首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calculations to determine the electrostatic potential of the iron storage protein ferritin, using the human H-chain homopolymer (HuHF), reveal novel aspects of the protein. Some of the charge density correlates well with regions previously identified as active sites in the protein. The three-fold channels, the putative ferroxidase sites, and the nucleation sites all show expectedly negative values of the electrostatic potential. However, the outer entrance to the three-fold channels are surrounded by regions of positive potential, creating an electrostatic field directed toward the interior cavity. This electrostatic gradient provides a guidance mechanism for cations entering the protein cavity, indicating the three-fold channel as the major entrance to the protein. Pathways from the three-fold channels, indicated by electrostatic gradients on the inner surface, lead to the ferroxidase center, the nucleation center and to the interior entrance to the four-fold channel. Six glutamic acid residues at the nucleation site give rise to a region of very negative potential, surrounding a small positively charged center due to the presence of two conserved arginine residues, R63, in close proximity (4.9 A), suggesting that electrostatic fields could also play a role in the nucleation process. A large gradient in the electrostatic potential at the 4-fold channel gives rise to a field directed outward from the internal cavity, indicating the possibility that this channel functions to expel cations from inside the protein. The 4-fold channel could therefore provide an exit pathway for protons during mineralization, or iron leaving the protein cavity during de-mineralization.  相似文献   

2.
Ferritins are ubiquitous iron mineralizing and storage proteins that play an important role in iron homeostasis. Although excess iron is stored in the cytoplasm, most of the metabolically active iron is processed in the mitochondria of the cell. Little is known about how these organelles regulate iron homeostasis and toxicity. The recently discovered human mitochondrial ferritin (MtF), unlike other mammalian ferritins, is a homopolymer of 24 subunits that has a high degree of sequence homology with human H-chain ferritin (HuHF). Parallel experiments with MtF and HuHF reported here reveal striking differences in their iron oxidation and hydrolysis chemistry despite their similar diFe ferroxidase centers. In contrast to HuHF, MtF does not regenerate its ferroxidase activity after oxidation of its initial complement of Fe(II) and generally has considerably slower ferroxidation and mineralization activities as well. MtF exhibits sigmoidal kinetics of mineralization more characteristic of an L-chain than an H-chain ferritin. Site-directed mutagenesis reveals that serine 144, a residue situated near the ferroxidase center in MtF but absent from HuHF, is one player in this impairment of activity. Additionally only one-half of the 24 ferroxidase centers of MtF are functional, further contributing to its lower activity. Stopped-flow absorption spectrometry of Fe(II) oxidation by O(2) in MtF shows the formation of a transient diiron(III) mu-peroxo species (lambda(max) = 650 nm) as observed in HuHF. Also, as for HuHF, minimal hydroxyl radical is produced during the oxidative deposition of iron in MtF using O(2) as the oxidant. However, the 2Fe(II) + H(2)O(2) detoxification reaction found in HuHF does not occur in MtF. The structural differences and the physiological implications of the unique iron oxidation properties of MtF are discussed in light of these results.  相似文献   

3.
Based on their nanocage architectures, ferritins show their potential applications in medical imaging and therapeutic delivery systems. However, the recombinant human H-chain ferritin (rHF) is prone to form inclusion bodies in Escherichia coli. In our study, the cDNA of rHF was cloned into plasmid pET28a under the control of a T7 promoter. Molecular chaperones, including GroES, GroEL, and trigger factor, were coexpressed with rHF to facilitate its correct folding. The results showed that the solubility of rHF was increased more than threefold with the help of molecular chaperones. Taking advantages of its N-terminal His-tag, rHF was then purified with Ni-affinity chromatography. With a yield of 15?mg/L from bacterial culture, the purified rHF was analyzed by circular dichroism spectrometry for its secondary structure. Moreover, the rHF nanocages were characterized by transmission electron microscopy and dynamic light scattering. Our results indicate that rHF is able to self-assemble into nanocages with a narrow size distribution.  相似文献   

4.
Iron deposition within the iron storage protein ferritin involves a complex series of events consisting of Fe(2+) binding, transport, and oxidation at ferroxidase sites and mineralization of a hydrous ferric oxide core, the storage form of iron. In the present study, we have examined the thermodynamic properties of Fe(2+) binding to recombinant human H-chain apoferritin (HuHF) by isothermal titration calorimetry (ITC) in order to determine the location of the primary ferrous ion binding sites on the protein and the principal pathways by which the Fe(2+) travels to the dinuclear ferroxidase center prior to its oxidation to Fe(3+). Calorimetric titrations show that the ferroxidase center is the principal locus for Fe(2+) binding with weaker binding sites elsewhere on the protein and that one site of the ferroxidase center, likely the His65 containing A-site, preferentially binds Fe(2+). That only one site of the ferroxidase center is occupied by Fe(2+) implies that Fe(2+) oxidation to form diFe(III) species might occur in a stepwise fashion. In dilute anaerobic protein solution (3-5 microM), only 12 Fe(2+)/protein bind at pH 6.51 increasing to 24 Fe(2+)/protein at pH 7.04 and 7.5. Mutation of ferroxidase center residues (E62K+H65G) eliminates the binding of Fe(2+) to the center, a result confirming the importance of one or both Glu62 and His65 residues in Fe(2+) binding. The total Fe(2+) binding capacity of the protein is reduced in the 3-fold hydrophilic channel variant S14 (D131I+E134F), indicating that the primary avenue by which Fe(2+) gains access to the interior of ferritin is through these eight channels. The binding stoichiometry of the channel variant is one-third that of the recombinant wild-type H-chain ferritin whereas the enthalpy and association constant for Fe(2+) binding are similar for the two with an average values (DeltaH degrees = 7.82 kJ/mol, binding constant K = 1.48 x 10(5) M(-)(1) at pH 7.04). Since channel mutations do not completely prevent Fe(2+) binding to the ferroxidase center, iron gains access to the center in approximately one-third of the channel variant molecules by other pathways.  相似文献   

5.
Motilin is an important endogenous regulator of gastrointestinal motor function, mediated by the class I G protein-coupled motilin receptor. Motilin and erythromycin, two chemically distinct full agonists of the motilin receptor, are known to bind to distinct regions of this receptor, based on previous systematic mutagenesis of extracellular regions that dissociated the effects on these two agents. In the present work, we examined the predicted intracellular loop regions of this receptor for effects on motilin- and erythromycin-stimulated activity. We prepared motilin receptor constructs that included sequential deletions throughout the predicted first, second, and third intracellular loops, as well as replacing the residues in key regions with alanine, phenylalanine, or histidine. Each construct was transiently expressed in COS cells and characterized for motilin- and erythromycin-stimulated intracellular calcium responses and for motilin binding. Deletions of receptor residues 63-66, 135-137, and 296-301 each resulted in substantial loss of intracellular calcium responses to stimulation by both motilin and erythromycin. Constructs with mutations of residues Tyr66, Arg136, and Val299 were responsible for the negative impact on biological activity stimulated by both agonists. These data suggest that action by different chemical classes of agonists that are known to interact with distinct regions of the motilin receptor likely yield a common activation state of the cytosolic face of this receptor that is responsible for interaction with its G protein. The identification of functionally important residues in the predicted cytosolic face provides strong candidates for playing roles in receptor-G protein interaction.  相似文献   

6.
Zhao G  Arosio P  Chasteen ND 《Biochemistry》2006,45(10):3429-3436
Overexpression of human H-chain ferritin (HuHF) is known to impart a degree of protection to cells against oxidative stress and the associated damage to DNA and other cellular components. However, whether this protective activity resides in the protein's ability to inhibit Fenton chemistry as found for Dps proteins has never been established. Such inhibition does not occur with the related mitochondrial ferritin which displays much of the same iron chemistry as HuHF, including an Fe(II)/H(2)O(2) oxidation stoichiometry of approximately 2:1. In the present study, the ability of HuHF to attenuate hydroxyl radical production by the Fenton reaction (Fe(2+) + H(2)O(2) --> Fe(3+) + OH(-) + *OH) was examined by electron paramagnetic resonance (EPR) spin-trapping methods. The data demonstrate that the presence of wild-type HuHF during Fe(2+) oxidation by H(2)O(2) greatly decreases the amount of .OH radical produced from Fenton chemistry whereas the ferroxidase site mutant 222 (H62K + H65G) and human L-chain ferritin (HuLF) lack this activity. HuHF catalyzes the pairwise oxidation of Fe(2+) by the detoxification reaction [2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(O)OH(core) + 4H(+)] that occurs at the ferroxidase site of the protein, thereby preventing the production of hydroxyl radical. The small amount of *OH radical that is produced in the presence of ferritin (相似文献   

7.
Transfectant HeLa cells were generated that expressed human ferritin H-chain wild type and an H-chain mutant with inactivated ferroxidase activity under the control of the tetracycline-responsive promoter (Tet-off). The clones accumulated exogenous ferritins up to levels 14-16-fold over background, half of which were as H-chain homopolymers. This had no evident effect in the mutant ferritin clone, whereas it induced an iron-deficient phenotype in the H-ferritin wild type clone, manifested by approximately 5-fold increase of IRPs activity, approximately 2.5-fold increase of transferrin receptor, approximately 1.8-fold increase in iron-transferrin iron uptake, and approximately 50% reduction of labile iron pool. Overexpression of the H-ferritin, but not of the mutant ferritin, strongly reduced cell growth and increased resistance to H(2)O(2) toxicity, effects that were reverted by prolonged incubation in iron-supplemented medium. The results show that in HeLa cells H-ferritin regulates the metabolic iron pool with a mechanism dependent on the functionality of the ferroxidase centers, and this affects, in opposite directions, cellular growth and resistance to oxidative damage. This, and the finding that also in vivo H-chain homopolymers are much less efficient than the H/L heteropolymers in taking up iron, indicate that functional activity of H-ferritin in HeLa cells is that predicted from the in vitro data.  相似文献   

8.
To study the functional differences between human ferritin H- and L-chains and the role of the protein shell in the formation and growth of the ferritin iron core, we have compared the kinetics of iron oxidation and uptake of ferritin purified from human liver (90% L) and of the H-chain homopolymer overproduced in Escherichia coli (100% H). As a control for iron autocatalytic activity, we analyzed the effect of Fe(III) on the iron uptake reaction. The results show that the H-chain homopolymer has faster rates of iron uptake and iron oxidation than liver ferritin in all the conditions analyzed and that the difference is reduced in the conditions in which iron autocatalysis in high: i.e. at pH 7 and in presence of iron core. We have also analyzed the properties of two engineered H-chains, one lacking the last 22 amino acids at the carboxyl terminus and the other missing the first 13 residues at the amino terminus. These mutant proteins assemble in ferritin-like proteins and maintain the ability to catalyze iron oxidation. The deletion at the carboxyl terminus, however, prevents the formation of a stable iron core. It is concluded that the ferritin H-chain has an iron oxidation site which is separated from the sites of iron transfer and hydrolysis and that either the integrity of the molecule or the presence of the amino acid sequences forming the hydrophobic channel is necessary for iron core formation.  相似文献   

9.
Class II major histocompatibility genes are expressed at high levels in B lymphocytes and are gamma interferon (IFN-gamma) inducible in many other cells. Previously, we observed that DRA promoter sequences from positions -150 to +31 determine the tissue specificity of this class II gene. Moreover, Z and X boxes located between positions -145 and -87 conferred B-cell specificity and IFN-gamma inducibility upon a heterologous promoter. In this study, sequences from positions -145 to -35 in the DRA promoter were systematically mutated by using oligonucleotide cassettes. Z (-131 to -125), pyrimidine (-116 to -109), X (-108 to -95), Y (-73 to -61), and octamer (-52 to -45) boxes were required for B-cell specificity and, with the exception of the octamer box, for IFN-gamma inducibility. Z box and sequences flanking Z and X boxes helped to determine low levels of expression in T and uninduced cells. In phenotypically distinct cells, shared and distinct proteins bound to these conserved upstream sequences. However, few correlations between expression and DNA-binding proteins could be made. Similar proteins bound to Z and X boxes, and the Z box most likely represents a duplication of the X box.  相似文献   

10.
It is widely believed that the putative nucleation site (Glu61, Glu64, and Glu67) in mammalian H-chain ferritin plays an important role in mineral core formation in this protein. Studies of nucleation site variant A2 (E61A/E64A/E67A) of H-chain ferritin have traditionally shown impaired iron oxidation activity and mineralization. However, recent measurements have suggested that the previously observed impairment may be due to disruption of the ferroxidase site of the protein since Glu61 is a shared ligand of the ferroxidase and nucleation sites of the protein. This study employed a new nucleation site variant A1 (E64A/E67A) which retains the ferroxidase site ligand Glu61. The data (O(2) uptake, iron binding, and conventional and stopped-flow kinetics measurements) show that variant A1 retains a completely functional ferroxidase site and has iron oxidation and mineralization properties similar to those of the wild-type human H-chain protein. Thus, in contrast to previously published literature, this study demonstrates that the putative "nucleation site" does not play an important role in iron uptake or mineralization in H-chain ferritin.  相似文献   

11.
In order to understand the influence of ferroxidase center on the protein assembly and solubility of tadpole ferritin, three mutant plasmids, pTH58K, pTH61G, and pTHKG were constructed with the aid of site-directed mutagenesis and mutant proteins were produced inEscherichia coli. Mutant ferritin H-subunits produced by the cells carrying plasmids pTH58K and pTHKG were active soluble proteins, whereas the mutant obtained from the plasmid pTH61G was soluble only under osmotic stress in the presence of sorbitol and betaine. Especially, the cells carrying pTH61G together with the plasmid pGroESL harboring the molecular chaperone genes produced soluble ferritin. The mutant ferritin H-subunits were all assembled into ferritin-like holoproteins. These mutant ferritins were capable of forming stable iron cores, which means the mutants are able to accumulate iron with such modified ferroxidase sites. Further functional analysis was also made on the individual amino acid residues of ferroxidase center.  相似文献   

12.
The p53 tumor suppressor gene acquires missense mutations in over 50% of human cancers, and most of these mutations occur within the central core DNA binding domain. One structurally defined region of the core, the L1 loop (residues 112-124), is a mutational "cold spot" in which relatively few tumor-derived mutations have been identified. To further understand the L1 loop, we subjected this region to both alanine- and arginine-scanning mutagenesis and tested mutants for DNA binding in vitro. Select mutants were then analyzed for transactivation and cell cycle analysis in either transiently transfected cells or cells stably expressing wild-type and mutant proteins at regulatable physiological levels. We focused most extensively on two p53 L1 loop mutants, T123A and K120A. The T123A mutant p53 displayed significantly better DNA binding in vitro as well as stronger transactivation and apoptotic activity in vivo than wild-type p53, particularly toward its pro-apoptotic target AIP1. By contrast, K120A mutant p53, although capable of strong binding in vitro and wild-type levels of transactivation and apoptosis when transfected into cells, showed impaired activity when expressed at normal cellular levels. Our experiments indicate a weaker affinity for DNA in vivo by K120A p53 as the main reason for its defects in transactivation and apoptosis. Overall, our findings demonstrate an important, yet highly modular role for the L1 loop in the recognition of specific DNA sequences, target transactivation, and apoptotic signaling by p53.  相似文献   

13.
14.
Previously, we described three mengovirus mutants derived from cDNA plasmids, containing shortened poly(C) tracts (C8, C12, and C13UC10), that exhibited strong attenuation for virulence in mice yet grew like wild-type virus in HeLa cells. Thirteen additional mutants hav now been constructed and characterized. Five of these differ only in poly(C) length, including one with a precise deletion of the tract. The other mutants bear deletions into the regions juxtaposing poly(C). Studies with HeLa cells confirm the essential dispensability of mengovirus's poly(C) tract but reveal a subtle, measurable correlation between poly(C) length and plaque diameter. Virulence studies with mice also revealed a strong correlation between poly(C) length and virulence. For the poly(C)-flanking mutations, the 15 bases directly 5' of the tract proved dispensable for virus viability, whereas the 20 to 30 bases 3' of poly(C) were critical for growth, thus implicating this region in the basal replication of the virus.  相似文献   

15.
Iron uptake by the ubiquitous iron-storage protein ferritin involves the oxidation of two Fe(II) ions located at the highly conserved dinuclear “ferroxidase centre” in individual subunits. We have measured X-ray absorption spectra of four mutants (K86Q, K86Q/E27D, K86Q/E107D, and K86Q/E27D/E107D, involving variations of Glu to Asp on either or both sides of the dinuclear ferroxidase site) of recombinant human H-chain ferritin (rHuHF) in their complexes with reactive Fe(II) and redox-inactive Zn(II). The results for Fe–rHuHf are compared with those for recombinant Desulfovibrio desulfuricans bacterioferritin (DdBfr) in three states: oxidised, reduced, and oxidised/Chelex®-treated. The X-ray absorption near-edge region of the spectrum allows the oxidation state of the iron ions to be assessed. Extended X-ray absorption fine structure simulations have yielded accurate geometric information that represents an important refinement of the crystal structure of DdBfr; most metal–ligand bonds are shortened and there is a decrease in ionic radius going from the Fe(II) to the Fe(III) state. The Chelex®-treated sample is found to be partly mineralised, giving an indication of the state of iron in the cycled-oxidised (reduced, then oxidised) form of DdBfr, where the crystal structure shows the dinuclear site to be only half occupied. In the case of rHuHF the complexes with Zn(II) reveal a surprising similarity between the variants, indicating that the rHuHf dinuclear site is rigid. In spite of this, the rHuHf complexes with Fe(II) show a variation in reactivity that is reflected in the iron oxidation states and coordination geometries.  相似文献   

16.
17.
The first 4 residues of parathyroid hormone (PTH) are highly conserved in evolution and are important for biological activity. We randomly mutated codons 1-4 of human PTH (hPTH) with degenerate oligonucleotides and, after expression in COS cells, screened the mutants for receptor binding and cAMP-stimulating activity using ROS 17/2.8 cells. This survey identified Glu4 and Val2 as important determinants of receptor binding and activation, respectively. Positions 1 and 3 were more tolerant of substitutions indicating that these sites are less vital to hormone function. Activities of synthetic hPTH(1-34) analogs further demonstrated the importance of positions 2 and 4. The binding affinity of [Ala4,Tyr34] hPTH(1-34)NH2 was 100-fold reduced relative to [Tyr34]hPTH(1-34)NH2 (Kd values = 653 +/- 270 and 4 +/- 1 nM, respectively), and [Arg2, Tyr34]hPTH(1-34)NH2 was a weak partial agonist which bound well to the ROS cell receptor (Kd = 31 +/- 10 nM). The Arg2 analog was nearly as potent as PTH(3-34) as an in vitro PTH antagonist in osteoblast derived cells. However, unlike PTH(3-34), [Arg2]PTH was a full agonist in opossum kidney (OK) cells. These observations suggest that the activation domains of the OK and ROS cell PTH receptors are different. Thus, amino-terminal PTH analogs may be useful as probes for distinguishing properties of PTH receptors.  相似文献   

18.
Insulin-regulated aminopeptidase (IRAP) is a type II integral membrane protein belonging to the gluzincin family of metallopeptidases identified by the characteristic Zn(2+)-coordination sequence element, HEXXH-(18-64X)-E. A second conserved sequence element, the GXMEN motif, positioned 22-32 amino acids N-terminal to the Zn(2+)-coordination sequence element distinguishes the gluzincin aminopeptidases from other gluzincins. To investigate the importance of the G428AMEN and H464ELAH-(18X)-E487 motifs for the activity of IRAP, mutational analysis was carried out. cDNA encoding the full-length transmembrane form of human IRAP was expressed in HEK293 cells and recombinant wild-type IRAP was shown to have biochemical and enzymatic properties similar to those reported for native IRAP and the soluble serum form of IRAP. Mutational analysis using single amino-acid substitutions in the GAMEN motif (G428A, A429G, M430K, M430E, M430I, E431D and E431A) and in the Zn(2+)-binding motif (H464Y, E465D, E465Q, H468Y, E487D and E487Q) resulted in decreased or abolished aminopeptidase activity towards the leucine-para-nitroanilide substrate. The results show that conservation of residues within the GAMEN and Zn(2+)-binding motifs is important for IRAP enzyme activity.  相似文献   

19.
血清白蛋白是必不可少的生命物质,在生命运动和发展延续中起着重要的作用。它不仅能维持正常的血浆渗透压,最重要的是能够储存和运输众多的内源性和外源性物质。本文利用生物信息学的方法分析了几种不同物种的血清白蛋白的结构信息和疏水性特点,研究表明人、牛、猴、兔、狼、猫的血清白蛋白序列均属于亲水性蛋白质,在100 bp以内的疏水性值差别比较明显。通过对血清白蛋白进行多序列比对分析,发现兔血清白蛋白的氨基酸突变的数目是最多的。在这几种血清白蛋白序列中,氨基酸突变更容易发生在结构相似、极性相似和能量比较接近的氨基酸之间,如D和L、E和D。对于人血清白蛋白来说,从疏水性的丙氨酸A到酸性的谷氨酸E的突变比较多,使得人血清白蛋白在进化过程中的亲水性增强,是个很好的储存和运输小分子的载体。这些基于生物信息学方面的血清白蛋白的突变及其进化关系的研究,为进一步研究药物与血清白蛋白的相互作用在其他物种中表现和特点提供了良好的基础。  相似文献   

20.
The natural human H-chain ferritin was expressed in E. coli using a multi-copy expression vector containing the lambda pL promoter. A variant H-ferritin, having an altered N-terminus, was also produced. These proteins are overproduced (greater than 30% of the soluble protein), correctly assembled into its 24-subunit shell, and able to bind iron. The identity of the products was confirmed using an antibody specific for H-ferritin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号