonate, the product of HMG CoA reductase, prevented the inhibition of DNA synthesis by compactin, suggesting that the supply of a sufficient amount of sterol is an essential prerequisite for IL-2 action. The IL-2-induced DNA synthesis was also inhibited by AA861, a specific inhibitor of arachidonate 5-lipoxygenase, and by other lipoxygenase inhibitors such as nordihydroguaiaretic acid and esculetin. In contrast, indomethacin, an inhibitor of arachidonate cyclooxygenase, had no effect. These findings suggest that synthesis of 5-lipoxygenase products is also a prerequisite. The inhibition of DNA synthesis was effectively inhibited only when compactin or lipoxygenase inhibitors were added early enough to block the synthesis of sterols or 5-lipoxygenase products; addition of the reagents after 3 hr decreased the inhibition with time. Therefore, about 3 hr after the addition of IL-2, several drastic intracellular changes are assumed to begin and to lead to DNA synthesis.  相似文献   

12.
1. The possible mechanism of the oestrogenic inhibition of the androgen-dependent synthesis of alpha2u-globulin in rat liver was explored by a correlative study of the amounts of alpha2u-globulin, its corresponding mRNA and circulating testosterone in oestrogen-treated male rats. 2. Daily treatments of mature male rats with oestradiol-17beta (10 microgram/100g body wt.) decreased and ultimately stopped the hepatic synthesis of alpha2u-globulin as determined by both hepatic and urinary concentrations of the protein. The oestrogen-mediated decrease in the hepatic synthesis of alpha2u-globulin was correlated with a decrease in the mRNA for this protein. 3. Withdrawal of oestrogen resulted in the recovery of alpha2u-globulin synthesis and an increase in mRNA for alpha2u-globulin. 4. At higher doses of oestradiol-17beta (50 microgram/100g body wt.), synthesis of alpha2u-globulin was totally suppressed. In addition, this treatment resulted in an extended period of androgen-insensitivity during which treatment with androgens induced synthesis of neither alpha2u-globulin nor its corresponding mtrna. 5. it is concluded that the oestrogenic inhibition of alpha2u-globulin synthesis is mediated by an oestrogen-dependent decrease in the hepatic content of translatable mRNA for alpha2u-globulin.  相似文献   

13.
When myeloma cells are incubated at 25 °C the secretion of myeloma protein ceases within 20 minutes. The synthesis of heavy and light chains and the assembly into the completed 7 S immunoglobulin continue at over 40% of the synthetic rate at 37 °C, resulting in an increasing intracellular concentration of myeloma protein with time. When myeloma cells containing an increased myeloma protein pool were re-incubated at 37 °C, there was an initially decreased synthesis of H-chain2 relative to L-chain or total protein. Whereas L-chain synthesis returned to the pre-25 °C synthetic rate within 15 minutes, the synthesis of H-chain required over 60 minutes to return to the pre-incubation rate.Myeloma cells maintained in exponential growth contain a larger intracellular pool of H2L2 than cells in late stationary phase. When both populations of cells were incubated at 25 °C and the synthesis of H and L-chain protein measured, a reduced synthesis of H-chain was again observed. Exponentially growing cells showed an 80% reduction of H-chain synthesis after 100 minutes at 25 °C. Stationary cells, with the reduced intracellular level of H2L2, required 210 minutes to effect an equivalent reduction of H-chain synthesis.The opposite effect on myeloma protein synthesis was observed following depletion of the H2L2 pool. The intracellular H2L2 pool was reduced by allowing secretion in the absence of protein synthesis. When protein synthesis was allowed to continue following the depletion, a stimulation of myeloma protein synthesis relative to total protein synthesis was observed.These experiments suggest a close relation between the intracellular level of H2L2 and the production of H-chain. From the rapidity of the repression and de-repression of H-chain synthesis, a regulation at the translational level is suggested.  相似文献   

14.
To elucidate the role of protein synthesis in DNA formation, E. coli R2 infected with phage T2 was studied as a model, employing chloramphenicol to inhibit protein synthesis. The following results were obtained. 1. Chloramphenicol inhibited protein synthesis but not synthesis of nucleic acids in uninfected bacteria. 2. Studies of the effect of chloramphenicol on phage maturation indicated a delay of 2 minutes between time of addition and cessation of phage growth. 3. The increase of DNA in phage-infected bacteria was completely suppressed by the addition of chloramphenicol within 2 minutes following infection. Addition at later times showed progressively less inhibitory action depending upon the time interval, and addition after the 10th or 12th minute showed no appreciable effect on DNA synthesis despite the cessation of intracellular phage formation and protein synthesis. 4. When chloramphenicol was added to infected cells the increase of resistance to UV stopped within 2 minutes, whether or not DNA synthesis continued. Thus evolution of resistance paralleled the rate of DNA synthesis achieved, but not the amount of DNA accumulated. 5. We conclude that in infected bacteria, protein synthesis is necessary to initiate DNA synthesis but is not essential for its continuation. The resistance to UV that characterizes infected cells near the midpoint of the latent period is not due to accumulation of DNA, but depends on some chloramphenicol-sensitive process (probably protein synthesis) completed at about the time the rate of DNA synthesis becomes maximal.  相似文献   

15.
Modulation of monocyte complement synthesis by interferons.   总被引:9,自引:3,他引:6       下载免费PDF全文
Recombinant Escherichia coli-derived gamma-interferon has been shown to stimulate synthesis of the second component of complement (C2), factor B and C1 inhibitor, but to inhibit synthesis of the third component (C3). alpha- and beta-interferons stimulate synthesis of factor B and C3 inhibitor, inhibit C5 synthesis but do not alter synthesis of C2. alpha- and beta-interferons act synergistically with gamma-interferon to enhance both factor B and C1-inhibitor synthesis.  相似文献   

16.
In the presence of 100 mM glucose antimycin A inhibits the respiration of the yeast S. carlsbergensis by 94%, but does not affect the K+ efflux, Mn2+ influx or the synthesis of high molecular weight polyphosphate (HPP). Therefore phosphorylation at the respiratory chain level is not involved in HPP synthesis or Mn2+ accumulation. Zn2+ similar to Mn2+ induces K+ efflux and HPP synthesis, while Co2+ and Ni2+ fail to produce these effects. The extracellular K+ (1-5 mM KCl) completely inhibits the HPP synthesis and reduces Mn2+ uptake by 40%. NaCl (60 mM) inhibits the HPP synthesis by 28%. Nigericin, candicidin and FCCP plus valinomycin completely prevent the HPP synthesis. The prolonged accumulation of Zn2+ and Mn2+ is accompanied by HPP conversion into low molecular weight polyphosphate (LPP). The HPP synthesis in response to the K+ efflux may be regarded as a specific regulatory mechanism, which increases the energy efficiency of yeast metabolism.  相似文献   

17.
Macrophages isolated from mice resistant to acute (lethal) infection with a neurovirulent isolate of HSV-1 express intrinsic resistance to viral infection in vitro. Bone marrow (BM), spleen (S), peritoneal (P), and thioglycolate-stimulated peritoneal (Pthio) macrophages isolated from resistant C57BL/6 Cr (B6) mice consistently restrict HSV-1 macromolecular synthesis earlier in the viral replicative cycle than do macrophages isolated from the same tissue sources from more susceptible DBA/2Cr (D2) mice. B6-BM (BM macrophages from B6 mice) restrict HSV macromolecular synthesis at least at two points in the replicative cycle: 1) before the onset of alpha-protein synthesis and 2) between the onset of gamma 1 protein and DNA synthesis. D2-BM macrophages restrict HSV replication at about the time of DNA synthesis. B6-P macrophages restrict HSV replication shortly after gamma 1 protein synthesis, and D2-P macrophages inhibit the virus slightly later, but before DNA synthesis. B6-S macrophages restrict HSV replication at about the time of DNA synthesis, and D2-S macrophages inhibit replication after the onset of gamma 2 protein synthesis. Pthio macrophages are more permissive to HSV infection than BM, P, or S macrophages: restrictions in viral replication occur at the time of DNA synthesis in B6-Pthio macrophages, and after the onset of gamma 2 protein synthesis in D2-Pthio cells. These studies demonstrate that isolated macrophages from inbred mouse strains express intrinsic resistance to HSV infection that correlates with in vivo resistance to acute (lethal) infection. Intrinsic resistance to HSV-1 infection is due to restriction of viral macromolecular synthesis. HSV replication is inhibited in macrophages at multiple points in the viral growth cycle, depending on the tissue from which the cells are isolated.  相似文献   

18.
COX [cyclo-oxygenase; PG (prostaglandin) G/H synthase] oxygenates AA (arachidonic acid) and 2-AG (2-arachidonylglycerol) to endoperoxides that are converted into PGs and PG-Gs (glycerylprostaglandins) respectively. In vitro, 2-AG is a selective substrate for COX-2, but in zymosan-stimulated peritoneal macrophages, PG-G synthesis is not sensitive to selective COX-2 inhibition. This suggests that COX-1 oxygenates 2-AG, so studies were carried out to identify enzymes involved in zymosan-dependent PG-G and PG synthesis. When macrophages from COX-1-/- or COX-2-/- mice were treated with zymosan, 20-25% and 10-15% of the PG and PG-G synthesis observed in wild-type cells respectively was COX-2 dependent. When exogenous AA and 2-AG were supplied to COX-2-/- macrophages, PG and PG-G synthesis was reduced as compared with wild-type cells. In contrast, when exogenous substrates were provided to COX-1-/- macrophages, PG-G but not PG synthesis was reduced. Product synthesis also was evaluated in macrophages from cPLA(2alpha) (cytosolic phospholipase A2alpha)-/- mice, in which zymosan-induced PG synthesis was markedly reduced, and PG-G synthesis was increased approx. 2-fold. These studies confirm that peritoneal macrophages synthesize PG-Gs in response to zymosan, but that this process is primarily COX-1-dependent, as is the synthesis of PGs. They also indicate that the 2-AG and AA used for PG-G and PG synthesis respectively are derived from independent pathways.  相似文献   

19.
Endothelial cell injury is often associated with increased synthesis of prostaglandin (PG)I2. We observed, however, that endothelial cells treated with metabolic inhibitors which reduce cellular ATP content develop an injury pattern characterized by reduced PGI2 synthesis. This study examined the relationship between cell injury, arachidonic acid metabolism and ATP content in human umbilical vein endothelial cells treated with 2-deoxyglucose (2DG), a glycolytic inhibitor, and oligomycin (OG), a respiratory chain inhibitor. Either inhibitor alone significantly reduced cellular ATP concentrations, but only OG reduced basal PG synthesis. The combination of 2DG and OG, however, was more effective than either agent alone in reducing cellular ATP content (greater than or equal to 50% of control) and inhibiting basal and agonist-stimulated PGI2 synthesis. This reduced PGI2 synthesis preceded 51chromium release, lactic dehydrogenase release and was not associated with a net release of arachidonic acid from cell membranes. Histamine, A23187 and bradykinin stimulated PGI2 synthesis in untreated but not in 2DG and OG treated cells. Exogenous arachidonic acid increased PGI2 synthesis to a similar extent in both 2DG and OG treated and untreated cells. Therefore, reduced PG synthesis in 2DG and OG treated endothelial cells is not due to inhibition of cyclooxygenase. Furthermore, reduced PG synthesis in these cells occurs prior to cell injury and is not strictly associated with cellular ATP depletion.  相似文献   

20.
Extracellular Ca2+ stimulated fatty acid synthesis in isolated rat hepatocytes. Orthovanadate (0.2--2.0 mM), an inhibitor of Ca2+-dependent ATPases, stimulated fatty acid synthesis in both the presence and the absence of extracellular Ca2+. Insulin stimulated fatty acid synthesis only in the presence of extracellular Ca2+. The contribution of extracellular Ca2+ to insulin stimulation of fatty acid synthesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号