首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C(25) highly branched isoprenoid (HBI) alkenes are ubiquitous lipids found in geochemical samples around the globe. The origins of these widespread geochemicals are believed to be restricted to a limited number of diatoms, including Haslea ostrearia (and related species), Rhizosolenia setigera, and Pleurosigma intermedium. The unsaturation of the HBI alkenes ranges from 2-6 in different species and cultures. The number of stereogenic centres is usually limited to two in the HBI alkenes due to double bond positions. The relative and/or absolute configurations for these have been determined for a range of HBI alkenes produced from different diatoms cultured under a number of growth conditions. These determinations have involved a combined spectroscopic and chromatographic analysis using NMR spectroscopy and chiral gas chromatography, respectively. HBIs isolated from Haslea spp. belong to a specific structural type which exhibit configurational diastereoisomerism, while those isolated from P. intermedium and R. setigera represent a different structural type and usually exist as mixtures of geometric isomers only. HBIs are reported from a new species of diatom whose stereochemical properties lie between those found for Haslea spp. and P. intermedium.  相似文献   

2.
The hydrocarbon composition of the marine diatom Pleurosigma strigosum isolated from coastal Mediterranean sediments is described. A suite of five C(25) highly branched isoprenoid (HBI) alkenes with 2-5 double bonds were detected together with n-C(21:4) and n-C(21:5) alkenes and squalene. The analysis by (1)H and (13)C NMR spectroscopy of two isolated HBI alkenes allowed the structural identification of a novel C(25) HBI triene (2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-pentadeca-5E,13-diene) and the first identification in diatom cells of 2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-pentadec-5E-ene, an HBI previously detected in marine sediments and particulate matter. The other minor C(25) HBIs detected were a tetraene and a pentaene that have been previously identified in other diatoms from the genera Haslea and Rhizosolenia, and one other C(25) tetraene that could not be structurally identified. The structures of the HBI alkenes of P. strigosum were compared with those of C(25) homologues previously identified in three other Pleurosigma sp. (Pleurosigma intermedium, Pleurosigma planktonicum and Pleurosigma sp.). Unlike most structures previously reported, none of the HBI alkenes produced by P. strigosum showed an unsaturation at C7-C20, or E/Z isomerism of the trisubstituted double bond at C9-C10 (whenever present).  相似文献   

3.
The effect of life cycle on the distributions of C(25) and C(30) highly branched isoprenoid (HBI) alkene lipids has been investigated for the marine diatom Rhizosolenia setigera. The concentrations of the C(30) compounds are largely independent of the cell volume, though the ratios of the individual isomers possessing five and six double bonds show a dependence on the position of the cell during its life cycle, especially during auxosporulation. In contrast to the C(30) pseudo-homologues, the C(25) isomers are not always detected in cultures of R. setigera. The biosynthesis of the C(25) HBIs would appear to result from the onset of auxosporulation, with further changes to their distributions taking place after this phase, including the formation of more unsaturated isomers. The results of this investigation may be used in part to explain the large variations in these lipids reported previously.  相似文献   

4.
The structures and distributions of C25 highly branched isoprenoid (HBI) alkenes (Haslenes) have been determined following isolation from cultures of the diatoms Haslea ostrearia, Haslea crucigera, Haslea pseudostrearia and Haslea saltstonica. The distributions of the HBIs change between Haslea species and also between different cultures of the same species. Large scale culturing of H. ostrearia and H. pseudostrearia has enabled the structures of three new tetra-unsaturated alkenes to be determined by NMR spectroscopy. The structural relationships between different Haslenes together with the potential significance of the biosynthesis of HBIs by the Haslea genus is discussed.  相似文献   

5.
Four strains of euryhaline bacteria belonging to the genus Halomonas were tested for their response to a range of temperatures (2, 13, and 30 degrees C), hydrostatic pressures (0.1, 7.5, 15, 25, 35, 45, and 55 MPa), and salinities (4, 11, and 17% total salts). The isolates were psychrotolerant, halophilic to moderately halophilic, and piezotolerant, growing fastest at 30 degrees C, 0.1 MPa, and 4% total salts. Little or no growth occurred at the highest hydrostatic pressures tested, an effect that was more pronounced with decreasing temperatures. Growth curves suggested that the Halomonas strains tested would grow well in cool to warm hydrothermal-vent and associated subseafloor habitats, but poorly or not at all under cold deep-sea conditions. The intermediate salinity tested enhanced growth under certain high-hydrostatic-pressure and low-temperature conditions, highlighting a synergistic effect on growth for these combined stresses. Phospholipid profiles obtained at 30 degrees C indicated that hydrostatic pressure exerted the dominant control on the degree of lipid saturation, although elevated salinity slightly mitigated the increased degree of lipid unsaturation caused by increased hydrostatic pressure. Profiles of cytosolic and membrane proteins of Halomonas axialensis and H. hydrothermalis performed at 30 degrees C under various salinities and hydrostatic pressure conditions indicated several hydrostatic pressure and salinity effects, including proteins whose expression was induced by either an elevated salinity or hydrostatic pressure, but not by a combination of the two. The interplay between salinity and hydrostatic pressure on microbial growth and physiology suggests that adaptations to hydrostatic pressure and possibly other stresses may partially explain the euryhaline phenotype of members of the genus Halomonas living in deep-sea environments.  相似文献   

6.
Unusual chemicals produced by the-'blue oyster' diatom, Haslea ostrearia, include the water-soluble blue pigment marennine and numerous polyunsaturated sesterterpene oils or haslenes. Aqueous extracts of the alga exhibit in vitro and in vivo activities against human lung cancer cells and anti-HIV effects. Here we report that three haslenes also demonstrate in vitro cytostatic action against a human lung cancer cell line. The most active haslene is the most unsaturated and unsaturation in the haslenes increases with increasing algal growth temperature.  相似文献   

7.
8.
Four previously unknown n-C25 and n-C27 heptaenes of the marine diatom Rhizosolenia setigera were isolated and identified using NMR spectroscopy. They possess six methylene interrupted (Z)-double bonds starting at C-3 and an additional terminal or n-2 (Z)-double bond. Structural and stable carbon isotopic evidence suggests that these polyenes are biosynthesized by chain elongation of the C22:6n-3 fatty acid, followed by decarboxylation and introduction of double bonds at specific positions.  相似文献   

9.
A potential may exist for survival of and resistance development by Escherichia coli O157:H7 in environmental niches of meat plants applying carcass decontamination interventions. This study evaluated (i) survival or growth of acid-adapted and nonadapted E. coli O157:H7 strain ATCC 43895 in acetic acid (pH 3.6 +/- 0.1) or in water (pH 7.2 +/- 0.2) fresh beef decontamination runoff fluids (washings) stored at 4, 10, 15, or 25 degrees C and (ii) resistance of cells recovered from the washings after 2 or 7 days of storage to a subsequent lactic acid (pH 3.5) stress. Corresponding cultures in sterile saline or in heat-sterilized water washings were used as controls. In acetic acid washings, acid-adapted cultures survived better than nonadapted cultures, with survival being greatest at 4 degrees C and lowest at 25 degrees C. The pathogen survived without growth in water washings at 4 and 10 degrees C, while it grew by 0.8 to 2.7 log cycles at 15 and 25 degrees C, and more in the absence of natural flora. E. coli O157:H7 cells habituated without growth in water washings at 4 or 10 degrees C were the most sensitive to pH 3.5, while cells grown in water washings at 15 or 25 degrees C were relatively the most resistant, irrespective of previous acid adaptation. Resistance to pH 3.5 of E. coli O157:H7 cells habituated in acetic acid washings for 7 days increased in the order 15 degrees C > 10 degrees C > 4 degrees C, while at 25 degrees C cells died off. These results indicate that growth inhibition by storage at low temperatures may be more important than competition by natural flora in inducing acid sensitization of E. coli O157:H7 in fresh meat environments. At ambient temperatures in meat plants, E. coli O157:H7 may grow to restore acid resistance, unless acid interventions are applied to inhibit growth and minimize survival of the pathogen. Acid-habituated E. coli O157:H7 at 10 to 15 degrees C may maintain a higher acid resistance than when acid habituated at 4 degrees C. These responses should be evaluated with fresh meat and may be useful for the optimization of decontamination programs and postdecontamination conditions of meat handling.  相似文献   

10.
Growth of Escherichia coli O157:H7 strain ATCC 43895 was monitored at 5, 10, 15, and 25 degrees C in both pure and mixed (1:1) cultures with a gluconate-producing Pseudomonas sp. found in meat to evaluate the effect of the absence and presence of 1% glucose in broth on temperature-dependent competition. The number of colonies of the Pseudomonas strain exceeded 9 log CFU/ml under all conditions tested. The pathogen grew better as the temperature increased from 10 to 15 and 25 degrees C and grew better in pure culture than in mixed cultures. Pseudomonas sp. inhibited E. coli O157:H7 in cocultures with glucose at 10 degrees C, while at 15 degrees C the pathogen exhibited a biphasic pattern of growth with an intermediate inactivation period. Pathogen inhibition was much weaker in cocultures grown without glucose at 10 to 15 degrees C and, irrespective of glucose, at 25 degrees C. These results indicate that glucose enhances the growth inhibition of E. coli O157:H7 by some Pseudomonas spp., potentially due to its rapid uptake and conversion to gluconate, at low (< or = 15 degrees C) temperatures.  相似文献   

11.
Stability of an alkamide and a phenolic phytochemical marker in a hydro-alcoholic extract of Echinacea purpurea root and a dried powder prepared by evaporation of the extract was assessed in storage for 7 months at three temperature regimes: -20, 25 and 40 degrees Celsius. In the extract, the major alkamide, dodeca-2E, 4E, 8Z, 10E/Z-tetraenoic acid isobutyl amide, was not significantly affected by storage at any of the temperatures, but cichoric acid content declined as significantly (P = 0.05) at both 25 degrees C and 40 degrees C as compared to low-temperature storage. In the powder, the major alkamide showed a significantly reduced level at 25 degrees C and 40 degrees C while cichoric acid did not decline significantly. These results suggest that more attention should be given to the effect of formulation and temperature on storage of Echinacea products.  相似文献   

12.
Ultraprofound hypothermia (< 5 degrees C) induces changes to cell membranes such as liquid-to-gel lipid transitions and oxidative stress that have a negative effect on membrane function and cell survival. We hypothesized that fatty acid substitution of endothelial cell lipids and alterations in their unsaturation would modify cell survival at 0 degrees C, a temperature commonly used during storage and transportation of isolated cells or tissues and organs used in transplantation. Confluent bovine aortic endothelial cells were treated with 18-carbon fatty acids (C18:0, C18:1n-9, C18:2n-6, or C18:3n-3), C20:5n-3 or C22:6n-3 (DHA), and then stored at 0 degrees C without fatty acid supplements. Storage of control cells caused the release of lactate dehydrogenase (LDH) and a threefold increase in lipid peroxidation (LPO) when compared to control cells not exposed to cold. Pre-treating cells with C18:0 decreased the unsaturation of cell lipids and reduced LDH release at 0 degrees C by 50%, but all mono- or poly-unsaturated fatty acids increased injury in a concentration-dependent manner and as the extent of fatty acid unsaturation increased. DHA-treatment increased cell fatty acid unsaturation and caused maximal injury at 0 degrees C, which was prevented by lipophilic antioxidants BHT or vitamin E, the iron chelator deferoxamine, and to a lesser extent by vitamin C. Furthermore, the cold-induced increase in LPO was reduced by C18:0, vitamin E, or DFO but enhanced by DHA. In conclusion, the findings implicate iron catalyzed free radicals and LPO as a predominant mechanism of endothelial cell injury at 0 degrees C, which may be reduced by increasing lipid saturation or treating cells with antioxidants.  相似文献   

13.
The hydrocarbon fraction of a pure culture of Emiliania huxleyi, composed of a mixture of C31, C33, C37 and C38 polyunsaturated n-alkenes, appeared strongly dependent on the growth temperature of the alga between 8 degrees C and 25 degrees C. The total hydrocarbon content increased linearly with decreasing temperatures. C37 and C38 alkenes (which accounted for more than 90% of the total hydrocarbons) showed distinct changes in distribution compared to C31 and C33 alkenes, suggesting different biological syntheses and/or functions for these two groups of compounds. C37 and C38 alkenes and C37 methyl ketones (alkenones) all showed a trend to lower proportions of the two diunsaturated isomers and to higher proportions of the corresponding trienes with decreasing temperature. Unlike the alkenone unsaturation ratio (U37k'), ratios based on the C37 and C38 alkadi- and trienes could be linearly related to the growth temperature of E. huxleyi only between 15 degrees C and 25 degrees C. The modifications in the distribution of alkenes induced by varying temperature appeared, however, to be twice as fast as the modifications undergone by the alkenones. Although structurally and biochemically related, the distinct evolutions of alkenes and alkenones in response to changes in growth temperature might indicate that these two classes of compounds play two distinct physiological functions. The non-systematic linearity of relationships to temperature of parameters based on alkenes distribution suggested that these compounds are of limited use as paleotemperature indicator in the marine environment in contrast with the alkenones.  相似文献   

14.
New sets of diatom-specific biomarkers, highly branched isoprenoids (HBIs), have been recently proposed to trace carbon flow from ice algae and pelagic phytoplankton to higher trophic level organisms. In the Antarctic, diene, a HBI of sea ice origin was more abundant in ice-associated species, while triene, a HBI of phytoplanktonic origin, was more abundant in pelagic species. However, this HBI approach has never been applied on Antarctic benthic species. Here, we analyzed diene and triene in the liver and the muscle of eight Antarctic coastal fish species (108 specimens). HBI lipids were detected in all specimens, confirming the contribution of sea ice and pelagic organic matter in coastal benthic fish species. Moreover, HBI markers were much more concentrated in the liver than in white muscle, and the relative concentrations of diene and triene strongly varied among species, as a probable result of species differences in feeding habits and trophic ecology. Seasonal variations in HBI concentrations were detected during the whole year in white muscle, but not in the liver. These findings are consistent with the well-known spring bloom in November–December, just before the annual ice break up, and the second proliferation of ice algae during the land-fast ice formation, in April–May. Therefore, investigation of HBI lipids in white muscle will likely shed new light on seasonal changes in the contribution of ice algal-derived organic matter in higher trophic level organisms.  相似文献   

15.
Ma X  Browse J 《Phytochemistry》2006,67(15):1629-1636
Protein transfer across membranes is mediated by protein machinery embedded in the membrane. The complement of different lipid classes within a membrane is known to influence the efficiency of some protein translocation processes, but very little is known about whether the fatty acid composition of the membrane bilayer also affects protein transport. We investigated this issue using three mutants of Arabidopsis, fad6, fad5, and fad3 fad7 fad8, that have reduced levels of fatty acid unsaturation in their thylakoid membranes. Interestingly, the effect of reduced unsaturation was different for three distinct pathways of protein transport. In thylakoids from all three mutants, transport of the OE17 protein on the DeltapH/Tat pathway was reduced by up to 50% relative to wild-type controls, when assays were run at 10, 20 or 30 degrees C. By contrast, transport of the OE33 protein on the Sec pathway was substantially increased in all the mutants at the three temperatures. Transport of the CF(O)II protein (ATPg) on the 'spontaneous' pathway was largely unaffected by reduced unsaturation of the thylakoid membranes. Experiments with intact chloroplasts from wild-type Arabidopsis and the three mutants confirmed these changes in thylakoid transport reactions and also demonstrated an increased rate of protein import across the chloroplast envelope in each of the mutants. This increased capacity of chloroplast protein import may partially compensate for the reduced capacity of thylakoid transport by the DeltapH/Tat pathway. The fad5, fad6 and fad3 fad7 fad8 mutants used in this study grow normally at 15-20 degrees C, but exhibit reduced photosynthesis and growth, relative to wild-type controls, at low temperatures (4 degrees C). The results reported here indicate that protein transport and chloroplast biogenesis may well contribute to these low-temperature phenotypes.  相似文献   

16.
The structure, functioning and dynamics of polar marine ecosystems are strongly influenced by the extent of sea ice. Ice algae and pelagic phytoplankton represent the primary sources of nutrition for higher trophic-level organisms in seasonally ice-covered areas, but their relative contributions to polar marine consumers remain largely unexplored. Here, we investigated the potential of diatom-specific lipid markers and highly branched isoprenoids (HBIs) for estimating the importance of these two carbon pools in an Antarctic pelagic ecosystem. Using GC-MS analysis, we studied HBI biomarkers in key marine species over three years in Adélie Land, Antarctica: euphausiids (ice krill Euphausia crystallorophias and Antarctic krill E. superba), fish (bald notothens Pagothenia borchgrevinki and Antarctic silverfish Pleuragramma antarcticum) and seabirds (Adélie penguins Pygoscelis adeliae, snow petrels Pagodroma nivea and cape petrels Daption capense). This study provides the first evidence of the incorporation of HBI lipids in Antarctic pelagic consumers. Specifically, a di-unsaturated HBI (diene) of sea ice origin was more abundant in ice-associated species than in pelagic species, whereas a tri-unsaturated HBI (triene) of phytoplanktonic origin was more abundant in pelagic species than in ice-associated species. Moreover, the relative abundances of diene and triene in seabird tissues and eggs were higher during a year of good sea ice conditions than in a year of poor ice conditions. In turn, the higher contribution of ice algal derived organic matter to the diet of seabirds was related to earlier breeding and higher breeding success. HBI biomarkers are a promising tool for estimating the contribution of organic matter derived from ice algae in pelagic consumers from Antarctica.  相似文献   

17.
Compound-specific hydrogen and carbon isotopic compositions in n-alkanoic acids, phytol and sterols were determined for various plant classes (terrestrial C3-angiosperm; C3-gymnosperm; C4; crassulacean acid metabolism (CAM); and aquatic C3 plants) in order to investigate isotopic fractionations among various plant classes. In all plants, lipid biomolecules are depleted in both D (up to 324 per thousand ) and 13C (up to 14.7 per thousand ) relative to ambient water and bulk tissue, respectively. In addition, the magnitude of D- and 13C-depletion of lipid biomolecules is distinctive depending on plant classes. For example, C3 angiosperm n-alkanoic acids are less depleted in D (95+/-23 per thousand ) and 13C (4.3 +/- 2.5 per thousand ) relative to ambient water and bulk tissue, respectively, while C4 plant n-alkanoic acids are more depleted in D (119 +/- 15 per thousand ) and 13C (10.2 +/- 2.0 per thousand ). On the other hand, C3 angiosperm phytol and sterols are much more depleted in D (306 +/-12 per thousand for phytol, 211+/-15 per thousand for sterol) with less depletion in 13C (4.1 +/- 1.1 per thousand for phytol, 1.3 +/- 0.9 per thousand for sterol) relative to ambient water and bulk tissue, respectively, while C4 plant phytol and sterols are less depleted in D (254 +/- 7 per thousand for phytol, 186 +/- 13 per thousand for sterols) with much more depletion in 13C (9.0 +/- 1.2 per thousand for phytol, 5.0 +/- 1.1 per thousand for sterols). Among various plant classes, there is a positive correlation between the D- and 13C-depletion for n-alkanoic acids, while a negative correlation was found for phytol and sterols from the same plants.  相似文献   

18.
T Zhao  M P Doyle    R E Besser 《Applied microbiology》1993,59(8):2526-2530
A strain of enterohemorrhagic Escherichia coli serotype O157:H7 isolated from a patient in an apple cider-related outbreak was used to study the fate of E. coli O157:H7 in six different lots of unpasteurized apple cider. In addition, the efficacy of two preservatives, 0.1% sodium benzoate and 0.1% potassium sorbate, used separately and in combination was evaluated for antimicrobial effects on the bacterium. Studies were done at 8 or 25 degrees C with ciders having pH values of 3.6 to 4.0. The results revealed that E. coli O157:H7 populations increased slightly (ca. 1 log10 CFU/ml) and then remained stable for approximately 12 days in lots inoculated with an initial population of 10(5) E. coli O157:H7 organisms per ml and held at 8 degrees C. The bacterium survived from 10 to 31 days or 2 to 3 days at 8 or 25 degrees C, respectively, depending on the lot. Potassium sorbate had minimal effect on E. coli O157:H7 populations, with survivors detected for 15 to 20 days or 1 to 3 days at 8 or 25 degrees C, respectively. In contrast, survivors in cider containing sodium benzoate were detected for only 2 to 10 days or less than 1 to 2 days at 8 or 25 degrees C, respectively. The highest rates of inactivation occurred in the presence of a combination of 0.1% sodium benzoate and 0.1% potassium sorbate. The use of 0.1% sodium benzoate, an approved preservative used by some cider processors, will substantially increase the safety of apple cider in terms of E. coli O157:H7, in addition to suppressing the growth of yeasts and molds.  相似文献   

19.
20.
We tested the response of Enteromorpha intestinalis to fluctuating reduced salinity regimes which may occur in coastal estuaries due to both natural and anthropogenic influences. In a fully crossed two factor experiment, we subjected E. intestinalis to 0, 5, 15 and 25 psu water enriched with nutrients for 1-, 5-, 11- and 23-day periods. Each period was followed by 24 h of exposure to 25 psu (ambient) water that was not nutrient enriched. Following 24 h in ambient salinity water, algae were returned to reduced salinity conditions for the appropriate period and the cycle continued over the 24 days for which all treatments were maintained. Exposure to 0 psu for 5 days or longer resulted in loss of pigmentation, decreased wet and dry biomass, increased wet wt:dry wt ratios, decreased removal of nitrogen (N) and phosphorus (P) from the water column and an accumulation of NH(4) in the water column. More frequent exposure to ambient salinity in the 1-day treatment mitigated these effects. Across all salinity levels tested, biomass increased as frequency of exposure to ambient salinity increased. At all durations of exposure to low salinity tested, biomass increased as salinity level increased. We conclude that growth of E. intestinalis is decreased by reduced salinity. E. intestinalis is able to withstand exposure to 0 psu but there is a temporal limit to this tolerance that is somewhere between 1 and 5 days. Populations of E. intestinalis in coastal estuaries may suffer from freshwater inputs if salinity conditions are persistently reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号